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Abstract. Groundwater flow problems are mostly formulated by means of mass-
balance equation combined with Darcy’s law. In this way, the flow is governed by
a parabolic equation. To prevent inaccuracies which may result from this formula-
tion, the Cattaneo approach can be utilized. The paper presents groundwater flow
equation adopting the Cattaneo approach. In both 2D and 3D cases, the equation
is of hyperbolic type and contains a constant known as relaxation time. The article
focuses further on energy solutions defined on unbounded time interval. It is shown
that under certain conditions, such solutions are oscillatory. The conditions sufficient
to ensure the oscillatory solutions are derived. An upper bound for the oscillatory
time is proved to be independent of the particular solution.
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1 Introduction

Solving groundwater flow problems, or more generally, problems of flow of fluids
in porous media, we mostly solve an initial–boundary value problem governed
by a second order parabolic equation. The governing equation is a balance
equation of the fluid phase combined with a constitutive law – Darcy’s law in
our case.

Several other processes in nature are known to be also governed by a con-
servation law of a substance in a medium. Let the bulk density of the substance
in the medium be a function σ(t,x), σ : (t1, t2) × Ω → R, where Ω ⊂ R3 and
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(t1, t2) ⊂ R are the domain and the time interval in which the process is stud-
ied, respectively. That is, the amount of the substance in an arbitrary control
volume ω ⊂ Ω at time t is given by M(ω, t) =

∫
ω
σ(t,x) dx.

The motion of the substance is represented by the vector field w (flux-
density vector), w : (t1, t2) × Ω → R3. The time rate M ′(S, t) of amount of
the substance crossing at time t a surface S oriented by the unit normal vector
field ν is given by M ′(S, t) =

∫
S
w · ν dS.

Denote by q(t,x), q : (t1, t2)×Ω → R the density of sources of the substance
within the medium, that is, q is the amount of the substance generated by
sources in the medium per unit volume and unit time. Then the time rate of
change of the substance amount in any control volume ω is given by the flux of
the substance through the boundary ∂ω of ω and the amount of the substance
generated in ω per unit time, thus

d

dt

∫
ω

σx = −
∫
∂ω

w · νS +

∫
ω

qx,

where ν, defined on ∂ω, is outward unit normal of the volume ω. Since this
integral identity is true for an arbitrary control volume ω, we obtain the fun-
damental balance law (conservation law of mass or energy)

∂σ

∂t
+ divw = q, (1.1)

see, e.g., Feistauer [9], Fowler [10] or, for the case of two-phase systems, Mls [22].
This conservation principle is combined with a constitutive relation between σ
and the flux-density vectorw. Classical constitutive relations (such as Fourier’s
law in the theory of heat conduction or Fick’s law in the diffusion theory)
assume the form

w = −K gradσ + βυ, (1.2)

where K and β are functions of σ, t and x, K is a second rank symmetric
positive definite tensor or a positive scalar, and υ denotes the velocity field of
the medium in which the substance is moving.

2 Equations of Groundwater Flow

In the theory of fluid flow in porous media, the fundamental balance law (1.1)
is called the continuity equation. Unlike the above classical relations (1.2), the
flux of the substance does not depend directly on the gradient of its amount.
The applied constitutive law is Darcy’s law, see, e.g., Bear and Cheng [1] or
Fowler [10],

w = −K
(
ρ gradx3 +

1

g
grad p

)
+ συ,

where x = (x1, x2, x3) are space coordinates with x3-axis oriented vertically
upwards, g is gravity acceleration, p is fluid-phase pressure, K is hydraulic
conductivity tensor, ρ is intrinsic density of the fluid phase, i.e. mass of unit
volume of the fluid phase, σ is bulk density of the fluid phase and υ is velocity
field of the matrix (the solid phase); general relation between the flux densities
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of the liquid phase and the solid phase and the relative flux density of the liquid
phase is presented in [22].

When the density ρ is constant, hydraulic head Φ is usually used to express
Darcy’s law,

Φ = x3 + h, h =
1

ρg
p, (2.1)

where h is pressure head and x3 is elevation head. Then Darcy’s law reads

w = −ρK gradΦ+ συ. (2.2)

In the case of saturation, it is assumed that σ is a linear function of the pressure
head

σ = σ0 + ρSsh, (2.3)

where Ss is the specific storativity defined as volume of water released from unit
volume of porous medium in response to unit drop in pressure head, σ0 is bulk
density at zero pressure. Specific storativity is either a positive constant or a
positive function. Inserting the constitutive relation (2.2) into the continuity
equation (1.1), we obtain the dynamical equation

ρSs
∂Φ

∂t
− ρdiv(K gradΦ) + div(συ) = q, (2.4)

see, e.g., Bear and Cheng [1]. This equation is commonly used in hydraulics
of groundwater as the governing equation of groundwater flow problems. It
contains one unknown function, hydraulic head Φ or pressure head h, other
members are considered as given parameters.

Eq. (2.4) is of the parabolic type and, consequently, its solutions predict
infinite velocity of the substance propagation. This means that the equation
is not appropriate to describe high-speed processes and processes with large
changes of momentum. Groundwater hydraulics studies mostly low-speed pro-
cesses that are governed by Eq. (2.4) with a good accuracy. On the other
hand, there are processes in groundwater that are modelled by means of jump
conditions of the hydraulic head along certain specified surfaces, e.g. the do-
main boundaries. Moreover, groundwater hydraulics studies also processes that
periodically change direction of groundwater flow. Such processes frequently
concern large amounts of water. Small as the velocities are, the inertial effects
may be significant. Consequently, applying the above introduced model, the
involved inaccuracy may be considerable.

Bodvarsson [3] studied periodic changes in groundwater level observed in a
borehole which were caused by tide forces or atmospheric pressure fluctuations.
In such cases, the borehole serves as a piezometer for the hydraulic head in the
aquifer in which the borehole is open. Bodvarsson found that, for relatively
rapidly varying flow through wide openings of the fractured rock, the inertia
effects cannot be disregarded. To prevent the inaccuracy due to commonly
applied approach, Bodvarsson [3] suggested to modify Darcy’s law by adding a

linear inertia term of the form
ρK

σg

∂w

∂t
, where the notation introduced in this

paper is used, to the left-hand side of Eq. (2.2). This suggestion is very close to
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that of Cattaneo [4] which we consider below. The Bodvarsson paper is often
utilized in hydrogeological studies, e.g. [21, 26, 27].

In order to get a theoretical derivation of Darcy’s law, Whitaker [29] studied
flow through porous media under general conditions and presented the nature
of the Darcian simplification of the problem. Mls [22] introduced a general
approach based on d’Alembert’s principle. The approach, however, requires to
study both phases and to define several constitutive relations. Mls [24] studied
groundwater movement and hydraulic head oscillations in a tidally influenced
confined aquifer without adding any inertial term.

In this paper, we consider a relatively simple approach proposed by Catta-
neo [4] in order to remove the paradox of the infinite propagation velocity of
disturbances. He proposed to modify the classical constitutive relation, Fourier
law, by adding a time derivative term to the left-hand side of (1.2):

τ
∂w

∂t
+w = −K gradσ + βυ, (2.5)

where the parameter τ is a measure of inertia effect incorporated into the final
model. It is called the relaxation time and could be described as the response
time of the model, i.e. the time that the model would need, according to its
immediate reaction, to reach the reaction of the original model without the
time derivative term.

The modified constitutive relation (2.5) together with the conservation prin-
ciple (1.1) yields then the equation of the hyperbolic type and the propaga-
tion velocity is finite. There is a number of papers dealing with hyperbolic
Cattaneo-type heat models, non-Fickian diffusion, suspension thickening, etc.,
mainly from the numerical point of view (see, e. g., [6, 7, 12, 13, 23, 28]). In
the next section we take up the fluid flow in porous medium (groundwater flow
equation) using the just described modification (2.5) of Darcy’s law.

3 Hyperbolic Groundwater Flow Equation

According to equations (2.1) and (2.3), Eq. (1.1) becomes

ρSs
∂Φ

∂t
+ divw = q, (3.1)

and hence
∂

∂t
divw = −ρSs

∂2Φ

∂t2
+
∂q

∂Φ

∂Φ

∂t
+
∂q

∂t
. (3.2)

Now, we adopt the Cattaneo approach to generalize Darcy’s law (2.2). In the
same way as in Eq. (2.5) we include one linear inertia term proportional to the
time derivative of the fluid-phase flux density to (2.2) and obtain

τ
∂w

∂t
+w = −ρK gradΦ+ συ,

where τ is the relaxation time. Divergence of this vector equation reads

τ
∂

∂t
divw + divw = −ρdiv (K gradΦ) + div(συ). (3.3)
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As the balance equations (3.1) and (3.2) give

τ
∂

∂t
divw + divw = −τρSs

∂2Φ

∂t2
+ τ

∂q

∂Φ

∂Φ

∂t
+ τ

∂q

∂t
− ρSs

∂Φ

∂t
+ q, (3.4)

the right-hand side of Eq. (3.4) can be substituted for the left-hand side of
Eq. (3.3) giving general form of the final governing equation:

τρSs
∂2Φ

∂t2
+

(
ρSs − τ

∂q

∂Φ

)
∂Φ

∂t
−ρdiv (K gradΦ)+div(συ)−τ ∂q

∂t
−q = 0. (3.5)

In most cases, there are no sources within the investigated aquifers. On the
other hand, under conditions of nearly horizontal flow, hydraulics of aquifers
makes use of Dupuit’s assumption of constant value of hydraulic head along
vertical lines and lowers the dimension of the solved problem. In such cases,
any exchange of groundwater between the aquifer and its neighbourhood does
not go through the boundary of the domain and makes a source term instead.
Usually, see, e.g., [1], the source term is expressed in the form

q = D(H − Φ), (3.6)

where H is a constant and D is a positive function of space coordinates or a
positive constant. We will further assume that the speed of the solid matrix is
negligible and put υ = 0. Denoting u = Φ − H and making use of Eq. (3.6)
and of the assumption υ = 0, we get Eq. (3.5) in the form

τρSs
∂2u

∂t2
+ (ρSs + τD)

∂u

∂t
− ρdiv (K gradu) +Du = 0. (3.7)

We will derive conditions under which any global solution, i.e. defined for
t ∈ R+ = [0,+∞), of the above problems has an oscillatory character for
t→ +∞. Moreover, we will find an estimate of the oscillatory time, a quan-
titative measure of oscillations, and show that the estimate is independent of
those solutions.

4 Oscillation of Solutions

We deal with the autonomous equation (3.7) in a somewhat more general man-
ner. Let n ∈ N, Ω ⊂ Rn be a bounded domain with sufficiently regular
boundary ∂Ω, τ and α0 be given positive constants, x 7→ α(x), α : Ω̄ → R and
(x, u) 7→ f(x, u), f : Ω̄ × R→ R be given functions.

Further, let A(x) =
(
ajk(x)

)n
j,k=1

be a matrix of functions from C1(Ω̄),

which is symmetric (ajk(x) = akj(x), x ∈ Ω̄) and positive definite uniformly
with respect to x ∈ Ω̄, i.e. there exists η > 0 such that

n∑
j,k=1

ajk(x)ξjξk > η

n∑
j=1

ξ2j , (ξj)
n
j=1 ∈ Rn, x ∈ Ω̄.

Let B(x) =
(
Bj(x)

)n
j=1

be a vector of functions from C1(Ω̄) and c ∈ C(Ω̄).

Math. Model. Anal., 16(4):527–536, 2011.



532 J. Mls and L. Herrmann

We are interested in oscillatory properties of a function (t,x) 7→ u(t,x),
u : R+ ×Ω → R, that solves the equation

τ
∂2u

∂t2
+
(
α0 + α(x)τ

)∂u
∂t

+ Lu+ f(x, u) = 0 in R+ ×Ω, (4.1)

where

Lu = −div
(
A(x) gradu

)
+B(x) · gradu+ c(x)u,

supplemented, for definiteness and simplicity, with the homogeneous Dirichlet
boundary condition u = 0 on R+ × ∂Ω. Under stronger assumptions more
general boundary conditions in a special case α ≡ 0 are dealt with in [18].

Eq. (3.7) is subsumed into Eq. (4.1) and it is clear how the parameters
(coefficients, source terms) of these equations are related. Hence, in the sequel
we specify all further assumptions in terms of parameters of Eq. (4.1) (the
sufficient smoothness of which is always assumed). It can be seen below that
these assumptions do not contradict the properties of parameters of Eq. (3.7).

By local existence theory under smoothness properties of α and f , the
initial–boundary value problem given by equation (4.1) and initial conditions

u(0, ·) = u0, ∂u
∂t (0, ·) = u1 has for any (u0, u1) ∈

◦
W 1

2 (Ω) × L2(Ω) a unique
solution (t, x) 7→ u(t, x) with finite energy defined on a maximal interval,

u ∈ C([0, tmax),
◦
W 1

2 (Ω)) ∩ C1([0, tmax), L2(Ω)). These local solutions can be
extended to exist for all time t ∈ R+ (under some growth condition on f in u,
e.g., if the growth of f is at most linear for |u| → +∞) and we denote by U
the non-empty set of all global solutions (see, e.g., [14]).

It is known (e.g. [2, 8, 11]) that the operator

L+v = −div
(
A(x) grad v

)
− div(B(x)v) + c(x)v,

under homogeneous Dirichlet boundary condition has principal eigenvalue λ1
and an associated (principal) eigenfunction v1 which are both real (even if L+

is not symmetric). The function v1 is bounded, in fact v1 ∈ C(Ω̄) (if ∂Ω has
some degree of regularity), v1 is positive in Ω, L+v1 = λ1v1. Moreover, for any
eigenvalue λ, Re λ > λ1 and λ1 is a simple eigenvalue, i.e. v1 spans the null
space ker(L+ − λ1).

Let us recall that (in accordance with [5, 16, 17]), in general, a measurable
function u : R+ ×Ω → R is said to be globally oscillatory (about zero at +∞)
if there exists a constant Θ > 0, the oscillatory time, such that for any interval
J ⊂ R+, the length |J | of which is greater than Θ, u changes the sign on
J ×Ω, i.e. we have simultaneously meas{(t,x) ∈ J ×Ω | u(t,x) > 0} > 0 and
meas{(t,x) ∈ J × Ω | u(t,x) < 0} > 0. Roughly speaking, this means, for
a continuous function u(6≡ 0), that u has a zero in any domain J × Ω, where
J ⊂ R+ is an interval the length of which is sufficiently large and this length
can be chosen independently of J . The oscillatory time Θ defines the maximal
length of time intervals on which non-zero solutions u can remain non-negative
(non-positive) throughout the domain Ω.

We prove that the following assumptions, together with τ ∈ T introduced
in (4.10) (or (4.11)), ensure the oscillatory properties of solutions. Let there
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exist a non-negative constant α1 such that

0 6 α(x) 6 α1, x ∈ Ω̄. (4.2)

Further, let there exist a constant f0 such that (α0 is a positive constant)

λ1 + f0 > α0α1, uf(x, u) > f0u
2, (x, u) ∈ Ω̄ × R. (4.3)

In the linear case and with constant coefficients, the oscillations can be
proved similarly as in [19] and [20] with the aid of results in [25], but the
following approach solves more general problems which are nonlinear and with
coefficients depending on spatial variables.

We prove the following theorem.

Theorem 1. Let the assumptions (4.2) and (4.3) be satisfied. Then there exists
an open interval T ⊂ R+ such that for any τ ∈ T Eq. (4.1) (under homogeneous
Dirichlet condition) is uniformly globally oscillatory, i.e. there exists Θ > 0
such that any solution u ∈ U is globally oscillatory with the oscillatory time Θ.

In order to prove that a solution u ∈ U is globally oscillatory we shall
assume that u does not change the sign on J × Ω, where J = (τ1, τ2) ⊂ R+

is any interval with the length |J | = τ2 − τ1 sufficiently large (this quantity,
oscillatory time, can be estimated and is independent of u), and we prove that
then necessarily u ≡ 0 on J ×Ω and hence on R+ ×Ω (in virtue of the unique
solvability of the initial–boundary value problem).

Of considerable importance in the proof is the function t 7→ γ(t) with the
following properties. Let τ , q, m and M be constants satisfying

τ > 0, q > 0, −√q < m 6M <
√
q. (4.4)

Then there exist constants Θ > 0 and ε > 0 such that for any interval (τ1, τ2)
with τ2 − τ1 > Θ there exists a function t 7→ γ(t) with the properties

γ ∈ C2 ([τ1, τ2]) , (4.5a)

γ > 0 in (τ1, τ2), γ(τ1) = γ(τ2) = 0, (4.5b)

γ̇(τ1) > 0, γ̇(τ2) < 0, (4.5c)

and satisfying the equation

γ̈ + 2
(
−Mγ̇+ +mγ̇−

)
+ (q − ε/τ)γ = 0 in (τ1, τ2). (4.6)

Let us recall that γ̇±(t) = max{±γ̇(t), 0}, hence γ̇(t) = γ̇+(t) − γ̇−(t) and
|γ̇(t)| = γ̇+(t)+ γ̇−(t). Explicit formulae for the function γ and the constant Θ
can be found in [15] and [16]. Now, using γ(t)v1(x) as a test function in (4.1)
we obtain in virtue of (4.5a) and (4.5b)

0 = τ

∫
Ω

[
γ̇(τ1)u(τ1,x)− γ̇(τ2)u(τ2,x)

]
v1(x) dx

+

∫ τ2

τ1

∫
Ω

[(
τ γ̈ −

(
α0 + α(x)τ

)
(γ̇+ − γ̇−) + λ1γ

)
uv1 + f(x, u)γv1

]
dx dt.

Math. Model. Anal., 16(4):527–536, 2011.
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Estimating further, for u of one sign in J × Ω, we get in view of (4.2), (4.3)
and (4.5c)

0 > (sgnu)

∫ τ2

τ1

∫
Ω

[
τ γ̈ + (−α0 − α1τ)γ̇+ + α0γ̇

− + (λ1 + f0)γ
]
uv1 dx dt

= ε(sgnu)

∫ τ2

τ1

∫
Ω

γuv1 dx dt. (4.7)

The last equality is true, with some ε > 0, after the use of (4.6) with

q =
λ1 + f0

τ
, M =

α0 + α1τ

2τ
, m =

α0

2τ
.

In view of (4.2) and (4.3) the assumption q > 0 is fulfilled since

λ1 + f0 > α0α1 > 0. (4.8)

The remaining assumptions in (4.4) are fulfilled if for the parameters α0, α1, f0,
λ1 and τ the following quadratic inequality in τ is valid (assume first α1 > 0):

α2
1τ

2 + 2 [α0α1 − 2(λ1 + f0)] τ + α2
0 < 0. (4.9)

The assumption (4.8) ensures also the positivity of the discriminant

δ = 4(λ1 + f0) (λ1 + f0 − α0α1) > 0

and the inequality (4.9) holds if

τ ∈ T = (τ−, τ+), τ± =
−α0α1 + 2(λ1 + f0)±

√
δ

α2
1

, (4.10)

where the roots τ± of the corresponding quadratic equation fulfil

τ− + τ+ = 2 [−α0α1 + 2(λ1 + f0)]/α2
1, τ−τ+ = α2

0/α
2
1,

hence they are positive (if α1 > 0). If α1 = 0 then the assumption (4.4) is
ensured by

τ ∈ T =

(
α2
0

4(λ1 + f0)
,+∞

)
. (4.11)

Returning to the inequality (4.7) for τ ∈ T it is easily seen that according to
the positivity of the constant ε, the positivity of the function v1 on Ω, the
positivity of the function γ on J we get u ≡ 0 on J ×Ω, hence on R+×Ω, and
this completes the proof.

Conclusions

The direct application of Darcy’s law to a mass-balance equation, which is the
mostly used approach, leads to a parabolic equation. In order to prevent the
possible inaccuracy of the model, the Cattaneo correction can be adopted.

In this article, we focused on the character of the Cattaneo model of flow in
porous media in which the relaxation time τ is introduced. For any autonomous
problem sufficient conditions are formulated which guarantee the existence of
an interval T ⊂ R+ such that solutions are oscillatory provided that τ ∈ T .

Finally, we showed that the oscillatory time can be estimated and does not
depend on the particular solution.
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