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Abstract. A quasi-gasdynamic system of equations with a mass force and a heat
source is well known in the case of the perfect polytropic gas. In the paper, the system
is extended to the case of general equations of gas state satisfying thermodynamic
stability conditions. The entropy balance equation is studied. The validity of the
non-negativity property is algebraically analyzed for the entropy production. Two
different forms are derived for its relaxation summands. It is proved that under a
condition on the heat source intensity, the non-negativity property is valid.

An application to one-dimensional Euler real gas dynamics equations is given.
A two-level explicit symmetric in space finite-difference scheme is constructed. The
scheme is tested in the cases of the stiffened gas and the Van der Waals gas equations
of state.
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1 Introduction

A quasi-gasdynamic (QGD) system of equations forms the basis for the con-
struction of kinetically consistent finite-difference and finite volume methods
for solving problems in gas dynamics [2, 3, 7]. Concerning the presence of heat
sources, the corresponding QGD system [3] is not only important in itself, but
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also in connection with solving more complicated problems of radiation gas
dynamics [9].

The QGD system of equations was previously used and studied only in the
case of a perfect polytropic gas (or barotropic gas), and several issues of its
mathematical theory have been recently considered in [10, 11, 15]. But for a
lot of applications it is obligatory to use more complicated state equations.

Consequently it is important to build such a generalization of the QGD sys-
tem in the form of [3, 7] to general state equations satisfying the conditions of
thermodynamic stability which would preserve the property of non-negativity
of entropy production as a criterion for the physical correctness of the system,
and in case of a perfect polytropic gas would pass to the original QGD system.
The entropy balance equation is studied and criteria for non-negativity of the
entropy production are algebraically analyzed, first, in the absence and then
in the presence of the heat sources. Two different forms of writing the entropy
production are derived once again, first, in the absence and then in the presence
of the heat sources. One of these forms is an appropriate (non-trivial) gener-
alization of that in [3, 7], and the other is new. Note that if the heat sources
are present, there is a condition for the product of a relaxation parameter and
the power of the heat sources (which generalizes the corresponding condition
for the original QGD system [3]).

Related results in the absence of the heat sources are presented in [12, 13];
in particular, an analysis of the Petrovskii parabolicity for the generalized QGD
system is given there ensuring its mathematical correctness.

As an example of application of the constructed QGD system, we consider
a numerical approximation for the one-dimensional Euler system of equations
for real gas dynamics. A two-level explicit symmetric in space finite-difference
scheme is constructed. The scheme is tested numerically in two well-known
cases: (1) for the stiffened gas; (2) for the Van der Waals gas state equations.
The results confirm efficiency of the scheme.

2 Quasi-Gasdynamic System of Equations with General
State Equations and Heat Sources

The QGD system of equations in the form [3, 7] taking into account the mass
forces and heat sources can be written as the following equations of mass,
momentum and total energy balances

∂tρ+ div[ρ(u−w)] = 0, (2.1)

∂t(ρu) + div[ρ(u−w)⊗ u] +∇p = divΠ + [ρ− τ div(ρu)]F, (2.2)

∂tE + div [(E + p)(u−w)] = div(−q) + div(Πu) + ρ(u−w) · F +Q. (2.3)

Here the viscous stress tensor Π has the form

Π = ΠNS + ρu⊗ ŵ + τ [u∇p+ γpdivu− (γ − 1)Q]I,

where ΠNS is the classical Navier–Stokes viscous stress tensor

ΠNS = µ

[
2D− 2

3
(divu)I

]
, Dij =

1

2
(∂iuj + ∂jui)
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with the dynamic viscosity coefficient µ = µ(ρ, θ) > 0 and zero bulk viscosity
coefficient, and I is the identity tensor (of order n). The heat flux q is given
by

−q = κ∇θ + τ
[
ρ
(
u∇ε− p

ρ2
u∇ρ

)
−Q

]
u,

where κ = κ(ρ, θ) > 0 is the thermal conductivity coefficient. The auxiliary
vectors w and ŵ are

w =
τ

ρ

[
div(ρu⊗ u) +∇p− ρF

]
, ŵ =

τ

ρ

[
ρ(u∇)u +∇p− ρF

]
.

The operators div and ∇ = (∂1, . . . , ∂n) are taken with respect to the spatial
variables x = (x1, . . . , xn), where n > 1. Also ∂i and ∂t are the partial deriva-
tives in xi and t. The divergence of a tensor is taken with respect to its first
index. The signs ⊗ and · denote the tensor and inner products of vectors, and
in the inner products such as u · ∇ϕ the sign · is omitted for brevity. Below,
summation from 1 to n is supposed over repeated indices i, j.

We consider the gas density ρ > 0, the velocity u = (u1, . . . , un), the
absolute temperature θ > 0 as the basic unknown functions. In addition, the
equations include the total energy E = 1

2ρ|u|
2 + ρε, the pressure p and the

specific internal energy ε. The relaxation parameter τ is given by τ = µ
αSp

,

where αS > 0 is the Schmidt number. The functions F = F(x, t) and Q =
Q(x, t) > 0 are the density of given mass forces and the power of given heat
sources. In [3, 7], this system of equations is considered only in the case of a
perfect polytropic gas, where

p = (γ − 1)ρε, ε = cvθ, γ = const > 1, cv = const > 0.

In this paper, we take general state equations p = p(ρ, θ), ε = ε(ρ, θ) linked by
the Maxwell relation

p = θpθ + ρ2ερ in D0 (2.4)

and satisfying the thermodynamic stability conditions of the form

pρ > 0, εθ > 0 in D0, (2.5)

where D0 is the range of the pair of functions (ρ, θ) in the QGD system (the case
D0 = (0,∞)× (0,∞) is not excluded) and, for example, pρ and pθ are partial
derivatives of the function p = p(ρ, θ). If actually pρ > 0 in D0, the latter
condition can be rewritten in a known equivalent form of cp > cv ≡ εθ > 0 in
D0, where cp and cv are the specific heats of gas at constant pressure and at
constant volume, for example see [6]. Including of the case pρ = 0 allows us to
cover one of the simplest models for a two-phase gas/liquid mixture.

We generalize the QGD system of equations replacing term γpdivu by
ρC2

s divu and term (γ − 1)Q by (γQ − 1)Q in the viscous stress tensor Π:

Π = ΠNS + ρu⊗ ŵ + τ [u∇p+ ρC2
s divu− (γQ − 1)Q]I.

Here Cs > 0 is the speed of sound in the gas defined by

C2
s = pρ +

θp2
θ

ρ2εθ
, (2.6)

Math. Model. Anal., 16(4):509–526, 2011.
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and the quantity γQ = γQ(ρ, θ) is such that γQ − 1 = pθ
ρεθ

. Derivation of the
latter formula is given below; it turns out that under the above generalization
of the term γpdivu, the form of the coefficient γQ − 1 is uniquely determined.

By virtue of the stability conditions (2.5), formula (2.6) is correct (in par-
ticular, it is ensured that C2

s > 0). Moreover, the equality

C2
s =

cp
cv
pρ (2.7)

holds [6, p. 155] and therefore ρC2
s =

cp
cv
ρpρ. Notice that formula (2.6) follows

easily from (2.7) and
cp − cv = θp2

θ/(ρ
2pρ),

see [6, p. 47].
In the particular case of the perfect polytropic gas we get ρpρ = p, θpθ = p,

θεθ = ε, and therefore C2
s = γ(γ − 1)ε, ρC2

s = γp and γQ − 1 = γ − 1; also
cp
cv

= γ. Let Γ =
ρpρ
p . In another (barotropic) special case, where p = p(ρ), we

have C2
s = pρ and ρC2

s = Γp as in [11].
Following [11], below we also consider the more generic Navier–Stokes vis-

cous stress tensor

ΠNS = µ
[
2D− 2

3
(divu)I

]
+ λ(divu)I

with the bulk viscosity coefficient λ = λ(ρ, θ) > 0 and, like [10, 15], we take an
arbitrary relaxation parameter τ = τ(ρ, θ) > 0.

We introduce the entropy s = s(ρ, ε) by the Gibbs formulas

sρ = − p

ρ2θ
, sε =

1

θ
. (2.8)

Since then
θ∇s = ∇ε− p

ρ2
∇ρ, (2.9)

the heat flux can be expressed using a shorter formula

−q = κ∇θ + τ(ρθu∇s−Q)u. (2.10)

We introduce the total time derivative

Dtϕ := ∂t(ρϕ) + div[ρϕ(u−w)] = ρ∂tϕ+ ρ(u−w)∇ϕ,

see (2.1). We subtract the total energy equation (2.3) from the momentum
equation (2.2) multiplied scalarly by u, take into account formulas

∂t(ρu) · u + div[ρ(u−w)⊗ u] · u = ∂t

(1

2
ρ|u|2

)
+ div

[1

2
ρ|u|2(u−w)

]
,

w = ŵ +
τ

ρ
div(ρu)u = ŵ +

τ

ρ
(u∇ρ+ ρdivu)u (2.11)

and thus derive the equation of specific internal energy balance

Dtε = div(−q) +Πij∂iuj − p div(u−w) + w∇p− ρŵ · F +Q. (2.12)
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Here the term Πij∂iuj has the form

Πij∂iuj = 2µDijDij +
(
λ− 2

3
µ
)

(divu)2

+ τ
{
ρ(u∇)u · ŵ + [u∇p+ ρC2

s divu− (γQ − 1)Q] divu
}
. (2.13)

Theorem 1. For the above generalized QGD system, the equation of entropy
balance

Dts = div (−q/θ) +Ξ/θ

holds, where the entropy production 1
θΞ is expressed by formulas

Ξ = ΞNS,0 +
ρ

τ
|ŵ|2 +

τpρ
ρ

[div(ρu)]2

+
τρεθ
θ

(θpθ
ρεθ

divu + u∇θ − Q

2ρεθ

)2

+Q
(

1− τQ

4ρθεθ

)
, (2.14)

ΞNS,0 = 2µDijDij +
(
λ− 2

3
µ
)

(divu)2 +
κ
θ
|∇θ|2 > 0 for n = 1, 2, 3. (2.15)

The entropy production can be expressed also by formulas

Ξ = ΞNS,0 +
ρ

τ
|ŵ|2 +

τ

ρC2
s

(
ρC2

s divu + u∇p− (γQ − 1)Q

2

)2

+
τρθ

cp

(
u∇s− Q

2ρθ

)2

+Q
(

1− τQ

4ρθεθ

)
(2.16)

and (2.15) provided that pρ > 0. Under the condition

τQ

4ρθεθ
6 1, (2.17)

the entropy production is non-negative: 1
θΞ > 0 for n = 1, 2, 3.

Proof. The proof comprises several steps.
1. In steps 1–3, in the viscous stress tensor Π we consider the term γpp divu

with the coefficient γp = γp(ρ, θ) of general form instead of ρC2
s divu. First, in

a standard manner we write that

Dts =
1

θ

(
pDt

1

ρ
+Dtε

)
=

1

θ
[p div(u−w) +Dtε] = div

(
−q

θ

)
+

1

θ
Ξ

with the help of the Gibbs formulas (2.8) and the internal energy balance
equation (2.12), where

Ξ =
1

θ
(−q)∇θ +Πij∂iuj + w∇p− ρŵ · F +Q.

We use formulas (2.13) and (2.10). Since

(ρu∇)u · ŵ + w∇p− ρŵ · F =
ρ

τ
|ŵ|2 + τ

(
1

ρ
u∇ρ+ divu

)
u∇p

Math. Model. Anal., 16(4):509–526, 2011.
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by taking into account formula (2.11), by rearrangement the terms we get

Ξ = ΞNS,0 +
ρ

τ
|ŵ|2 +Q+ τΞ ′,

where

ΞNS,0 = 2µDijDij +
(
λ− 2

3
µ
)

(divu)2 +
κ
θ
|∇θ|2,

Ξ ′ = γpp(divu)2 + 2(divu)u∇p+
1

ρ
(u∇ρ)u∇p+ ρ(u∇s)u∇θ

−Q
[
(γQ − 1) divu +

1

θ
u∇θ

]
. (2.18)

Note that 1
θΞNS,0 is the entropy production for the Navier–Stokes compress-

ible gas equations for Q = 0. Inequality (2.15) follows from inequalities
DijDij > DiiDii > 1

n (divu)2.
2. The rest of the proof is devoted to the analysis of term Ξ ′. Let first

Q = 0. Using formula (2.9) and substituting ∇p = pρ∇ρ + pθ∇θ and ∇ε =
ερ∇ρ+ εθ∇θ, from (2.18) we obtain

Ξ ′ = γpp(divu)2+2(divu)(pρu∇ρ+pθu∇θ)+
pρ
ρ

(u∇ρ)2+
ρεθ
θ

(u∇θ)2, (2.19)

here we take into account that[
pθ
ρ

+
ρ

θ

(
ερ −

p

ρ2

)]
(u∇ρ)u∇θ = 0

by virtue of the Maxwell relation (2.4). Thus Ξ ′ = Gy · y, where

G :=

γpp pρ pθ
pρ

pρ
ρ 0

pθ 0 ρεθ
θ

 , y :=

divu
u∇ρ
u∇θ

 ,

is a quadratic form of three variables.
The quadratic form Gy · y is positive semidefinite if and only if all its

principal minors are nonnegative [5]. In particular, regardless of the previous
study inequalities

γpp > 0, pρ > 0, εθ > 0

have to be satisfied, compare with the thermodynamic stability conditions (2.5).
Note also that

detG =
pρεθ
θ

(γpp− ρC2
s ).

By virtue of (2.5) it is easy to see that the condition on the minors is reduced
to a unique one γpp > ρC2

s . So under conditions (2.5), the latter condition and
for Q = 0, the entropy production is nonnegative (for n = 1, 2, 3).

3. The quadratic form Ξ ′ = Gy · y can be explicitly represented as the
sum of squares in several ways. To generalize the representation from [3, 7], we
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transform expression (2.19) as follows:

Ξ ′ = γpp(divu)2 +
pρ
ρ

[
(ρ divu + u∇ρ)2 − ρ2(divu)2

]
+

ρ

εθθ

[(θpθ
ρ

divu + εθu∇θ
)2

− θ2p2
θ

ρ2
(divu)2

]
= (γpp−ρC2

s )(divu)2+
pρ
ρ

[div(ρu)]2+
ρ

θεθ

(θpθ
ρ

divu+εθu∇θ
)2

. (2.20)

In the particular case of the perfect polytropic gas and for γp = γ, the latter
expression takes the familiar form [3, 7]

Ξ ′ =
p

ρ2
[div(ρu)]2 +

ρ

ε

(p
ρ

divu + u∇ε
)2

.

On the other hand, expression (2.18) in the case Q = 0 can be transformed
alternatively

Ξ ′ = (γpp− ρC2
s )(divu)2 +

1

ρC2
s

(ρC2
s divu + u∇p)2

− 1

ρC2
s

(u∇p)2 +
1

ρ
(u∇ρ)u∇p+ ρ(u∇θ)u∇s

for pρ > 0. Taking into account formula (2.9) for ∇s and the Maxwell relation
(2.4), we have the following system of equations to find ∇ρ and ∇θ through
∇p and θ∇s:

pρ∇ρ+ pθ∇θ = ∇p, −θpθ
ρ2
∇ρ+ εθ∇θ = θ∇s. (2.21)

Its determinant is equal to εθC
2
s > 0. The solution of the system of equations

is as follows

∇ρ =
1

εθC2
s

(εθ∇p− θpθ∇s), ∇θ =
1

εθC2
s

(
θpθ
ρ2
∇p+ θpρ∇s

)
.

Hence, by virtue of relation (2.7) for C2
s , we obtain

− 1

ρC2
s

(u∇p)2 +
1

ρ
(u∇ρ)u∇p+ ρ(u∇θ)u∇s =

ρθpρ
εθC2

s

(u∇s)2 =
ρθ

cp
(u∇s)2.

Thus we have derived a representation of another type [12]

Ξ ′ = (γpp− ρC2
s )(divu)2 +

1

ρC2
s

(ρC2
s divu + u∇p)2 +

ρθ

cp
(u∇s)2. (2.22)

4. Now let γpp = ρC2
s and Q > 0. We rewrite the expression for Ξ ′ in the

form

Ξ ′ = Gy · y −Qb · y =: J(y)

Math. Model. Anal., 16(4):509–526, 2011.
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with the vector b := (γQ − 1, 0, 1/θ). Since the matrix G > 0 is singular, the
function J is bounded from below on R3 if and only if b⊥KerG or, equivalently,
b ∈ ImG.

Let G(1), G(2), G(3) be the successive columns of G. Let pρ > 0. Then
rankG = 2, and ImG is the linear span, for example, of G(2) and G(3). Since

b2 = G
(3)
2 = 0, actually b ∈ ImG is collinear G(3), i.e. b = αG(3). If, however,

pρ = 0, then rankG = 1, and ImG is the linear span of G(3), and once again
b = αG(3). Thus α = 1

ρεθ
, and γQ − 1 is uniquely determined:

γQ − 1 = αpθ =
pθ
ρεθ

. (2.23)

Below, this choice is assumed to be done.
Let y∗ be any solution of a system of equations Gy = Q

2 b. Then

J∗ := min
R3

J(y) = −Gy∗ · y∗ = −Q
2
b · y∗.

Since b = αG(3), we can take y∗ = (0, 0, Qα/2), and therefore

J∗ = −Q
2

4

α

θ
= − Q2

4ρθεθ
.

Consequently

Q+ τΞ ′ > Q

(
1− τQ

4ρθεθ

)
.

Obviously, the last quantity and therefore the entropy production are non-
negative (for n = 1, 2, 3) provided that τQ ≤ 4ρθεθ.

For pθ > 0, this condition can also be rewritten as

τ(γQ − 1)Q 6 4θpθ.

In the particular case of the perfect polytropic gas it takes the simplest form

τ(γ − 1)Q 6 4p.

5. It is easy to generalize the representation (2.20) to the case Q > 0. Since

(γQ − 1) divu +
1

θ
u∇θ =

1

θ

(θpθ
ρεθ

divu + u∇θ
)
,

for γpp = ρC2
s we have

Ξ ′ =
pρ
ρ

[div(ρu)]2 +
ρεθ
θ

(
θpθ
ρεθ

divu + u∇θ − Q

2ρεθ

)2

− Q2

4ρθεθ
.

Thus representation (2.14) is valid.
We generalize representation (2.22) as well, for γpp = ρC2

s and pρ > 0. Let
us seek it in the form

Ξ ′ =
1

ρC2
s

(
ρC2

s divu + u∇p− Q

2
c
)2

+
ρθ

cp

(
u∇s− Q

2
d
)2

− Q2

4

( c2

ρC2
s

+
ρθd2

cp

)
. (2.24)
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The coefficients c = c(ρ, θ) and d = d(ρ, θ) have to satisfy the equation(
divu +

1

ρC2
s

u∇p
)
c+

ρθ

cp
(u∇s)d = (γQ − 1) divu +

1

θ
u∇θ.

Therefore, we have to set c = γQ− 1, and then by formulas (2.21) and (2.7) an
equation

c

ρC2
s

(pρu∇ρ+ pθu∇θ) +
ρpρd

εθC2
s

(
−θpθ
ρ2

u∇ρ+ εθu∇θ
)

=
1

θ
u∇θ

has to be valid. This occurs if c and d satisfy a system of equations

c− θpθ
εθ

d = 0,
pθ
ρ
c+ ρpρd =

C2
s

θ
.

Its determinant is equal to ρC2
s > 0, see (2.6). Hence

c = γQ − 1 =
pθ
ρεθ

, d =
1

ρθ
.

Formula (2.23) is obtained once again. In addition, we have

c2

ρC2
s

+
ρθd2

cp
=

1

ρθεθ

(
θp2
θ

ρ2εθC2
s

+
pρ
C2
s

)
=

1

ρθεθ
,

which eventually leads from formula (2.24) to representation (2.16). The the-
orem is completely proved. ut

Note that if the coefficient
τρθ

cp
is rewritten as

τρθpρ
εθC2

s

in formula (2.16), it

remains valid under conditions pρ > 0 and C2
s 6= 0.

Remark 1. Since

∂tp =

(
pρ −

pθερ
εθ

)
∂tρ+

pθ
εθ
∂tε,

solutions of the classical Euler equations with general state equations and heat
source satisfy

∂tp = −
(
pρ −

pθερ
εθ

)
(u∇ρ+ ρdivu)− pθ

εθ

(
u∇ε+

p

ρ
divu− Q

ρ

)
= −u∇p−

[
ρpρ +

pθ
ρεθ

(p− ρ2ερ)
]

divu +
pθ
ρεθ

Q,

i.e. taking into account the Maxwell relation, an equation

∂tp+ u∇p+ ρC2
s divu =

pθ
ρεθ

Q

holds. Therefore, the physical derivation of the QGD system of equations with
a heat source (given in Section 3.6 in [3] in the case of the perfect polytropic
gas) leads exactly to the presented above equations in the case of general state
equations. Concerning the results of this section, see also [14].

Math. Model. Anal., 16(4):509–526, 2011.
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3 Application for Solving One-Dimensional Euler Real
Gas Equations

In the one-dimensional case and in the absence of the mass forces and the heat
sources, for λ = 0, the QGD system is simplified and can be rewritten in the
form

∂tρ+ ∂xj = 0, (3.1)

∂t(ρu) + ∂x(ju+ p) = ∂xΠ, (3.2)

∂tE + ∂x
j(E + p)

ρ
= −∂xq + ∂x(Πu) (3.3)

with the scalar velocity u and quantities

j := ρ(u− w), w =
τ

ρ
∂x(ρu2 + p), (3.4)

Π =
4

3
µ∂xu+ τ

(
ρu2∂xu+ 2u∂xp+ ρC2

s∂xu
)
, (3.5)

−q = κ∂xθ + τρu2

(
∂xε−

p

ρ2
∂xρ

)
, (3.6)

where j is the mass flux density. Recall also that E = 1
2ρu

2 + ρε.
It is convenient to exploit the state equations also in an alternative form

p = P (ρ, ε), θ = Θ(ρ, ε). (3.7)

Note that then the formula for the speed of sound takes the form

C2
s = Pρ +

p

ρ2
Pε. (3.8)

The Euler system of equations for inviscid and non-heat-conducting gas flow
is similar but contains no dissipative summands, i.e. those with the coefficients
τ , µ and κ. To approximate it numerically, the dissipative summands are
considered as artificial regularizers. Following [3, p. 64] and [7, p. 345], we
connect them by formulas

µ = αSτρpρ(ρ, θ), κ =
µcp
αP

=
αS
αP

τρcvC
2
s , (3.9)

see equality (2.7) as well. Here αS and αP are Schmidt’s and Prandtl’s numbers
(positive constants). The relaxation coefficient τ is chosen below related to a
space mesh step and Cs.

We construct an explicit two-level in time and symmetric in space finite-
difference scheme. We use a uniform mesh in space with nodes xi = (i − 1)h,
1 6 i 6 N , and the step h = X/(N − 1), where the main unknowns ρ, u and ε
together with p and θ are defined. We also use an auxiliary mesh with nodes
xi−1/2 = (i − 0.5)h, 1 6 i 6 N − 1, where the auxiliary unknowns j, w, Π
and q are defined. We define the symmetric mesh averaging and central finite
differences (involving both the main and auxiliary meshes)

va,i−1/2 =
vi−1 + vi

2
, δvi−1/2 =

vi − vi−1

h
, δwi =

wi+1/2 − wi−1/2

h
.
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Required values of ρ, u and ε together with p on the auxiliary mesh are calcu-
lated using the averaging (·)a.

We also use a nonuniform mesh in time with nodes 0 = t0 < · · · < tM = tfin

and variable steps ∆tm = tm+1 − tm.
Following [4], we approximate the QGD system (3.1)–(3.3) by a two-level

explicit symmetric in space finite-difference scheme applying the forward finite
differences in t and the central finite differences in x:

ρ̂− ρ
∆t

+ δj = 0,

ρ̂u− ρu
∆t

+ δ(jua + pa) = δΠ,

Ê − E
∆t

+ δ
(
j
Ea + pa
ρa

)
= δ(−q +Πua).

In this section, quantities marked by the hat ·̂ are related to the upper time
level. After calculating the values ρ̂, ρ̂u and Ê on the upper time level, we set

û =
ρ̂u

ρ̂
, ε̂ =

Ê

ρ̂
− 1

2
û2

assuming that ρ̂ > 0. We also approximate relations (3.4)–(3.6) as follows

j = ρa(ua − w), w =
τa
ρa
δ(ρu2 + p),

Π =
4

3
µaδu+ τa

(
ρau

2
aδu+ 2uaδp+ ρa(C2

s )aδu
)
,

−q = κaδθ + τaρaua

(
δε− pa

ρ2
a

δρ
)
.

For solving the Euler equations, τ is considered as a regularizing parameter
defined by τ = αh/Cs. Keeping in mind the Courant stability condition, we
also take the current time step in the form

∆t = β min
16i6N

h

|ui|+ Cs,i
.

Here 0 < α < 1 and 0 < β < 1 are fitting parameters.
We apply the scheme for two particular non-perfect polytropic gas models

(the case of the perfect polytropic gas was carefully tested in [4]).
1. The rather simple stiffened gas (or two-term) model appears in a lot of

papers and is described by

P (ρ, ε) = (γ − 1)ρε+B (ρ/ρ∗ − 1) , (3.10)

where γ > 1, B and ρ∗ are positive parameters. Then formula (3.8) implies

C2
s =

γp+B

ρ
= γ(γ − 1)ε+

γB

ρ∗
+

(γ − 1)B

ρ
> 0.
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In contrast to many other schemes, in addition to (3.10) we also need the
second state equation (3.7). To derive it, we assume that εθ = cv ≡ const > 0
and thus get ε(ρ, θ) = cvθ + ε0(ρ). Therefore

p(ρ, θ) = (γ − 1)ρ[cvθ + ε0(ρ)] +B (ρ/ρ∗ − 1) , (3.11)

and the Maxwell relation (2.4) implies an ordinary differential equation to find
ε0(ρ):

ρ2ε′0(ρ) = (γ − 1)ρε0(ρ) +B (ρ/ρ∗ − 1) .

Its general solution is

ε0(ρ) = c0ρ
γ−1 +

B

γρ
− B

(γ − 1)ρ∗

with any constant c0. To ensure the property ε0(ρ) > 0 for any ρ > 0, we
consider c0 > 0. Then the minimum point of ε0(ρ) is

ρmin =

[
B

γ(γ − 1)c0

]1/γ

and therefore

min
ρ>0

ε0(ρ) = ε0(ρmin) =
B

(γ − 1)

(
1

ρmin
− 1

ρ∗

)
.

Consequently c0 has to satisfy an inequality

c0 >
B

γ(γ − 1)ργ∗
,

and finally we choose c0 = B/(γ(γ − 1)ργ∗).
Formula (3.11) implies

pρ(ρ, θ) = (γ − 1)cvθ + c0γ(γ − 1)ργ−1

so the thermodynamic stability conditions (2.5) are valid for any θ > 0 and
ρ > 0 provided that cv > 0 and c0 > 0.

Note that since the coefficient κ contains the multiplier cv, see (3.9), for
cv = const, hereafter the function cvθ can be easily excluded from the system
of equations.

For the stiffened gas model, we exploit three tests from [8] with different
gas flow configurations. Let B = ρ∗ = 1, γ = 1.4 and X = 1. In test 1, initial
data for ρ, u and p are given by

ρ0(x) =

{
1 for x 6 0.5,

0.125 for x > 0.5,
u0(x) = 0, p0(x) =

{
8 for x 6 0.5,

0.1 for x > 0.5

and tfin = 0.075. Next, in test 2, the initial data are given by

ρ0(x) =

{
0.8 for x 6 0.5,

1 for x > 0.5,
u0(x) = 0, p0(x) =

{
10 for x 6 0.5,

0.1 for x > 0.5
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and tfin = 0.1. Finally, in test 3, the initial data are given by

ρ0(x) = 1, u0(x) =

{
−2 for x 6 0.5,

2 for x > 0.5,
p0(x) = 8

and tfin = 0.07. The required values ε0(x) are then expressed by virtue
of (3.10).

For all tests 1–3, we take the simplest values αS = αP = 1 and choose
N = 400, α = 0.2 and β = 0.1. The main sought functions ρ, u and ε together
with p (the space graphs at time tfin and the corresponding space–time graphs)
are presented on Figs. 1 and 2, Figs. 3 and 4, Figs. 5 and 6 for the tests 1, 2
and 3, respectively. The results on Figs. 1, 3 and 5 are completely consistent
with those obtained in [8] for N = 200.
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Figure 1. Test 1 (the stiffened gas): the space graphs at time tfin = 0.075.

2. The classical Van der Waals gas state equations in the form (3.7) are

P (ρ, ε) =
(γ − 1)ρ(ε+ aρ)

1− bρ
− aρ2, Θ(ρ, ε) =

ε+ aρ

cv

with γ = R
cv

+1 (for example see [6]), where a, b, R and cv are positive physical

constants. It is assumed that 0 < ρ < b−1. According to formula (3.8) one can
derive

C2
s =

γ(γ − 1)(ε+ aρ)

(1− bρ)2
− 2aρ.

Note also that

pρ(ρ, θ) =
Rθ

(1− bρ)2
− 2aρ =

(γ − 1)(ε+ aρ)

(1− bρ)2
− 2aρ,

Math. Model. Anal., 16(4):509–526, 2011.
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Figure 2. Test 1 (the stiffened gas): the space–time graphs.
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Figure 3. Test 2 (the stiffened gas): the space graphs at time tfin = 0.1.
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Figure 4. Test 2 (the stiffened gas): the space–time graphs.
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Figure 5. Test 3 (the stiffened gas): the space graphs at time tfin = 0.07.
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Figure 6. Test 3 (the stiffened gas): the space–time graphs.
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Figure 7. Test 4 (the Van der Waals gas): the space graphs at time tfin = 0.005.
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Figure 8. Test 4 (the Van der Waals gas): the space–time graphs.

and we confine ourselves to the thermodynamic stability case pρ(ρ, θ) > 0 (no
phase change).

For the Van der Waals gas, we exploit test 5 from [1]. The chosen values of
the constants are:

a = 1684.54, b = 0.001692, R = 461.5, cv = 1401.88.

Also X = 10 and the initial data are given by

ρ0(x) =

{
250 for x 6 5,

166.6 for x > 5,
u0(x) = 0, p0(x) =

{
35966778 for x 6 5,

27114795 for x > 5.

The time tfin is absent in [1] so our value tfin = 0.005 is fitted to get the
closest results. For this test, we once again take αS = αP = 1 but choose now
N = 700, α = 0.65 and β = 0.1. The functions ρ, u and ε together with p are
presented on Figs. 7 and 8. The results on Fig. 7 are in accordance with those
obtained in [1] for N = 500.

The results of numerical experiments confirm efficiency of the constructed
finite-difference scheme. Notice that a generalization of the scheme to higher
dimensions is straightforward and now numerical testing of similar 2D applica-
tions is in progress.
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