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1 Introduction

In the paper the existence and uniqueness of weak solution of boundary value
problem in nontube domain for fourth-order equation of composite type are
proved by methods of functional analysis. The main part of the operator is
a composition of the wave operator and the operator of Laplace type. The
analysis of such equations is caused by the need to develop further the funda-
mental theory of well-posed problems for linear partial differential equations,
since such theory for the second-order equations of hyperbolic and elliptic types
has been already developed. The interest to equations of composite type from
a practical point of view is caused by a wide class of applications of in many
fields of scientific knowledge and industry.

Boundary value problems for equations of composite type

∂

∂x
Δu = 0,

∂2

∂x∂y
Δu = 0, (1.1)

where Δ is Laplace operator and Δ = ∂2

∂x2 + ∂2

∂y2 , u = u(x, y) were considered

by Hadamard [12, 13]. It is possible to point to a number of papers [1, 4, 5,
6, 7, 8, 9, 10, 11, 18, 19, 24, 25] where equation (1.1) and the other composite
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equations are investigated. We don’t know any papers devoted to the equation
we consider in this paper.

The purpose of this paper is to extend the theorems of existence and unique-
ness of weak solutions of boundary value problems for the fourth-order equa-
tions of composite type in tube domains to nontube domains. A tube domain
is a domain with the following property: the generator of the surface being
part of the boundary of the domain and called lateral is parallel to the axis of
x0. We call nontube a domain which doesn’t have this property. In the case of
tube domains this problem was considered in the paper [20], the proof of exis-
tence and uniqueness of weak solutions of other problems in tube domains for
this equation can be found in the papers [15, 20]. The papers [14] and [21] are
devoted to proving existence and uniqueness of strong solutions of boundary
value problems in tube domains for fourth-order equation of composite type.
The equation of composite type of more common form is considered in the
paper [22].

2 Statement of a Problem

In a domain Q of (n + 1)-dimensional Euclidean space R
n+1 of independent

variables x = (x0, . . . , xn) with respect to function u : Rn+1 ⊃ Q � x→ u(x) ∈
R we consider a linear partial differential fourth-order equation of composite
type

Lu ≡ ∂4u

∂x40
+ (b2 − a2)

∂2

∂x20
Δu− a2b2Δ2u+A(2)u = f(x), (2.1)

where a, b ∈ R are given numbers satisfying the relation a2 > b2, Δ =
∑n

i=1
∂2

∂x2
i

is the Laplace operator with respect to the variables x′ = (x1, . . . , xn), A
(2) =∑

|α|�2 a
(α)(x)Dα, Dα = ∂|α|

∂x
α0
0

...∂xαn
n

, α = (α0, . . . , αn), αi, i = 0, . . . , n, are

nonnegative integers, |α| = α0 + . . .+ αn.
We denote by Cl(Q) a set of continuously differentiable functions up to the

order l in the closure Q of the domain Q, where l is nonnegative integer. In
equation (2.1) a(α)(x) are given functions and a(α)(x) ∈ C2(Q).

Boundary ∂Q of the domain Q consists of three parts: S1 = {x ∈ ∂Q |
ν0 = −1}, S2 = {x ∈ ∂Q | ν20 − a2|ν ′|2 � −δ1} and S3 = {x ∈ ∂Q | ν0 = 1},
∂Q = S1∪S2∪S3, where ν(x) = (ν0(x), . . . , νn(x)) is the outward with respect
to the domain Q unit normal on the hypersurface ∂Q at a point x ∈ ∂Q,
|ν′|2 = ν21 + . . . + ν2n, δ1 > 0. The tangent to the hypersurface S2 at a point
x ∈ S2 vector τ (x) = (1, τ1(x), . . . , τn(x)) satisfies the conditions

|τi| � δ2,

∣∣∣∣ ∂τi∂xj

∣∣∣∣ � δ2, i = 1, . . . , n, j = 0, . . . , n, (2.2)

where δ2 is a sufficiently small positive number. For equation (2.1) we formulate
the following boundary conditions:

u|S1
=

∂u

∂p1

∣∣∣∣
S1

=
∂2u

∂p2
1

∣∣∣∣
S1

= 0, (2.3)
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u|S2
=

∂u

∂p2

∣∣∣∣
S2

= 0, (2.4)

u|S3
= 0, (2.5)

where ∂
∂p

i

is derivative in the direction of pi from vector field Pi, which is not

tangent to Si, i = 1, 2. If boundary conditions (2.3)–(2.5) are nonhomogeneous,
then they are reduced to the homogeneous ones by extending their right parts
to the domain Q by functions from suitable spaces and replacing the desired
function [23].

3 Definition of Weak Solution

We consider problem (2.1)–(2.5) and define some functional spaces in which
a weak solution is defined. Weak solution is defined by some equality of the
corresponding functionals. To achieve this, along with problem (2.1)–(2.5) we
consider an adjoint boundary value problem:

L′v ≡ ∂4v

∂x40
+ (b2 − a2)

∂2

∂x20
Δv − a2b2Δ2v +A(2)′v = g(x),

v|S1
= 0, (3.1)

v|S2
=

∂v

∂p2

∣∣∣∣
S2

= 0, (3.2)

v|S3
=

∂v

∂p3

∣∣∣∣
S3

=
∂2v

∂p2
3

∣∣∣∣
S3

= 0, (3.3)

where ∂
∂p3

is derivative in the direction of p3 from vector field P3, which is not

tangent to S3, A
(2)′v =

∑
|α|�2(−1)|α|Dα(a(α)(x)v).

We define domains of definitions for the operators L and L′ as follows:

D(L) =
{
u ∈ C4(Q) | u|S1

=
∂u

∂p1

∣∣∣∣
S1

=
∂2u

∂p2
1

∣∣∣∣
S1

= u|S2
=

∂u

∂p2

∣∣∣∣
S2

=u|S3
= 0

}
,

D(L′) =
{
v ∈ C4(Q) | v|S1

= v|S2
=

∂v

∂p2

∣∣∣∣
S2

=v|S3
=

∂v

∂p3

∣∣∣∣
S3

=
∂2v

∂p2
3

∣∣∣∣
S3

= 0
}
.

It is easy to check that

(Lu, v)L2(Q) = (u,L′v)L2(Q) (3.4)

for any functions u ∈ D(L) and v ∈ D(L′), where (·,·)L2(Q) is value of scalar
product in the space L2(Q) of square integrable in Q functions.

We denote by H l(Q) Hilbert space elements of which u ∈ L2(Q) and their
weak derivatives Dαu, |α| � l, belong to L2(Q). A scalar product in H l(Q) is
defined by expression (u, v)Hl(Q) =

∑
|α|�l(D

αu,Dαv)L2(Q). Let H l
0(Q) (l =

1, 2, 3) be a subspace of the space H l(Q) elements of which satisfy boundary
conditions (2.3)–(2.5) according to the S. L. Sobolev embedding theorems. In
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a similar way, subspaces
0

H
l(Q) of the space H l(Q) are defined, where their

elements satisfy conditions (3.1)–(3.3).

Condition 1. The boundary ∂Q of the domain Q is such that the closure of
the set D(L) in the norm of the space H l(Q) is the same as the space H l

0(Q)

and the closure of the set D(L′) is the same as the space
0

H
l(Q), l = 1, 2, 3.

Domains with sufficiently smooth boundaries satisfy Condition 1.
We remark that the elements of the space H2

0 (Q) have meaning not for
all boundary conditions (2.3)–(2.5). If u ∈ H2

0 (Q), then u actually satisfies
conditions (2.4), (2.5) and first two conditions from (2.3). If u ∈ H1

0 (Q), then

u|∂Q = 0. A similar remark takes place for the elements v ∈ 0

H
l(Q) (l = 1, 2)

with respect to conditions (3.1)–(3.3). Here according to introduced notation

and definitions of the spaces H1
0 (Q) =

0

H
1(Q). We remark that the subspaces

H l
0(Q) and

0

H
l(Q), l = 1, 2, 3, are Hilbert spaces, too.

We denote by H−1
0 and

0

H
−1 spaces with negative norm [2] with respect

to the spaces H1
0 (Q) and

0

H
1(Q), i.e. spaces of all continuous linear func-

tionals over the spaces H1
0 (Q) and

0

H
1(Q). As far as H1

0 (Q) =
0

H
1(Q), then

H−1
0 =

0

H
−1.

To define weak solution of problem (2.1)–(2.5) we consider bilinear form

Φ(u, v) = (u,L′v)L2(Q), u ∈ D(L), v ∈ D(L′).

If u ∈ H2
0 (Q) and v ∈ 0

H
3(Q), then the form Φ(u, v) can be written in the form

Φ(u, v) =

(
∂2u

∂x20
,
∂2v

∂x20

)
L2(Q)

+ (b2 − a2)

n∑
i=1

(
∂2u

∂x0∂xi
,

∂2v

∂x0∂xi

)
L2(Q)

− a2b2
n∑

i,j=1

(
∂2u

∂xi∂xj
,

∂2v

∂xi∂xj

)
L2(Q)

+ (A(2)u, v)L2(Q). (3.5)

For every u ∈ H2
0 (Q) we consider Φ(u, v) as a linear functional v → Φ(u, v).

We define the extension L of the operator L in the following way by taking
into account (3.4). A function u belongs to the domain of definition D(L) of
the operator L, if u ∈ H2

0 (Q) and the map v → Φ(u, v) is linear continuous

functional in the dense set
0

H
3(Q) of the space H1

0 (Q) in topology induced
from the space H1

0 (Q). Then this functional allows a continuous extension to
all space H1

0 (Q). Consequently, a unique element Lu ∈ H−1
0 exists such that

Φ(u, v) = 〈Lu, v〉

for u ∈ D(L) and any v ∈ H1
0 (Q) exists, where 〈w, v〉 is canonical bilinear form

for w ∈ H−1
0 and v ∈ H1

0 (Q), which is extension by continuity of the bilinear
form (w, v)L2(Q), where w ∈ L2(Q), v ∈ H1

0 (Q).
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As far as the set
0

H
3(Q) is dense in the space H1

0 (Q), then

‖Lu‖H−1

0

= sup

v∈
0

H
3(Q)

|Φ(u, v)|
‖v‖H1

0
(Q)

, u ∈ D(L). (3.6)

It follows from (3.4) and (3.5) that if u ∈ D(L), then u ∈ D(L). Really,
Φ(u, v) = (Lu, v)L2(Q) and is linear continuous functional with respect to v
for u ∈ D(L), v ∈ H1

0 (Q), i.e. Lu = Lu for u ∈ D(L). Consequently, L is
extension of the operator L.

Definition 1. The solution of operator equation Lu = f , f ∈ H−1
0 , is a weak

solution of problem (2.1)–(2.5).

In a similar way, starting from (3.4), we build the extension L
′ of the

operator L′. A function v belongs to the domain of definition D(L′) of the

operator L′, if v ∈ 0

H
2(Q) and a map u→ Ψ(u, v), where

Ψ(u, v) =

(
∂2u

∂x20
,
∂2v

∂x20

)
L2(Q)

+ (b2 − a2)

n∑
i=1

(
∂2u

∂x0∂xi
,

∂2v

∂x0∂xi

)
L2(Q)

− a2b2
n∑

i,j=1

(
∂2u

∂xi∂xj
,

∂2v

∂xi∂xj

)
L2(Q)

+ (A(2)u, v)L2(Q), (3.7)

u ∈ H3
0 (Q), is linear continuous functional in the dense set H3

0 (Q) of the space
H1

0 (Q) in topology induced from the space H1
0 (Q). Then this functional allows

continuous extension to space H1
0 (Q). Consequently, a unique element L

′v ∈
H−1

0 exists, such that Ψ(u, v) = 〈u,L′v〉 for v ∈ D(L′) and any u ∈ H1
0 (Q),

where 〈u,w〉 is canonical bilinear form for u ∈ H1
0 (Q) and w ∈ H−1

0 , which is
extension by continuity of the bilinear form (u,w)L2(Q), where u ∈ H1

0 (Q) and
w ∈ L2(Q). As far as the set H3

0 (Q) is dense in the space H1
0 (Q), then

‖L′v‖H−1

0

= sup
u∈H3

0
(Q)

|Ψ(u, v)|
‖u‖H1

0
(Q)

, v ∈ D(L′).

It follows from (3.4) and (3.7) that if v ∈ D(L′), then v ∈ D(L′). Comparing
(3.5) and (3.7), we conclude that the following equality holds:

〈Lu, v〉 = 〈u,L′v〉, u ∈ H3
0 (Q), v ∈ 0

H
3(Q). (3.8)

4 Existence and Uniqueness of the Weak Solution

Existence of the weak solution is proved on the basis of (3.8), if corresponding
a priori estimations for the operators L and L

′ are obtained. Here we take into

account that the spaces H2
0 (Q) and

0

H
2(Q) are reflexive.
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Theorem 1. The inequalities

‖u‖H2
0
(Q) � c1‖Lu‖H−1

0

, u ∈ D(L), (4.1)

‖v‖ 0

H
2(Q)

� c2‖L′v‖H−1

0

, v ∈ D(L′) (4.2)

are valid, where ci are some positive constants independent of u and v.

Proof. We prove that inequality (4.1) is correct. We suppose at first u ∈
H2

0 (Q) ∩ H3(Q). It follows from (3.5) that in order that the functional v →
Φ(u, v) is continuous over the space H1

0 (Q), the equality ∂2u
∂p2

1

|S1
= 0 must be

satisfied, i.e. actually u ∈ H3
0 (Q), if u ∈ D(L). In this case the value of the

functional Φ(u, v) can be represented in the form

Φ(u, v) = −
(
∂3u

∂x30
,
∂v

∂x0

)
L2(Q)

− (b2 − a2)

n∑
i=1

(
∂3u

∂x20∂xi
,
∂v

∂xi

)
L2(Q)

(4.3)

+ a2b2
n∑

i,j=1

(
∂3u

∂x2i ∂xj
,
∂v

∂xj

)
L2(Q)

+ (A(2)u, v)L2(Q), v ∈ 0

H
3(Q).

The functional Φ(u, v) written in form (4.3) is extended by continuity to
all space H1

0 (Q). We suppose in (4.3) v =Mu, where Mu = (x0 − T ) ∂u∂τ − u.
Such v ∈ H1

0 (Q) by virtue of (2.3)–(2.5). In this case

Φ(u,Mu) =

∫
Q

(
− ∂3u

∂x30

∂u

∂τ
− ∂3u

∂x30
(x0 − T )

∂2u

∂τ∂x0
+
∂3u

∂x30

∂u

∂x0
+A(2)uMu

− (b2 − a2)

n∑
i=1

∂3u

∂x20∂xi
(x0 − T )

∂2u

∂τ∂xi
+ (b2 − a2)

n∑
i=1

∂3u

∂x20∂xi

∂u

∂xi

+ a2b2
n∑

i,j=1

∂3u

∂x2i ∂xj
(x0 − T )

∂2u

∂τ∂xj
− a2b2

n∑
i,j=1

∂3u

∂x2i ∂xj

∂u

∂xj

)
dx.

We represent the main part of the expression under the integral sign in the
last relation in the divergent form:

Φ(u,Mu) = I1 + I2 + I3 + I4,

where

I1 =

∫
Q

(
−

n∑
i=1

∂

∂x0

(
∂2u

∂x20
τi
∂u

∂xi

)
− ∂

∂x0

(
∂2u

∂x20
(x0 − T )

∂2u

∂τ∂x0

)

− (b2 − a2)
n∑

i=1

[
∂

∂x0

(
∂2u

∂x0∂xi
(x0 − T )

∂2u

∂τ∂xi

)
− ∂

∂x0

(
∂2u

∂x0∂xi

∂u

∂xi

)]

+ a2b2
n∑

i,j=1

∂

∂xi

(
∂2u

∂xi∂xj
(x0 − T )

∂2u

∂τ∂xj

)
− a2b2

n∑
i,j=1

∂

∂xi

(
∂2u

∂xi∂xj

∂u

∂xj

)
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+
1

2

∂

∂τ

(
(x0 − T )

(
∂2u

∂x20

)2)
+
b2 − a2

2

n∑
i=1

∂

∂τ

(
(x0 − T )

(
∂2u

∂x0∂xi

)2)

− a2b2

2

n∑
i,j=1

∂

∂τ

(
(x0 − T )

(
∂2u

∂xi∂xj

)2))
dx,

I2 =

∫
Q

(
1

2

(
∂2u

∂x20

)2

− b2 − a2

2

n∑
i=1

(
∂2u

∂x0∂xi

)2

+
3a2b2

2

n∑
i,j=1

(
∂2u

∂xi∂xj

)2
)
dx,

I3 =

∫
Q

(
2

n∑
i=1

∂2u

∂x20
τi

∂2u

∂x0∂xi
+ 2

n∑
i=1

∂2u

∂x20
(x0 − T )

∂τi
∂x0

∂2u

∂x0∂xi

+ (b2 − a2)
n∑

i,j=1

∂2u

∂x0∂xi

[
τj

∂2u

∂xi∂xj
+ (x0 − T )

∂τj
∂x0

∂2u

∂xi∂xj

]

+ (b2 − a2)
n∑

i,j=1

∂2u

∂x0∂xi
(x0 − T )

∂τj
∂xi

∂2u

∂x0∂xj

− 2a2b2
n∑

i,j,k=1

∂2u

∂xi∂xj
(x0 − T )

∂τk
∂xi

∂2u

∂xj∂xk

)
dx,

I4 =

∫
Q

(
A(2)uMu+ 2

n∑
i=1

∂2u

∂x20

∂τi
∂x0

∂u

∂xi
+

n∑
i=1

∂2u

∂x20
(x0 − T )

∂2τi
∂x20

∂u

∂xi

+ (b2 − a2)

n∑
i,j=1

∂2u

∂x0∂xi

[
∂τj
∂xi

∂u

∂xj
+ (x0 − T )

∂2τj
∂x0∂xi

∂u

∂xj

]

− a2b2
n∑

i,j,k=1

∂2u

∂xi∂xj
(x0 − T )

∂2τk
∂xi∂xj

∂u

∂xk

)
dx.

We apply the Ostrogradskii formula to I1 and get I1 = 0 by virtue of (2.3)–
(2.5). With the help of the inequality

2|ab| � εa2 +
1

ε
b2, ∀ε > 0, (4.4)

and conditions (2.2) we get the upper bound for I3. For I4 the upper bound is
obtained with the help of the Cauchy–Bunyakovsky inequality and conditions
(2.2):

|I4| � c3‖u‖H2
0
(Q)‖u‖H1

0
(Q).

In this way we have the lower bound for the functional Φ(u,Mu):

Φ(u,Mu) � c4‖u‖2H2
0
(Q) − c5‖u‖H2

0
(Q)‖u‖H1

0
(Q). (4.5)

As far as ‖Mu‖H1
0
(Q) � c6‖u‖H2

0
(Q), taking into account (3.6) and (4.5) we get

‖Lu‖H−1

0

� c7‖u‖H2
0
(Q) − c8‖u‖H1

0
(Q). (4.6)
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We integrate over domain Q(τ) = {x ∈ Q | 0 < x0 < τ < T }, T = sup
x∈Q x0,

the identity

c9
∑
|α|�1

∂

∂x0
(Dαu)2 = 2c9

∑
|α|�1

Dαu
∂

∂x0
Dαu,

where c9 is sufficiently large positive constant:

c9

∫
S

(τ)

3

∑
|α|�1

(Dαu)2(τ,x′) dx′ = 2c9

∫
Q(τ)

∑
|α|�1

Dαu
∂

∂x0
Dαu dx

�
c9
ε

∫
Q(τ)

∑
|α|�1

(Dαu)2dx+ εc9

∫
Q(τ)

∑
|α|�1

(
∂

∂x0
Dαu

)2

dx

�
c9
ε

∫
Q(τ)

∑
|α|�1

(Dαu)2dx+ εc9‖u‖2H2
0
(Q), (4.7)

∂Q(τ) = S1 ∪ S
(τ)
2 ∪ S

(τ)
3 , S

(τ)
2 = {x ∈ S2 | 0 < x0 < τ}, S(τ)

3 = {x ∈
Q | x0 = τ}. We have used inequality (4.4) in (4.7). Let denote by v(τ) =
c9
∫
S

(τ)

3

∑
|α|�1(D

αu)2(τ,x′) dx′. Then

c9

∫
Q(τ)

∑
|α|�1

(Dαu)2dx =

∫ τ

0

v(t) dt

and inequality (4.7) takes the form v(τ) � 1
ε

∫ τ

0
v(t) dt+ εc9‖u‖H2

0
(Q). We add

it to inequality (4.6), choose ε such that the inequality c7 − εc9 > 0 is satisfied
and apply the Gronwall inequality:

c10‖u‖H2
0
(Q) + v(τ) � eτ/ε(‖Lu‖H−1

0

+ c8‖u‖H1
0
(Q))

� eT/ε‖Lu‖H−1

0

+ e
T

ε c8‖u‖H1
0
(Q). (4.8)

The right part of inequality (4.8) is independent of τ , therefore in its left part
one can pass to the least upper bound with respect to τ . We get the following
inequality:

c10‖u‖H2
0
(Q) + c9 sup

0<τ<T
‖u‖2

H1
0
(S

(τ)

3
)
(τ) � e

T

ε ‖Lu‖H−1

0

+ e
T

ε c8‖u‖H1
0
(Q).

Taking into account estimate sup0<τ<T ‖u‖2H1
0
(S

(τ)

3
)
(τ) �

1
T ‖u‖2H1

0
(Q)

the in-

equality ‖u‖H2
0
(Q) � c11‖Lu‖H−1

0

is proved in case u ∈ H2
0 (Q) ∩H3(Q).

Now let u ∈ D(L). Then Jku ∈ H2
0 (Q) ∩H3(Q), where Jk is mollifier with

variable step [3, 16, 17]. It is proved above that

‖Jku‖H2
0
(Q) � sup

v∈
0

H
3(Q)

|Φ(Jku, v)|
‖v‖H1

0
(Q)

. (4.9)

We represent the functional Φ(Jku, v) in the following form:

Φ(Jku, v) = Φ(u, J∗kv) +K1(u, v; k) +K2(u, v; k),
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where

K1(u, v; k) =

(
∂3

∂x30
Jku− ∂

∂x0
Jk
∂2u

∂x20
,
∂v

∂x0

)
L2(Q)

+ (b2 − a2)

n∑
i=1

(
∂3

∂x20∂xi
Jku− ∂

∂x0
Jk

∂2u

∂x0∂xi
,
∂v

∂xi

)
L2(Q)

− a2b2
n∑

i,j=1

(
∂3

∂x2i ∂xj
Jku− ∂

∂xi
Jk

∂2u

∂xi∂xj
,
∂v

∂xj

)
L2(Q)

+ (A(2)Jku− JkA
(2)u, v)L2(Q),

K2(u, v; k) =

(
∂2u

∂x20
, J∗k

∂2v

∂x20
− ∂2

∂x20
J∗kv

)
L2(Q)

+ (b2 − a2)

n∑
i=1

(
∂2u

∂x0∂xi
, J∗k

∂2v

∂x0∂xi
− ∂2

∂x0∂xi
J∗kv

)
L2(Q)

− a2b2
n∑

i,j=1

(
∂2u

∂xi∂xj
, J∗k

∂2v

∂xi∂xj
− ∂2

∂xi∂xj
J∗kv

)
L2(Q)

.

We have used here the following assumptions: in order that functional v →
Φ(u, v) be continuous over the space H1

0 (Q), the equality Jk
∂2u
∂p2

1

|Ω(0) = 0 must

be satisfied, and ∂2

∂p2
1

Jku|Ω(0) = 0 was proved above. By virtue of the properties

of the mollifiers Jk and J∗k we get

K1(u, v; k),K2(u, v; k) �
1

k
‖u‖H2

0
(Q)‖v‖H1

0
(Q) (4.10)

‖J∗kv‖H1
0
(Q) � c12‖v‖H1

0
(Q). (4.11)

By virtue of estimates (4.10), (4.11) inequality (4.9) can be continued in the
following way:

‖Jku‖H2
0
(Q) � sup

v∈
0

H
3(Q)

|Φ(Jku, v)|
‖v‖H1

0
(Q)

� sup

v∈
0

H
3(Q)

|Φ(u, J∗kv)|
‖v‖H1

0
(Q)

+
2

k
‖u‖H2

0
(Q)

� c12 sup

v∈
0

H
3(Q)

|Φ(u, J∗kv)|
‖J∗kv‖H1

0
(Q)

+
2

k
‖u‖H2

0
(Q)

� c12 sup

v∈
0

H
3(Q)

|Φ(u, v)|
‖v‖H1

0
(Q)

+
2

k
‖u‖H2

0
(Q).

Passing in it to the limit as k→∞, we get desired inequality (4.1). Inequality
(4.2) is proved in the same way. ��

Theorem 2. If Condition 1 is satisfied and f ∈ H−1
0 , then a unique weak

solution of problem (2.1)–(2.5) exists.
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Proof. Uniqueness of weak solution of problem (2.1)–(2.5) follows from The-
orem 1. The operator L is closed, therefore for proving existence of weak
solution of problem (2.1)–(2.5) and, thus, for finishing the proof of the theorem
it remains to prove that R(L) = H−1

0 . It is enough to show the density of the

elements Lu, where u ∈ H3
0 (Q), is in the space H−1

0 . Let v ∈ 0

H
3(Q) be such

that for any function u from the indicated class 〈Lu, v〉 = 0. As u ∈ H3
0 (Q)

and v ∈ 0

H
3(Q), then by the virtue of (3.8) 〈u,L′v〉 = 0. Consequently, it

follows from (4.2) that v = 0 in H3(Q). ��
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