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Abstract. For solving the augmented system, Golub, Wu and Yuan and Zheng,
Wang and Wu have presented the SOR-like methods and SSOR-like methods, respec-
tively. In this paper, the SSOR-like method with two real parameters ω and α is
established for solving the augmented system, which is the extension of the SSOR
iteration method, and the new method is called the modified SSOR-like method
(MSSOR-like method). The convergence of the MSSOR-like method is studied, and
the function equation relating the parameters and eigenvalues of the iteration ma-
trix of this method is obtained. Numerical experiments show that the MSSOR-like
method with proper preconditioning matrix and parameters is better than the SOR-
like method and the SSOR-like method.
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1 Introduction

In this article, the iteration method for the large sparse two-by-two block linear
system (

A B
BT O

)(
x
y

)
=

(
b
q

)
(1.1)

is considered, where the matrix A ∈ R
m×m is symmetric and positive definite

(SPD), B ∈ R
m×n is of full column rank, e.g., if we let m � n, then it has

rank(B) = n, BT is the transposed matrix of B, and vectors x, b ∈ R
m, y,

q ∈ R
n with x, y unknown and b, q known. Under these assumptions, the
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system (1.1) has a unique solution. It appears in many different applications
of scientific computing, such as the finite element approximation and mixed
finite element methods to solve the Navier-Stokes equation, the constrained
and generalized least squares problems, constrained optimization, and fluid
dynamics, etc. [2, 3, 4, 11, 14].

For the sake of simplicity, we rewrite the system (1.1) as(
A B
−BT O

)(
x
y

)
=

(
b
−q
)
. (1.2)

Since the coefficient matrix of the system (1.2) is large and sparse, iteration
methods are often used to solve (1.2) as a result of the storage requirements
and the preservations of sparsity. It is well known that the successive over re-
laxation (SOR) method and the symmetric successive over relaxation (SSOR)
method [13] cannot be applied directly to the system (1.2) because of the singu-
larity of the block diagonal of the coefficient matrix, even though these methods
are popular in engineering applications as simple iteration methods. Recently,
several proposals have been developed in [5, 6, 7, 8, 9, 10] for generalizing the
SOR method to solve the above system, in which the most practical and im-
portant scheme is the SOR-like method presented by Golub et al. [5]. The
SOR-like method is more closely related to the normal SOR splitting(

A B
−BT O

)
≡ D1 − L1 − U1, (1.3)

where

D1 =

(
A O
O Q

)
, L1 =

(
O O
BT O

)
, U1 =

(
O −B
O Q

)
,

and the matrix Q ∈ R
n×n is symmetric and nonsingular. Then the SOR-like

procedure is

(D1 − ωL1)

(
x(k+1)

y(k+1)

)
= [(1− ω)D1 + ωU1]

(
x(k)

y(k)

)
+ ω

(
b
−q
)
.

Thus, the SOR-like iteration takes the following form in [5]:{
x(k+1) = (1− ω)x(k) + ωA−1(b −By(k)),

y(k+1) = y(k) + ωQ−1(BTx(k+1) − q).
(1.4)

About the optimum parameters for the SOR-like method, we could see an
excellent article [6], where Li and co-authors have given an explicit expression
for the optimum parameters in each case. Besides, they have considered the
Chebyshev acceleration of the SOR-like method by the proper choices of the
auxiliary or preconditioning matrix Q in [8].

Moreover, several proposals have also been developed in [1, 12, 15, 16] for
generalizing the SSOR method to solve the system (1.2), in which the SSOR-
like method for saddle point problems [15] is the most primacy. From [16],
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the SSOR-like method is found to have the same splitting as (1.3). Then the
SSOR-like procedure is(

x(k+1)

y(k+1)

)
= Hω

(
x(k)

y(k)

)
+ ω(2− ω)(D1 − ωU1)

−1D1(D1 − ωL1)
−1

(
b
−q
)
,

where

Hω = (D1 − ωU1)
−1[(1 − ω)D1 + ωL1](D1 − ωL1)

−1[(1− ω)D1 + ωU1].

Thus, the SSOR-like iteration takes the following form in [16]:

{
y(k+1) = y(k) + ω(2− ω)Q−1[BTx(k) − ωBTA−1By(k)

1−ω + ωBTA−1b
1−ω − q

1−ω ],

x(k+1) = (1− ω)2x(k) − ωA−1B[(1 − ω)y(k) + y(k+1)] + ω(2− ω)A−1b.
(1.5)

The main aim of this paper is to present a new SSOR-like method for
the augmented linear system, which has two real parameters ω and α, and
is called the modified SSOR-like (MSSOR-like) method. Here we will discuss
its convergence and establish the relations between the parameters and the
eigenvalues of the iteration matrix of this method. Numerical results will show
that the MSSOR-like method for solving the augmented linear system is more
efficient than the SOR-like method and the SSOR-like method. For the special
case when α = 0 and β = 1, our method will be identical with the SSOR-like
method in [16].

The outline of this paper is given as follows. In Section 2, we establish
the modified SSOR-like method for solving the augmented system (1.2). In
Section 3, we give out some basic functional equations and lemmas. Then the
convergence analysis of the MSSOR-like method is discussed in Section 4, and
numerical experiments, with proper choices of the parameters ω and α, are
presented in Section 5. Finally, conclusions are made for this paper.

2 Modified SSOR-Like Method

For the coefficient matrix of the augmented system (1.2), we consider the fol-
lowing splitting: (

A B
−BT O

)
≡ D − L− U, (2.1)

where

D =

(
A O
O Q

)
, L =

(
O O
BT αQ

)
, U =

(
O −B
O βQ

)
,

and the matrix Q ∈ R
n×n is symmetric and nonsingular, α+ β = 1.

From α+ β = 1, we have β = 1− α. Note that

D − ωL =

(
A O

−ωBT (1− αω)Q

)
,

D − ωU =

(
A ωB
O (1− βω)Q

)
=

(
A ωB
O (1− ω + αω)Q

)
.

Math. Model. Anal., 16(3):475–487, 2011.
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Since the matrix A is SPD and Q is nonsingular, we obtain that

det(D − ωL) = (1− αω)n det(A) det(Q) 
= 0,

det(D − ωU) = (1− ω + αω)n det(A) det(Q) 
= 0

if and only if 1− αω 
= 0 and 1− ω + αω 
= 0, i.e., (1− αω)(1 − ω + αω) 
= 0.

Let z(k) =
(
x(k)

y(k)

)
be the kth approximate solution of the system (1.2), then

by the use of the SOR method with the splitting (2.1), it has

z(k+1/2) = Lωz
(k) + ω(D − ωL)−1c, (2.2)

where

Lω = (D − ωL)−1[(1− ω)D + ωU ] =

(
(1− ω)Im −ωA−1B

ω(1−ω)Q−1BT

1−αω In − ω2Q−1BTA−1B
1−αω

)

and c =

(
b
−q
)
. On the other hand, with the backward generalized SOR

method, we can compute z(k+1) from z(k+1/2) as

z(k+1) = Uωz
(k+1/2) + ω(D − ωU)−1c, (2.3)

where

Uω = (D−ωU)−1[(1−ω)D+ωL] =

(
(1− ω)Im − ω2A−1BQ−1BT

1−ω+αω −ωA−1B

ωQ−1BT

1−ω+αω In

)
.

Deleting z(k+1/2) from (2.2) and (2.3), we get the MSSOR-like method of
the form z(k+1) = Hω,αz

(k) + Cω,α , where

Hω,α = UωLω =

(
(1− ω)2Im −A11 −ω(2− ω)A−1B +A12

ω(1−ω)(2−ω)Q−1BT

(1−αω)(1−ω+αω) In − ω2(2−ω)Q−1BTA−1B
(1−αω)(1−ω+αω)

)

A11 =
ω2(1− ω)(2− ω)A−1BQ−1BT

(1− αω)(1− ω + αω)
, A12 =

ω3(2 − ω)A−1BQ−1BTA−1B

(1− αω)(1 − ω + αω)

and

Cω,α = ω(2− ω)(D − ωU)−1D(D − ωL)−1

(
b
−q
)

= ω(2− ω)

⎛⎝A−1b− ω2A−1BQ−1BTA−1b
(1−αω)(1−ω+αω) + ωA−1BQ−1q

(1−αω)(1−ω+αω)

ωQ−1BTA−1b
(1−αω)(1−ω+αω) − Q−1q

(1−αω)(1−ω+αω)

⎞⎠ .

Hence, the MSSOR-like method can be written in the following form (ω 
= 1):{
y(k+1) = y(k) + ω(2−ω)(1−ω)Q−1

(1−αω)(1−ω+αω) [B
Tx(k) − ωBTA−1By(k)

1−ω + ωBTA−1b
1−ω − q

1−ω ],

x(k+1) = (1− ω)2x(k) − ωA−1B[(1 − ω)y(k) + y(k+1)] + ω(2− ω)A−1b.
(2.4)
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Evidently, if let α = 0 and β = 1, then the MSSOR-like method becomes the
SSOR-like method [16], and the equations (2.4) become the equations (1.5).
Therefore, we can say that our method contains the SSOR-like method, in
other words, the SSOR-like method is just a special case of our method. For
analyzing the convergence of the MSSOR-like method, we first give several
basic functional equations and lemmas in the next section.

3 Basic Functional Equations and Lemmas

In this part, our goal is to establish several basic functional equations and
lemmas for the latter use. Now, we can prove the following results.

Lemma 1. Let Hω,α be the iteration matrix of the MSSOR-like method, ω 
= 0,
1, 2 and m � n. Then

(i) λ = (1 − ω)2 is an eigenvalue of Hω,α if m > n.

(ii) λ = (1 − ω)2 is not an eigenvalue Hω,α if m = n.

(iii) For any eigenvalue λ 
= (1− ω)2 of Hω,α, there exists an eigenvalue μ of
Q−1BTA−1B such that λ, μ, and ω satisfy the function equation

(λ − 1)(1− αω)(1− ω + αω)[(1− ω)2 − λ] = λω2(2 − ω)2μ. (3.1)

(iv) For any eigenvalue μ of Q−1BTA−1B, if λ is different from (1−ω)2 and
λ, μ, and ω satisfy the above function equation, then λ is an eigenvalue
of Hω,α.

Proof. Suppose λ is an eigenvalue of Hω,α, λ 
= 0 and the corresponding
eigenvector is (xT1 , x

T
2 )

T. Then, we have

Hω,α

(
x1
x2

)
= λ

(
x1
x2

)
,

it follows that

[(1− ω)2 − λ]x1 − ω(2− ω)A−1Bx2

=
ω2(2− ω)A−1BQ−1BT

(1− αω)(1 − ω + αω)
[(1− ω)x1 − ωA−1Bx2]

and

ω(2− ω)(1− ω)Q−1BT

(1− αω)(1− ω + αω)
x1 + x2 − ω2(2− ω)Q−1BTA−1B

(1− αω)(1 − ω + αω)
x2 = λx2.

By calculation, we obtain

(1 − ω)2x1 − λx1 = ω(1 + λ− ω)A−1Bx2, (3.2)

ω(2− ω)(1− ω)Q−1BTx1

= ω2(2− ω)Q−1BTA−1Bx2 + (1 − αω)(1− ω + αω)(λ − 1)x2. (3.3)

Math. Model. Anal., 16(3):475–487, 2011.
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First, we assume λ = (1 − ω)2, then from (3.2) and previous assumptions, it
has A−1Bx2 = 0 and

(1− ω)Q−1BTx1 = ωQ−1BTA−1Bx2 − (1− αω)(1 − ω + αω)x2.

Since the matrix B is of full column rank, and A is SPD, the above systems
are equivalent to

x2 = 0 and Q−1BTx1 = 0.

Note that BT is a n × m matrix with rank(BT) = n. Hence, if m > n,
Q−1BTx1 = 0 has m − n independent non-zero solutions, that is to say, the
corresponding eigenvector of λ = (1−ω)2 is non-zero vector, which has proved
our conclusion (i).

On the other hand, if m = n, Q−1BTx1 = 0 has no non-zero solutions.
Thus, λ = (1− ω)2 is not an eigenvalue of Hω,α, and conclusion (ii) is proved.

Second, we assume λ 
= (1− ω)2, then from (3.2), we have

x1 =
ω(1 + λ− ω)

(1− ω)2 − λ
A−1Bx2.

Substituting this equation to the above equations, we get

λω2(2 − ω)2Q−1BTA−1Bx2 = (λ− 1)(1− αω)(1 − ω + αω)
[
(1− ω)2 − λ

]
x2.

As a result of ω 
= 0, 1, 2, and λ 
= 0, 1, (1− ω)2. Thus we can assume μ is an
eigenvalue of Q−1BTA−1B such that we have

(λ− 1)(1− αω)(1 − ω + αω)
[
(1− ω)2 − λ

]
= λω2(2− ω)2μ.

Conversely, for any eigenvalue μ of Q−1BTA−1B, if λ 
= (1 − ω)2 and λ, μ, ω
satisfy the equation (3.1), and ω 
= 0, 1, 2, which implies λ 
= 0, 1, then we can
prove the conclusion (iv) by reversing the above processes. Hence, Lemma 1 is
proved. ��

Corollary 1. Let ρ(Hω,α) be the spectral radius of the MSSOR-like iteration
matrix Hω,α, m > n, then we have

ρ(Hω,α) � |(1 − ω)2|.

Proof. Suppose λ is the eigenvalue of the iteration matrix Hω,α, since λ =
(1−ω)2 is an eigenvalue ofHω,α as indicated in the first conclusion of Lemma 1,
then we have ρ(Hω,α) � |λ|. Thus, this corollary holds. ��

Furthermore, we obtain the necessary condition for the convergence of the
MSSOR-like method when m > n is 0 < ω < 2. It is easy to obtain the
following corollary if α = 0, β = 1.

Corollary 2 [see [16]]. Let λ be an eigenvalue of Hω, if λ 
= 0, 1, (1 − ω)2 and
ω 
= 0, 1, 2, then there exists an eigenvalue μ of Q−1BTA−1B such that

(λ− 1)(1 − ω)
[
(1− ω)2 − λ

]
= λω2(2− ω)2μ. (3.4)

Conversely, for any eigenvalue μ of Q−1BTA−1B and ω 
= 1, if λ satisfies the
equation (3.4), then λ is an eigenvalue of Hω.
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The following result is quoted for the use of the next section.

Lemma 2 [see [13]]. Both roots of the real quadratic equation λ2 − bλ+ c = 0
are less than unity in modulus if and only if |c| < 1 and |b| < 1 + c.

4 Convergence Analysis

In [16], Zheng et al. have illustrated that the SSOR-like method is suitable
to the case when all eigenvalues of Q−1BTA−1B are negative, and the case
when all eigenvalues of Q−1BTA−1B are positive. Hence, the convergence
expressions for parameters ω and α will be similarly discussed for these two
cases. The main result about the convergence of the MSSOR-like method is
given as follows.

Theorem 1. Assume that the parameters ω and α satisfy (1 − αω)(1 − ω +
αω) 
= 0, if we choose a nonsingular matrix Q such that all eigenvalues μ of
Q−1BTA−1B are real, and let μmin = minμ, μmax = maxμ. Then

(i) If μmin > 0, the MSSOR-like method is convergent if and only if

0 < ω < 2, (1− αω)(1 − ω + αω) > 0,

ω2(2− ω)2μmax

(1 − αω)(1− ω + αω)
< 2 + 2(1− ω)2; (4.1)

(ii) If μmax < 0, the MSSOR-like method is convergent if and only if

0 < ω < 2, (1− αω)(1 − ω + αω) < 0,

ω2(2 − ω)2μmin

(1 − αω)(1− ω + αω)
< 2 + 2(1− ω)2. (4.2)

Proof. It follows from Lemma 1, the equation (3.1) can be rewritten as

λ2 −
[
1 + (1− ω)2 − ω2(2− ω)2μ

(1− αω)(1 − ω + αω)

]
λ+ (1− ω)2 = 0,

(1− αω)(1− ω + αω) 
= 0.

According to Lemma 2, |λ| < 1 if and only if

|(1−ω)2| < 1,

∣∣∣∣1 + (1− ω)2 − ω2(2− ω)2μ

(1− αω)(1 − ω + αω)

∣∣∣∣ < 1+ (1−ω)2. (4.3)

From the first inequality of (4.3), we get 0 < ω < 2. In addition, it is clear
that the second inequality in (4.3) is equivalent to

−1− (1− ω)2 < 1 + (1 − ω)2 − ω2(2− ω)2μ

(1 − αω)(1− ω + αω)
< 1 + (1 − ω)2,

that is,

0 <
ω2(2− ω)2μ

(1− αω)(1 − ω + αω)
< 2 + 2(1− ω)2. (4.4)

Math. Model. Anal., 16(3):475–487, 2011.
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Hence, from (4.4), if μmin > 0, then we have the following inequalities

(1− αω)(1 − ω + αω) > 0,

0 <
ω2(2− ω)2μ

(1− αω)(1 − ω + αω)
�

ω2(2− ω)2μmax

(1− αω)(1 − ω + αω)
< 2 + 2(1− ω)2.

On the other hand, if μmax < 0, then from (4.4) we obtain

(1− αω)(1 − ω + αω) < 0,

0 <
ω2(2− ω)2μ

(1− αω)(1 − ω + αω)
�

ω2(2− ω)2μmin

(1− αω)(1 − ω + αω)
< 2 + 2(1− ω)2.

Therefore, the conclusions (i) and (ii) in Theorem 1 have been proved. ��

Remark 1. From the equations (4.1) and (4.2) in Theorem 1, we see that it is
quite difficult to obtain the explicit expressions about the convergence domain
for the parameters ω and α for the MSSOR-like method. However, we can
obtain the following corollary when α = 0 and β = 1, which has the same
results as in [16].

Corollary 3 [see [16]]. Suppose that all eigenvalues μ of Q−1BTA−1B are real,
let μmin = minμ, μmax = maxμ. Then

(i) If μmin > 0, the SSOR-like method is convergent if and only if

0 < ω < 1− 2μmax√
1 + 4μ2

max + 1 +
√
2 + 2

√
1 + 4μ2

max

;

(ii) If μmax < 0, the SSOR-like method is convergent if and only if

1 +
−2μmin√

1 + 4μ2
min + 1 +

√
2 + 2

√
1 + 4μ2

min

< ω < 2.

Proof. We can see [16] for details. ��

Remark 2. For the equation (4.1) in Theorem 1, if we let α > 0, then according
to the conditions (1 − αω)(1 − ω + αω) > 0 and 0 < ω < 2, it is easy to get
that

(1 − αω)(1− ω + αω) �
(
1− ω

2

)(
1− ω

2

)
=
(
1− ω

2

)2
,

ω2(2 − ω)2μmax <
(
1− ω

2

)2[
2 + 2(1− ω)2

]
.

It follows that 0 < ω < 1
1−α < 2, if 0 < α < 1

2 , and 0 < ω < 1
α , if α > 1

2 . Thus,
in this case, we have the following corollary.

Corollary 4 [see [12]]. Assume that all eigenvalues μ of Q−1BTA−1B are real
and positive, let μmax = maxμ. Then
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(i) If 0 < μ �
1
4 , the MSSOR-like method converges for all ω such that

0 < ω < 2.

(ii) If μ = 1
2 , the MSSOR-like method converges for all ω such that 0 < ω < 1.

(iii) If μ > 1
4 and μ 
= 1

2 , the MSSOR-like method converges for all ω such
that

0 < ω <
1−√4μmax − 1

1− 2μmax
=

2

1 +
√
4μmax − 1

< 2.

Proof. The proof can be found in [12], where Wu et al. have discussed the
case when α = β = 1

2 . ��

5 Numerical Example

In this section, we will apply the MSSOR-like method to solve one augmented
system, and we will illustrate by the numerical results that our method is quiet
effective and converges faster than the SOR-like method [5] and the SSOR-like
method [16].

Example 1 [See Darvishi and Hessari [1]]. Consider the augmented system (1.1),
where

A =

(
I ⊗ T + T ⊗ I O

O I ⊗ T + T ⊗ I

)
∈ R

2p2×2p2

, B =

(
I ⊗ F
F ⊗ I

)
∈ R

2p2×p2

,

and

T =
1

h2
tridiag(−1, 2,−1) ∈ R

p×p, F =
1

h
tridiag(−1, 1, 0) ∈ R

p×p,

with ⊗ being the Kronecker product symbol and h = 1
1+p the discretization

mesh size and S =tridiag(a, b, c) is a tridiagonal matrix with Sii = b, Si−1,i = a
and Si,i+1 = c for the appropriate i.

For this example, we set m = 2p2 and n = p2. Hence, the total number
of variables is m + n = 3p2. Here we consider the following three cases when
p = 8, p = 16, and p = 24. All the computations are performed on a PC with
a 1.86GHz 64-bit processor and 2GB memory.

In our experiments, all runs with respect to the SOR-like method, the
SSOR-like method and the proposed MSSOR-like method are started from

an initial vector (x(0)
T
, y(0)

T
)T = 0, and terminated when the current itera-

tion satisfies RES < 10−9, where RES = norm(x(k)
T − x(0)

T
, y(k)

T − y(0)
T
)T

with (x(k)
T
, y(k)

T
)T the final approximate solution. Additionaly, we choose the

right hand-side vector (bT, qT)T ∈ R
m+n such that the exact solution of the

augmented system (1.1) is ((x∗)T, (y∗)T)T = (1, 1, · · · , 1)T ∈ R
m+n. The num-

ber of iterations (denoted by IT) and the RES defined as above are reported in
the following tables in order to show the efficiency of the MSSOR-like method.

Math. Model. Anal., 16(3):475–487, 2011.
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Table 1. The minimum μmin and the maximum μmax eigenvalue of Q−1BTA−1B.

m 128 512 1152
n 64 256 576
m+ n 192 768 1728

Q = BTB(τ = 1) μmin 0.0016 4.3633e−4 2.0008e−4
μmax 0.0425 0.0402 0.0394

Q = BTB(τ = −1) μmin −0.0425 −0.0402 −0.0394
μmax −0.0016 −4.3633e−4 −2.0008e−4

Q = 10I(γ = 10) μmin 0.0153 0.0091 0.0065
μmax 0.1000 0.1000 0.1000

Q = −I(γ = −1) μmin −1.0000 −1.0000 −1.0000
μmax −0.1525 −0.0907 −0.0651

Table 2. The optimum parameters, IT and RES for this example when Q = BTB (τ = 1).

m 128 512 1152
n 64 256 576
m+ n 192 768 1728

SOR ω = ωopt 1.9188 1.9248 1.9266
IT 7674 29099 64190
RES 9.9934e−10 9.9941e−10 9.9982e−10

SSOR ω 0.9775 0.9791 0.9800
IT 186 566 1114
RES 9.4418e−10 9.9602e−10 9.9016e−10

MSSOR ω 1.5000 1.8000 1.8000
α 0.6500 0.45 0.5510
IT 133 146 287
RES 9.3139e−10 9.0696e−10 9.7157e−10

For the preconditioning matrix Q, we mainly provide two possible choices of
Q to carry out the MSSOR method and the SOR-like method and the SSOR-
like method. The choices of Q are similar to those presented by Golub et al.
in [5]. One is Q = τBTB (τ = −1, 1), and the other is Q = γI (γ = −1, 10),
where I is a n × n identity matrix. Since the matrix A is SPD, and B is of
full column rank, it follows that BTA−1B is a positive definite matrix. Thus
for any eigenvalues μ of Q−1BTA−1B, if τ > 0, γ > 0, then we get μ > 0,
conversely, if τ < 0, γ < 0, then we have μ < 0.

Note that the SOR-like method requires all eigenvalues of Q−1BTA−1B be
positive, while the SSOR-like method and our MSSOR-like method are not only
suitable to the case when all eigenvalues of Q−1BTA−1B are positive but also
suitable to the case when all eigenvalues of Q−1BTA−1B are negative. Specif-
ically, the minimum μmin and the maximum μmax eigenvalue of Q−1BTA−1B
are listed for different values of m and n in Table 1 such that the optimum
parameters ωopt of the SOR-like method and the SSOR-like method can be
computed according to the results of Li et al. [6] and Zheng et al. [16]. How-
ever, since the explicit expressions of parameters ω and α cannot be obtained
for the MSSOR-like method, we only choose them by trial and error.
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Table 3. The optimum parameters, IT and RES for this example when Q = −BTB

(τ = −1).

m 128 512 1152
n 64 256 576
m+ n 192 768 1728

SSOR ω 1.0227 1.0205 1.0199
IT 183 560 1107
RES 9.7234e−10 9.7391e−10 9.9566e−10

MSSOR ω 1.4998 1.7998 1.7993
α 0.6798 0.4400 0.5600
IT 115 124 288
RES 9.4829e−10 8.2673e−10 9.9632e−10

Table 4. The optimum parameters, IT and RES for this example when Q = 10I (γ = 10).

m 128 512 1152
n 64 256 576
m+ n 192 768 1728

SOR ω = ωopt 1.8110 1.8195 1.8230
IT 808 1419 ∗

RES 9.7665e−10 9.8692e−10 ∗

SSOR ω 0.9400 0.9455 0.9465
IT 76 123 172
RES 8.1954e−10 8.7625e−10 8.9776e−10

MSSOR ω 1.6139 1.7010 1.7023
α 0.4983 0.5030 0.5600
IT 52 75 78
RES 5.3953e−10 8.5559e−10 8.5468e−10

In Tables 2, 3, 4 and 5 we have presented the numerical results for the
SOR-like, SSOR-like and MSSOR-like methods with different values of m and
n and preconditioning matrices Q. In particular, Tables 2 and 4 have presented
the comparisons of the IT and RES for the SOR-like, SSOR-like and MSSOR-
like methods when all eigenvalues of Q−1BTA−1B are positive. Tables 3 and
5 have supplied the numerical performance of the SSOR-like and MSSOR-like
methods when all eigenvalues of Q−1BTA−1B are negative. Note that the
symbol “∗” in Table 4 denotes that the SOR-like method with the optimum
parameter ωopt cannot arrive the prescribed accuracy.

Clearly, from Tables 2, 3, 4 and 5, it is not difficult to find that the number
of iterations of the MSSOR-like method is much less than those of the SOR-like
and SSOR-like methods. Moreover, we see that the RES of our MSSOR-like
method is also less than those of the SOR-like and SSOR-like methods, except
for the cases when the problem size of this test problem is 1728 in Table 3 and
512 in Table 5. Hence, we can say that our MSSOR-like method, with proper
choices of parameters ω and α, is superior to the SOR-like method with its
optimal parameter ωopt and the SSOR-like method in reducing the iteration
counts and RES.
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Table 5. The optimum parameters, IT and RES for this example when Q = −I (γ = −1).

m 128 512 1152
n 64 256 576
m+ n 192 768 1728

SSOR ω 1.3800 1.3650 1.3605
IT 50 92 131
RES 7.8701e−10 9.0287e−10 9.0907e−10

MSSOR ω 1.5240 1.5876 1.5998
α 0.8523 0.7985 0.7865
IT 41 52 63
RES 5.1928e−10 9.3926e−10 7.8155e−10

6 Conclusions

In this paper, we have established the modified SSOR-like method by intro-
ducing two real parameters ω and α. The main result about the convergence of
the MSSOR-like method has been given in this context. Numerical results in
Tables 2, 3, 4 and 5 have illustrated that the MSSOR-like method, with proper
choices of parameters ω and α, is effective and superior to the SOR-like and
SSOR-like methods in the sense of the IT and RES. However, the theoretical
determination of the optimum parameters for the MSSOR-like is underway,
which needs further in-depth study.
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