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Abstract. This paper is concerned with a ratio-dependent predator-prey system
with diffusion and cross-diffusion in a bounded domain with no flux boundary con-
dition. We establish the existence and non-existence of non-constant positive steady
states (patterns). In particular, we show that under certain hypotheses, the cross-
diffusion can create stationary patterns even though the corresponding model without
cross-diffusion fails.
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1 Introduction

Interaction between the predator and prey influences the population growth of
both species, which has been observed from the population data of Canadian
lynx and snowshoe hare since the 1840s. Moreover, predator-prey systems
can generate rich dynamics and have been of great interest to both applied
mathematicians and ecologists since last century. In view that the classical
Lotka-Volterra models have unavoidable limitation to precisely describe many
realistic phenomena in biological systems in some cases, a major trend in theo-
retical work on predator-prey dynamics has been launched so as to derive more
realistic models and functional responses. Recently, many authors considered

∗ Supported by NSFC (No.10871085).



462 Y.-X. Wang, W.-T. Li and H.-B. Shi

the following predator-prey system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut = d1Δu+ ug(u)− vp(u), x ∈ Ω, t > 0,

vt = d2Δv + bv − v2

γu
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω̄,

(1.1)

where Ω ⊆ R
N is a bounded domain with smooth boundary ∂Ω; u and v

represent the species densities of prey and predator, respectively; the parameter
b is the intrinsic growth rate of the predator; γ takes on the role of the prey-
dependent carrying capacity for the predator; the constants di (i = 1, 2) are
the diffusion coefficients for u and v, respectively; ν is the outward unit normal
vector on the boundary ∂Ω and ∂ν = ∂/∂ν. The homogeneous Neumann
boundary condition means that (1.1) is self-contained, thus has no population
flux across the boundary ∂Ω. The initial data u0(x) and v0(x) are smooth
non-negative functions on Ω̄. Biologically, all the parameters appearing in the
system are assumed to be positive. A typical case of g is the logistic type,
namely, g(u) = r(1 − u/k). p(u) is called the functional response.

Recently, there are some papers concerned with the existence of non con-
stant positive steady states of (1.1). In particular, Peng andWang [22] obtained
the existence and non-existence of positive non-constant steady states of (1.1)
with p(u) = qu/(u+m). Furthermore, Ko and Ryu [12] also considered the
existence and non-existence of non-constant positive steady states of (1.1) with
general functions g(u) and p(u).

There is growing biological and physical evidence that in many situations,
such as when predators have to search, share and compete for food, a more
suitable predator-prey model should be based on the ratio-dependent theory
(see [1, 2]). On the other hand, in population dynamics, one of the observed
features is that different concentration levels of the prey direct the movements
of the predator and vice versa. In other words, the movement of a predator
at any particular location is influenced by the gradient of the concentration
of the prey at that location, and the movement of the prey is affected by the
gradient of the concentration of the predator at the same location. Taking this
into account, we consider the following ratio-dependent predator-prey system
with diffusion and cross-diffusion⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut − d1Δu = ru
(
1− u

k

)
− βuv

u+mv
, x ∈ Ω, t > 0,

vt − d2Δ [(1 + d3u) v] = bv − v2

γu
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω̄.

(1.2)

Here, the parameter m represents the saturation rate; in (1.2), d3 called the
cross-diffusion coefficient, is a non-negative constant. We rewrite

d2Δ [(1 + d3u)v] = d2div ((1 + d3u)∇v + d3v∇u) ,
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and regard −d2(1+ d3u)∇v− d2d3v∇u as the flux of the predator v. If d3 > 0,
the term −d2d3v∇u of the flux of the predator is directed towards the decreas-
ing population density of u. More details about the cross-diffusion can be found
in [4, 13, 16, 17, 21, 24, 27].

For simplicity, we nondimensionalize system (1.2) with the following scaling
u→ u/k, v → v/(γk), t→ rkt, then system (1.2) takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut − d1
kr
Δu =

u

k
(1− u)− βγuv

kr(u +mγv)
, x ∈ Ω, t > 0,

vt − d2
kr
Δ [(1 + d3ku)v] =

v

kr

(
b − v

u

)
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u′0(x), v(x, 0) = v′0(x), x ∈ Ω̄.

For this kind of the partial differential equation model, an important issue is to
find the non-constant positive steady state, which is related to the non-constant
positive solution of the corresponding elliptic equations. Thus, in our paper,
we shall study the following system⎧⎪⎪⎨⎪⎪⎩

− d1Δu = ru(1− u)− βuv

u+mv
, x ∈ Ω,

− d2Δ [(1 + d3u)v] = v (1− v/u) , x ∈ Ω,

∂νu = ∂νv = 0, x ∈ ∂Ω.

(1.3)

Here, for simplicity, we take b = 1 in system (1.3).
In the past decades, there have been many works on the existence and

non-existence of non-constant positive steady states of ecological models with
diffusion or cross-diffusion under the homogeneous Neumann boundary con-
ditions. One can refer to [4, 3, 11, 12, 19, 20, 21, 22, 24, 26, 27]. The role
of diffusion in modelling many physical, chemical and biological processes has
been extensively studied. Starting with Turing’s seminal paper [25], diffusion
and cross-diffusion have been observed as causes of the spontaneous emer-
gence of ordered structures, called patterns in a variety of non-equilibrium
situations. They include the Gierer-Meinhardt model [7, 8, 28], the Sel’kov
model [5, 26], the Lotka-Volterra competition model [15, 16, 17] and the Lotka-
Volterra predator-prey model [4, 6, 9, 10, 19, 20] and so on.

The main purpose of this paper is to study the effect of the cross-diffusion
pressure on the existence of non-constant positive steady states of (1.3). We will
show that even though the unique constant solution is globally asymptotically
stable for (1.3) with d3 = 0, non-constant positive solution can still exist due
to the emergence of the cross-diffusion. Our result implies that cross-diffusion
can create stationary patterns. For the related results, the interested readers
can refer to [4, 16, 24] and references therein.

Throughout the paper, the positive solution of (1.3) refers to a classical
one with u > 0, v > 0 on Ω̄. It is easy to see that (1.3) has a semi-trivial
non-negative solution u0 = (1, 0) and a unique positive constant solution u∗ =
(u∗, v∗), where

u∗ = 1− β

r(1 +m)
, v∗ = u∗.

Math. Model. Anal., 16(3):461–474, 2011.



464 Y.-X. Wang, W.-T. Li and H.-B. Shi

Obviously, u∗ = (u∗, v∗) exits if and only if β < r(1 +m). In the sequel, we
always assume β < r(1 +m), unless otherwise stated.

For non-constant solutions, there are two major methods in establishing the
existence of nontrivial solutions to elliptic systems, namely, singular perturba-
tion (see [9, 10]) and bifurcation. A variation of the bifurcation technique is
the powerful Leray-Schauder degree approach (see [6, 19, 20, 26]) which will be
used in our paper.

The organization of this paper is as follows. In Section 2, we first establish a
priori upper and lower bounds for the positive solutions of (1.3). Section 3 deals
with the non-existence of the non-constant positive solutions of (1.3). Finally,
in Section 4, we establish the existence of non-constant positive solutions of
(1.3) for a range of diffusion and cross-diffusion coefficients.

2 A Priori Estimates for Positive Solutions

In this section, we shall give a priori estimates for the positive solutions of (1.3).
First, we recall the following two lemmas, which can be found in [14, 16].

Lemma 1 [Maximum Principle [16]]. Suppose that g ∈ C(Ω̄ × R).

(i) Assume that w ∈ C2(Ω) ∩ C1(Ω̄) and satisfies

Δw(x) + g(x,w(x)) � 0 in Ω, ∂νw � 0 on ∂Ω.

If w(x0) = maxΩ̄ w, then g(x0, w(x0)) � 0.

(ii) Assume that w ∈ C2(Ω) ∩ C1(Ω̄) and satisfies

Δw(x) + g(x,w(x)) � 0 in Ω, ∂νw � 0 on ∂Ω.

If w(x0) = minΩ̄ w, then g(x0, w(x0)) � 0.

Lemma 2 [Harnack Inequality [14]]. Assume that c ∈ C(Ω̄) and let w ∈
C2(Ω) ∩ C1(Ω̄) be a positive solution to

Δw(x) + c(x)w(x) = 0 in Ω, ∂νw = 0 on ∂Ω.

Then there exists a positive constant C∗ = C∗(‖c‖∞, Ω) such that

max
Ω̄

w ≤ C∗min
Ω̄

w.

Note that the positive solution (u, v) satisfying (1.3) refers to a classical
one, so we can apply the above two lemmas. For convenience, we denote the
constants r, β,m collected by Λ.

Theorem 1. Assume that β ≤ rm. Let D1, D2 be arbitrary fixed positive con-
stants. Then there exist positive constants C1 = C1(Λ,D1, D2) and C2 =
C2(Λ,D1, D2) such that any positive solution (u, v) of (1.3) satisfies

C2 < u(x), v(x) < C1, ∀x ∈ Ω̄,

provided that d1, d2 ≥ D1, d3/d2 ≤ D2.
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Proof. Since

−d1Δu = ru(1 − u)− βuv

u+mv
≤ ru(1− u),

we can easily get maxΩ̄ u ≤ 1 by the maximum principle.
Let ϕ(x) = v(1 + d3u) and assume ϕ(x0) = maxΩ̄ ϕ(x). Then, by the

maximum principle, we have v(x0) ≤ u(x0) ≤ 1. Therefore,

max
Ω̄

v(x) = max
Ω̄

ϕ(x)

1 + d3u

≤ max
Ω̄

ϕ(x) = v(x0)(1 + d3u(x0)) ≤ 1 + d3.

In the following, we prove that (u, v) has a positive lower bound. Let

c1(x) =
1

d1

[
r(1 − u)− βv

u+mv

]
, c2(x) =

1

d2

1− v/u

1 + d3u
.

Thus, u and ϕ satisfy{
Δu+ c1(x)u = 0 in Ω, ∂νu = 0 on ∂Ω,

Δϕ+ c2(x)ϕ = 0 in Ω, ∂νϕ = 0 on ∂Ω.

We can find positive constants C̃(D1, D2, Λ) and C
∗ = C∗(D1, D2, Λ) such that

‖c1‖∞ =

∥∥∥∥ 1

d1

[
r(1 − u)− βv

u+mv

]∥∥∥∥
∞

≤ C̃.

Then, we have that maxΩ̄ u ≤ C∗minΩ̄ u by the Harnack inequality. Further-
more,

‖c2‖∞ =

∥∥∥∥ 1

d2

1− v/u

1 + d3u

∥∥∥∥
∞

=

∥∥∥∥ 1

d2

u− v

(1 + d3u)u

∥∥∥∥
∞

≤ 1

d2
+

maxΩ̄ v

d2 minΩ̄ u

≤ C +
maxΩ̄ ϕ

d2 minΩ̄ u
= C +

v(x0)(1 + d3u(x0))

d2 minΩ̄ u

≤ C +
u(x0)(1 + d3)

d2 minΩ̄ u
≤ C +

(1 + d3)

d2

maxΩ̄ u

minΩ̄ u
≤ C̃.

So, we get that maxΩ̄ ϕ ≤ C∗minΩ̄ ϕ.
Then, there is a constant C∗1 = C∗1 (D1, D2, Λ) such that

maxΩ̄ v

minΩ̄ v
�

maxΩ̄ ϕ

minΩ̄ ϕ
· maxΩ̄(1 + d3u)

minΩ̄(1 + d3u)
� C∗

maxΩ̄ u

minΩ̄ u
� C∗1 .

By way of contradiction, we suppose that (u, v) does not have a positive
lower bound, then there is a sequence {d1,i, d2,i, d3,i}∞i=1, d1,i, d2,i ≥ D1, d3,i ≥
0, such that the positive solution (ui, vi) of (1.3) corresponding to (d1, d2, d3) =
(d1,i, d2,i, d3,i) satisfies

min
Ω̄

ui(x)→ 0 or min
Ω̄

vi(x)→ 0 as i→∞,

Math. Model. Anal., 16(3):461–474, 2011.
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where (ui, vi) solves the following equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
− d1,iΔui = rui(1− ui)− βuivi

ui +mvi
in Ω,

− d2,iΔ [(1 + d3,iui)vi] = vi (1− vi/ui) in Ω,

∂νui = ∂νvi = 0 on ∂Ω.

(2.1)

Integrating over Ω by parts for (2.1) yields∫
Ω

ui

[
r(1 − ui)− βvi

ui +mvi

]
dx = 0,

∫
Ω

vi

(
1− vi

ui

)
dx = 0. (2.2)

Then there exists xi ∈ Ω̄ such that vi(xi) = ui(xi) for all i ≥ 1. So, based on
the above argument, we deduce that both ui and vi converge to zero uniformly
on Ω̄ as i→∞. Note that ϕ = (1 + d3u)v, we can rewrite (1.3) as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− d1Δu = u

[
r(1 − u)− βϕ

u(1 + d3u) +mϕ

]
in Ω,

− d2Δϕ =
ϕ

1 + d3u

(
1− ϕ

u(1 + d3u)

)
in Ω,

∂νui = ∂νvi = 0 on ∂Ω,

(2.3)

then it is clear that ui → 0, ϕi → 0 as i→∞. Let

wi =
ui

‖ui‖∞ + ‖ϕi‖∞ and zi =
ϕi

‖ui‖∞ + ‖ϕi‖∞ .

Then (wi, zi) satisfies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− d1,iΔwi = wi

[
r(1 − ui)− βzi

wi(1 + d3,iui) +mzi

]
in Ω,

− d2,iΔzi =
zi

1 + d3,iui

(
1− zi

wi(1 + d3,iui)

)
in Ω,

∂νwi = ∂νzi = 0 on ∂Ω.

(2.4)

Integrating over Ω, we have⎧⎪⎪⎨⎪⎪⎩
∫
Ω

wi

[
r(1 − ui)− βzi

wi(1 + d3,iui) +mzi

]
dx = 0,∫

Ω

zi
1 + d3,iui

[
1− zi

wi(1 + d3,iui)

]
dx = 0.

(2.5)

Since d1,i, d2,i ≥ D1, by the standard regularity theorem for elliptic equations,
we can get the existence of a subsequence (wi, zi) → (w, z) for some non-
negative functions w, z. Since ‖wi‖∞ + ‖zi‖∞ = 1, we obtain

‖w‖∞ + ‖z‖∞ = 1.

By the expression of (wi, zi), we know that (wi, zi) satisfies the Harnack in-
equality. Thus, by taking i→∞, we can conclude that (w, z) satisfies the Har-
nack inequality. Hence, if ω(x) or z(x) is equal to zero at some point x0, then
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w(x) ≡ 0 or z(x) ≡ 0, x ∈ Ω̄ by the Harnack inequality. As ‖w‖∞+ ‖z‖∞ = 1,
consequently, if ω(x0) = 0 for some point x0, then w(x) ≡ 0, ‖w‖∞ = 0,
thus z(x) can not attain zero at any point x ∈ Ω̄, z(x) > 0, x ∈ Ω̄. So
w(x) + z(x) > 0 on Ω̄. If z(x0) = 0 for some point x0 ∈ Ω, similarly, we
can obtain w(x) + z(x) > 0 on Ω̄. Therefore, we have w(x) + z(x) > 0 on Ω̄ in
any case. Letting i→∞ in (2.5), we get∫

Ω

w

[
r − βz

w +mz

]
dx = 0,

∫
Ω

z
[
1− z

w

]
dx = 0.

By a simple observation, we have neither w ≡ 0 nor z ≡ 0, thus w > 0, z > 0.
While ∫

Ω

w

[
r − βz

w +mz

]
dx =

∫
Ω

w
rw + (rm − β)z

w +mz
dx = 0,

and β ≤ rm, we get a contradiction. This completes the proof. ��

3 Non-existence of Non-constant Positive Solutions

In this section, we shall give some sufficient conditions for the non-existence of
non-constant positive solutions of (1.3).

Theorem 2. Let the assumptions in Theorem 1 hold. Assume that ε is an
arbitrary positive constant and D1, D2 are two given positive constants. Then
there exists a positive constant C = C(Λ,D1, D2, ε) such that (1.3) has no
non-constant positive solutions provided that d1 > C(1 + d22d

2
3).

Proof. Let (u, v) be a positive solution of (1.3) and denote ḡ = 1
|Ω|

∫
Ω
g dx

for any g ∈ L1(Ω). Assume d1, d2 ≥ D1, then multiplying the corresponding
equation in (1.3) by u−ū

u and v−v̄
v , respectively, and integrating over Ω, we

have that∫
Ω

{
d1

ū

u2
|∇u|2 + d2(1 + d3u)v̄

v2
|∇v|2 + d2d3v̄

v
∇u · ∇v

}
dx

=

∫
Ω

{[
r(1 − u)− βv

u+mv

]
(u− ū) +

(
1− v

u

)
(v − v̄)

}
dx

=

∫
Ω

{
(u− ū)2

[
−r + βv̄

(u +mv)(ū+mv̄)

]
+

[
− βū

(u+mv)(ū +mv̄)
+

v̄

uū

]
(u − ū) (v − v̄)− 1

u
(v − v̄)

2

}
dx

then, by Theorem 1 and the ε−Young Inequality, we get∫
Ω

{
d1

ū

u2
|∇u|2 + d2(1 + d3u)v̄

v2
|∇v|2

}
dx

≤
∫
Ω

{
C1(ε)(u− ū)2 +

(
ε− 1

u

)
(v − v̄)2 +

d22d
2
3v̄

2

4εv2
|∇u|2 + ε|∇v|2

}
dx,

Math. Model. Anal., 16(3):461–474, 2011.
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where ε is an arbitrary small positive constant arising from Young’s inequality,
C1(ε) depends only on Λ,Ω, ε. It follows from the Poincaré inequality that∫

Ω

{
d1

ū

u2
|∇u|2 + d2(1 + d3u)v̄

v2
|∇v|2

}
dx ≤

∫
Ω

C(ε)(1 + d22d
2
3)|∇u|2 dx.

Hence, we can deduce that there exists a positive constant C = C(Λ,D1, D2, ε)
such that (u, v) ≡ (ū, v̄) if d1 > C(1 + d22d

2
3), which asserts our result. ��

Let λ1 be the smallest positive eigenvalue of the operator −Δ under homo-
geneous Neumann boundary condition over Ω.

Theorem 3. Let the assumptions in Theorem 1 hold. Assume that ε is an
arbitrary positive constant and D1, D2 are two given positive constants. Then
there exists a positive constant C = C(Λ,D1, D2, ε) such that (1.3) has no
positive non-constant solutions provided that

d1 > r/λ1 + ε, d2 > C(1 + d22d
2
3).

Proof. Let (u, v) be a positive solution of (1.3) and ḡ = 1
|Ω|

∫
Ω
g dx for any

g ∈ L1(Ω). Multiplying the first equation of (1.3) by (u− ū), we have∫
Ω

d1|∇u|2 dx =

∫
Ω

[
ru(1− u)− βuv

u+mv

]
(u− ū) dx

=

∫
Ω

{
(u− ū)2

[
r − r(u + ū)− βmvv̄

(u+mv)(ū +mv̄)

]
− βuū

(u+mv)(ū+mv̄)
(u− ū) (v − v̄)

}
dx

≤
∫
Ω

{
(r + ε1) (u− ū)

2
+ C1(ε1) (v − v̄)

2
}
dx,

where ε1 is an arbitrary small positive constant arising from Young’s inequality,
C1(ε1) depends only on Λ,Ω, ε.

Multiplying the second equation of (1.3) by (v − v̄), we get∫
Ω

{
d2(1 + d3u)|∇v|2 + d2d3v∇u · ∇v

}
dx =

∫
Ω

(
v − v2

u

)
(v − v̄) dx

=

∫
Ω

{(
1− v + v̄

u

)
(v − v̄)2 +

v̄2

uū
(u − ū)(v − v̄)

}
dx.

Thus, following the Poincaré inequality, we have that∫
Ω

d2(1 + d3u)|∇v|2 dx

=

∫
Ω

{
(v − v̄)2

(
1− v + v̄

u

)
+

v̄2

uū
(u− ū)(v − v̄)− d2d3v∇u · ∇v

}
dx

≤
∫
Ω

{
ε1(u− ū)2 + C2(ε1)(v − v̄)2 + ε1|∇u|2 + d22d

2
3v

2

4ε1
|∇v|2

}
dx

≤
∫
Ω

{
(1 + 1/λ1) ε1|∇u|2 + C3(ε1)(1 + d22d

2
3)|∇v|2

}
dx,
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where C2(ε1) and C3(ε1) depend on Λ,Ω, ε1. Then,∫
Ω

d1|∇u|2 + d2(1 + d3u)|∇v|2 dx

≤
∫
Ω

(r/λ1 + ε) |∇u|2 + C(ε)(1 + d22d
2
3)|∇v|2 dx.

By the above inequality, we can see that there exists a positive constant C =
C(Λ,D1, D2, ε) such that (u, v) ≡ (ū, v̄) if

d1 > r/λ1 + ε, d2 > C(ε)(1 + d22d
2
3),

which asserts our result. The proof is completed. ��

4 Existence of Non-constant Positive Solutions

In this section, we are concerned with the existence of the non-constant positive
solutions of (1.3). In particular, by applying the Leray-Schauder topological
degree theory, we show that for certain ranges of parameters, system (1.3) can
produce patterns while the system without cross-diffusion does not have any
non-constant positive steady state.

Let w = v(1+d3u) and w
∗ = v∗(1+d3u

∗). Denote ũ = (u∗, w∗),u = (u,w).
Clearly, (1.3) is equivalent to the following equation

(I −G)(u) = 0, (4.1)

where

G(u) =

⎛⎜⎝(I − d1Δ)−1
[
ru(1 − u) + u− βuw

u(1+d3u)+mw

]
(I − d2Δ)−1

[
w + w

1+d3u

(
1− w

u(1+d3u)

)]
⎞⎟⎠ ,

(I − diΔ)−1(i = 1, 2) is the inverse of I − diΔ with homogeneous Neumann
boundary condition. As the operator (I − diΔ)−1 : C(Ω̄) → C(Ω̄) (i = 1, 2)
exist and are compact, G : [C(Ω̄)]2 → [C(Ω̄)]2 is also compact. To apply the
degree theory, we first compute the index of I−G at ũ. Consider the following
eigenvalue problem

−(I −DuG(ũ))(y, z) = μ(y, z), (y, z) 
= (0, 0). (4.2)

By the Leray-Schauder theorem (see [18, P37-38]), we have that if 0 is not the
eigenvalue of (4.2), then

index (I −G, ũ) = (−1)�, " =
∑
μ>0

nμ, (4.3)

where nμ is the multiplicity of the positive eigenvalue μ of (4.2). After some
computations, we can get that finding the solutions of (4.2) is equivalent to
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solving⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− d1(μ+ 1)Δy +

[
μ− r + 2ru∗ +

β(m+ (m− 1)d3u
∗)

(m+ 1)2(1 + d3u∗)

]
y

+
β

(m+ 1)2(1 + d3u∗)
z = 0,

− d2(μ+ 1)Δz − 1 + 2d3u
∗

1 + d3u∗
y +

(
μ+

1

1 + d3u∗

)
z = 0 in Ω,

∂νy = ∂νz = 0 on ∂Ω.

(4.4)

Let 0 = λ0 < λ1 < · · · < λk < · · · denote the eigenvalues of the operator −Δ
subject to the homogeneous Neumann boundary condition. From the above,
we see that μ is an eigenvalue of (4.2) if and only if Pk(μ) = 0 for some k ≥ 0,
where

Pk(μ) = det

⎛⎜⎝μ+
d1λk−r+2ru∗+

β(m+(m−1)d3u
∗)

(m+1)2(1+d3u∗)

1+d1λk

β
(1+m)2(1+d3u∗)(1+d1λk)

− 1+2d3u
∗

(1+d2λk)(1+d3u∗) μ+ d2λk+1/(1+d3u
∗)

1+d2λk

⎞⎟⎠.
Let mμ denote the multiplicity of μ for the positive solution of Pk(μ) = 0 and
"k denote the multiplicity of λk. Then, by (4.3), we get that if Pk(0) 
= 0 for
all k ≥ 0,

index (I −G, ũ) = (−1)�, " =
∞∑
k=0

∑
μ>0,Pk(μ)=0

mμ"k.

Lemma 3. If d3 = 0, then there is a positive constant D̄1 = D̄1(d2, Λ) such
that index (I −G, ũ) = 1 for all d1 ≥ D̄1.

Proof. If d3 = 0, then system (1.3) reduces to⎧⎪⎪⎨⎪⎪⎩
− d1Δu = ru(1− u)− βuv

u+mv
, in Ω,

− d2Δv = v (1− v/u) , in Ω,

∂νu = ∂νv = 0, on ∂Ω.

Thus, the corresponding Pk(μ) is

Pk(μ) = det

⎛⎝μ+ d1λk−r+2ru∗+βm/(m+1)2

1+d1λk

β
(1+m)2(1+d1λk)

− 1
1+d2λk

μ+ 1

⎞⎠
= det

⎛⎝μ+ d1λk+(r/m+1)((m+2)u∗−1)
1+d1λk

β
(1+m)2(1+d1λk)

− 1
1+d2λk

μ+ 1

⎞⎠.
For k = 0, λ0 = 0 and the constant term of P0(μ) is

r

m+ 1

[
(m+ 2)u∗ − 1

]
+

β

(m+ 1)2
= ru∗ > 0, (4.5)
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thus μ = 0 is not the root of P0(μ) = 0. For k ≥ 1, we have λk ≥ λ1 > 0
and limd1→∞ Pk(μ) = (μ + 1)2 for all k ≥ 1, then there exists a constant D̄1

such that for all k ≥ 1, Pk(μ) has no roots with positive real parts provided
d1 ≥ D̄1. Consequently, from (4.5), we get

index (I −G, ũ) = (−1)r0 , r0 =
∑

μ>0,P0(μ)=0

mμ.

Moreover, since the constant term of P0(μ) is positive, we obtain index (I −
G, ũ) = 1, which asserts our result. ��

For all k ≥ 0, by some computations, we obtain that the constant term of
Pk(μ) is

M(k) =
H(d3)

(1 + d1λk)(1 + d2λk)(1 + d3u∗)
,

where H(d3) is defined as

H(d3) = d3u
∗

[
d1d2λ

2
k + d2λk

(
r(2u∗ − 1) +

β(m− 1)

(m+ 1)2

)]
+ ru∗ + d1λk

+ d1d2λ
2
k + d2λk

[
r(2u∗ − 1) + βm/(m+ 1)2

]
.

LetQ = r(1−2u∗)−β(m− 1)/(m+ 1)2.We assume thatQ > 0, andH(d3) 
= 0
for all k ≥ 0.

Remark 1. Since

Q = r(1 − 2u∗)− β(m− 1)

(m+ 1)2
=
β(m+ 3)− r(m+ 1)2

(m+ 1)2
,

then Q > 0 ⇔ β > r(m+ 1)2/(m+ 3). As we assume β < rm, it is necessary
to assume that

rm > r(m+ 1)2/(m+ 3).

This condition is equivalent to m > 1, and thus we need the condition m > 1.

We can see that

Pk =

(
μ+

d2λk
1 + d2λk

)(
μ+

d1λk −Q

1 + d1λk

)
+O

(
1

d3

)
.

Consequently, we assume that Q/d1 ∈ (λk∗ , λk∗+1), as equation(
μ+

d2λk
1 + d2λk

)(
μ+

d1λk −Q

1 + d1λk

)
= 0

has only one positive root for k ≤ k∗ and the roots are all negative for k > k∗.
Thus, we can find a positive constant D̃ such that the polynomial Pk(μ) = 0
has only one simple positive root for k ≤ k∗ while all roots of Pk(μ) = 0 have

negative real parts for k > k∗ when d3 ≥ D̃. So we obtain the following lemma.
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Lemma 4. Assume that H(d3) 
= 0 for all k ≥ 0, Q > 0 and Q
d1
∈ (λk∗ , λk∗+1)

for some k∗ ≥ 0. Then there exists a positive constant D̃ = D̃(D1, D2, Λ) such

that for all d3 ≥ D̃,

index (I −G, ũ) = (−1)�, " =

k∗∑
i=0

"i.

Theorem 4. Suppose that the assumptions in Theorem 1 and Lemma 4 hold.

If
∑k∗

i=0 "i is odd, then there exists a positive constant D̄ = D̄(D1, D2, Λ) such
that for all d3 ≥ D̄, (1.3) has at least one non-constant positive solution.

Proof. To prove the theorem, we assume (1.3) has no non-constant positive
solution for some d∗3 ≥ D̄. Fix d̄2 > D1 and let d̄1 be large enough such that
Theorem 2 and Lemma 3 hold for d3 = 0. For 0 � t � 1, we define

G(u, t) =

⎛⎜⎝
(
I − [td1 + (1 − t)d̄1]Δ

)−1
[
ru(1− u) + u− βuw

u(1+td∗

3
u)+mw

]
(
I − [td2 + (1 − t)d̄2]Δ

)−1
[
w + w

1+td∗

3
u (1− w

u(1+td∗

3
u) )
]
⎞⎟⎠.

By Theorem 1, there exists a positive constant C1 such that (4.1) has no positive
solution on ∂Σ, where

Σ =
{
(u,w) ∈ [C(Ω̄)]2 : 1/C1 < u,w < C1

}
.

Since G(u, t) : Σ × [0, 1] → [C(Ω̄)]2 is compact, we can define the degree
deg (I −G(·, t), Σ, 0). By the homotopy invariance of degree,

deg (I −G(·, 0), Σ, 0) = deg (I −G(·, 1), Σ, 0).

Since we assume that for some d∗3 � D̃, (4.1) has no non-constant positive
solution, then, by Lemma 4, we have

deg (I −G(·, 1), Σ, 0) = index (G(·, 1), ũ) = (−1)� = −1,
while

deg (I −G(·, 0), Σ, 0) = index (G(·, 0), ũ) = 1.

Thus, we get a contradiction. The proof is completed. ��

Remark 2. In order to keep the system considered in [23] in accord with system
(1.3) in our paper, we take λ = r = 1. In this case, by [23, Theorem 2.1], we
know that the unique constant positive steady state u∗ = (u∗, v∗) is globally
asymptotically stable if

β < min{m, (1 +m)2K} and (1 + u∗)β < (1 +m)2K(K + u∗), (4.6)

where K = 1
2

{
(1−m) +

√
(1−m)2 + 4(m− β)

}
. It is clear that K < 1 and

K → 1 asm→∞ by some simple computations. Thus when m is large enough
such that K sufficiently approaches to 1, (4.6) automatically holds if β < m.
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So when m is large enough and β < m, the unique constant positive steady
states u∗ = (u∗, v∗) is globally asymptotically stable for system (1.3) without
cross-diffusion.

Now, we suppose that m is large enough and β < m. By Theorem 4, system
(1.3) has at least one non-constant positive solution if some conditions are
satisfied. Q > 0 is required in Theorem 4, and this is equivalent to β >
(m+1)2

m+3 (see Remark 1). As β < m, (m+1)2

m+3 must be smaller than m. This is
true when m > 1. So we can guarantee Q > 0.

Furthermore, if d1 is large enough such that Q
d1
∈ (λ0, λ1), then

∑k∗

i=0 "i =
"0 = 1, which is odd, so we know if H(d3) 
= 0 and the cross-diffusion d3 is large
enough , system (1.3) has at least one non-constant positive steady states.

Thus, our result shows that even though the unique constant positive steady
state is globally asymptotically stable for system (1.3) without cross-diffusion,
non-constant positive steady state can still exist due to the emergence of the
cross-diffusion for system (1.3), which suggests that Turing pattern occurs.
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