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Abstract. The homogenization problem for a nonlinear elliptic equation modelling
some physical phenomena set in a periodically heterogeneous medium is studied.
Contrary to the usual approach, the coefficients in the equation are supposed to be
uncertain functions from a given set of admissible data satisfying suitable monotonic-
ity and continuity conditions. The problem with uncertainties is treated by means of
the worst scenario method.
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1 Introduction

Composite materials play an important role in industry due to their specific
mechanical and physical properties. On the other hand, mathematical mod-
els involving composites are difficult to solve (especially from the numerical
point of view) due to the strong heterogeneity. One of useful mathematical
methods designed for modelling problems formulated in highly heterogeneous
media is the homogenization theory. It enables us to compute the macroscopic
(or large scale) properties from the knowledge of microstructure. Although
the homogenization provides quite easy and powerful tool and many interest-
ing results have been achieved so far, its practical use is still restricted to the
case of periodic structures. Unfortunately, real materials have rather almost
periodic or even stochastic structures. Also material properties like the mod-
ulus of elasticity, heat conductivity, etc. are not known precisely, since each
measurement is corrupted by an error. From this point of view, we talk about
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uncertain input data and a natural question arises, how to incorporate them
into a mathematical model.

We shall deal with the homogenization of a nonlinear boundary value prob-
lem in the form

A(u) ≡ −div(a(x,∇u)) = f in Ω,

u = 0 on ∂Ω. (1.1)

This kind of problem represents a nonlinear conservation law. The coefficients
of the operator A are considered to be uncertain, known in some bounds only,
but still satisfying certain continuity and monotonicity conditions.

We adopt a deterministic approach to the problem with uncertainties, the
worst scenario method introduced by Hlaváček, for a comprehensive guide we
refer to [9]. The main idea consists in considering a functional defined, in
general, on a suitable set of admissible data and a space, where the solution is
looked for. This functional is a criterion evaluating a state/physical quantity
characterized by the solution of the model problem from a certain point of view.
In particular, it says which data are “bad” or “good”. The maximization of
this functional yields the “worst case”. In other words, strategy of the method
is to stay on the safe side – it searches for “dangerous” data. Although the
method is currently well known, its usage in the homogenization as well as
in the case of monotone operators seems to be new. In [12], the method was
applied to the homogenization problem of the monotone type in dimension one,
here an analogous problem in higher dimension is discussed. Linear problems
were studied in [11].

The paper is organized into 5 sections. The model problem is introduced in
Section 2. Section 3 contains the related homogenized problem. In these two
sections some known results are recalled, hence the proofs are outlined only.
Section 4 is devoted to the worst scenario method including the main result on
solvability of the corresponding maximization problem. Concluding remarks in
Section 5 close the paper.

2 Model Problem

Throughout the paper, Ω will be a domain in R
d with the Lipschitz boundary,

(·,·) the scalar product and |·| =
√
(·,·) the Euclidean norm in R

d. For a set S ⊂
R

d, the symbol |S| means the d-dimensional Lebesgue measure. The Lebesgue
space L2(Ω) and its vector-valued analogue L2(Ω;Rd) are equipped with the
standard norms. The Sobolev space H1(Ω) of square-integrable functions with
square-integrable derivatives is equipped with the norm ‖u‖H1(Ω) = [

∫
Ω
(u2 +

|∇u|2) dx]1/2. Its subspace of functions with zero traces on ∂Ω is denoted by
H1

0 (Ω). Due to the Friedrichs inequality the seminorm ‖∇u‖L2(Ω;Rd) serves
as an equivalent norm on H1

0 (Ω). The symbol C∞0 (Ω) denotes the space of
infinitely smooth functions with compact support in Ω.

Let Y = [0, 1)d be the unit cube. A function u defined on R
d is said to

be Y -periodic, if u(y + k) = u(y) holds ∀y ∈ Y , ∀k ∈ Z
d. Banach spaces of

Y -periodic functions are denoted by X#(Y ). Let us remind that a function
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v is in X#(Y ), if it is Y -periodic and v ∈ Xloc(R
d). In particular, functions

of Sobolev space H1
#(Y ) have the same traces on the opposite faces of Y .

Further, H1
#0(Y ) denotes the subspace of functions u ∈ H1

#(Y ) having the zero

mean value over Y , i.e.
∫
Y u dy = 0. The norm of H1

#0(Y ) is introduced as
‖u‖H1

#0
(Y ) = ‖u‖H1(Y ). We note that ‖u‖H1

#0
(Y ) is equivalent to the seminorm

‖∇u‖L2(Y ;Rd) due to the Poincaré–Wirtinger inequality.

The duality pairing between a space and its dual is denoted by 〈·,·〉. The
convergence in norm is denoted by “→”, the weak convergence by “⇀” and
the uniform convergence by “⇒”.

The homogenization approach considers a sequence of problems of the same
type with diminishing period coefficients, where one term in this sequence is
supposed to be the original problem, see e.g. [4, Chap. 5] for a detailed
explanation. This sequence is controlled by a sequence of positive parameters
εn → 0 as n → ∞ (as usual, we omit the subscript n). We shall study the
following sequence of weak formulations corresponding to the problem (1.1):⎧⎨⎩

∫
Ω

(aε(x,∇uaε ),∇v) dx = 〈f, v〉, ∀v ∈ H1
0 (Ω),

uaε ∈ H1
0 (Ω),

(2.1)

where aε(x, ξ) ≡ a(y, ξ)|y=x/ε and a(y, ξ) is an uncertain function from a set of

admissible data Uad.

Let us describe Uad in details. Let Y consist of a finite number of subdo-
mains Yk occupied by different components of a composite, i.e. Y =

⋃m
k=1 Y k,

Yj ∩ Yk = ∅, ∀j 
= k, and |Yk| > 0. Each coefficient ai(y, ξ), i = 1, . . . , d, is
supposed to be a function Y -periodic in y, constant in y on each Yk and in
the variable ξ dependent on ξi only, i.e. ai(y, ξ) = aki (ξi) for y ∈ Yk, where
aki : R → R are Lipschitz continuous and strongly monotone inside a fixed
interval Ii and linear outside of it. More precisely, let Ii = [ξ�i , ξ

r
i ], i = 1, . . . , d,

be fixed closed intervals and let each function aki satisfy for all k = 1, . . . ,m:

|aki (ξi)− aki (ηi)| � Lk
i |ξi − ηi|, ∀ξi, ηi ∈ Ii,

(aki (ξi)− aki (ηi)) · (ξi − ηi) � αk
i (ξi − ηi)

2, ∀ξi, ηi ∈ Ii,

aki (ξi) = aki (ξ
�
i )− cki (ξ

�
i − ξi), ∀ξi < ξ�i ,

aki (ξi) = aki (ξ
r
i ) + cki (ξi − ξri ), ∀ξi > ξri ,

where αk
i , L

k
i , c

k
i are fixed positive constants. Let Si(α

k
i , L

k
i , c

k
i ) denote the

set of all functions ai(y, ξ) satisfying the conditions listed above. Now we can
define the admissible set Uad

i for the i-th coefficient ai(y, ξ), i = 1, . . . , d:

Uad
i =

{
ai ∈ Si(α

k
i , L

k
i , c

k
i ): a

min
i (y, ξ) � ai(y, ξ) � amax

i (y, ξ)
}
,

where amin
i , amax

i are given functions from Si(α
k
i , L

k
i , c

k
i ). The entire set Uad

is defined as Uad = Uad
1 × · · · × Uad

d . The solvability of the problem (2.1)
results from the following abstract theorem known from the theory of monotone
operators:
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Theorem 1. Let V be a Hilbert space and A : V → V ′ an operator satisfying
for some β1, β2 > 0 and for all u1, u2 ∈ V :

‖A(u1)−A(u2)‖V ′ � β1‖u1 − u2‖V (Lipschitz continuity), (2.2)

〈A(u1)−A(u2), u1 − u2〉 � β2‖u1 − u2‖2V (strong monotonicity). (2.3)

Then the operator equation A(u) = f has a unique solution for each f ∈ V ′.

The theorem can be proved by means of the Banach fixed point theorem. The
function u is a solution of the equation A(u) = f iff it is the fixed point of the
mapping Tθ(u) = u− θJ−1(A(u)− f), where J : V → V ′ is the duality map of
V and θ > 0. It can be shown that for 0 < θ < 2α/L2 the mapping Tθ : V → V
is contractive and thus there exists a fixed point. Details can be found e.g. in
[7, Sect. 4], [15, Sect. 25.4].

In our problem, the construction of Uad implies existence of positive con-
stants α and L such that every function a ∈ Uad satisfies the estimates

|a(y, ξ)− a(y, η)| � L|ξ − η|, ∀y, ξ, η ∈ R
d, (2.4)

(a(y, ξ)− a(y, η), ξ − η) � α|ξ − η|2, ∀y, ξ, η ∈ R
d. (2.5)

Then, taking V = H1
0 (Ω), it is an easy exercise to verify that the operator

Aε(u) ≡ −div(aε(x,∇u)) from (2.1) satisfies (2.2) and (2.3) with β1 = L,
β2 = αK, where K is the constant from the Friedrichs inequality.

To summarize the above considerations we can state:

Theorem 2. Let a ∈ Uad. Then there exists a unique solution uaε of the prob-
lem (2.1) for every f ∈ (H1

0 (Ω))′ and every ε > 0 fixed.

Although existence and uniqueness of the solution can be obtained also
under weaker monotonicity and continuity assumptions, see e.g. [7], we shall
need the introduced properties in the following sections.

3 Homogenization Problem

The mathematical homogenization theory deals with the asymptotic behaviour
of solutions to partial differential equations with rapidly oscillating coefficients.
Its main development dates to seventies of the 20th century. The original me-
thods for the periodic case are based on the assumption (a priori not verifiable)
that the solution uε of a model problem can be written in the form of an asymp-
totic expansion in ε containing functions of multiple scales (i.e. a “slow” and
“fast” variable are introduced), see e.g. [4]. To study more abstract prob-
lems (possibly beyond the periodic settings), the notions of G-convergence and
H-convergence were introduced, see e.g. [6, 10]. For variational problems, the
Γ -convergence of functionals was developed, see e.g. [5]. At the end of 80’s
the concept of two-scale convergence method was presented, see [1, 13], which
appeared to be the most powerful tool. In the non-periodic homogenization
the two-scale convergence was replaced by the Σ-convergence introduced by
G. Nguetseng, see [14].

Let us recall the homogenization result related to the problem (2.1).

Math. Model. Anal., 16(3):432–441, 2011.
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Theorem 3. Let a ∈ Uad, uaε be the solution of (2.1) with f ∈ (H1
0 (Ω))′ and

ε→ 0+. Then

uaε ⇀ ua in H1
0 (Ω), aε(x,∇uaε) ⇀ ba(∇ua) in L2(Ω;Rd),

where ua is the unique solution of the so-called homogenized problem⎧⎨⎩
∫
Ω

(ba(∇ua),∇v) dx = 〈f, v〉, ∀v ∈ H1
0 (Ω),

ua ∈ H1
0 (Ω).

(3.1)

The coefficient ba : Rd → R
d is defined as

ba(ξ) =

∫
Y

a(y, ξ +∇wa
ξ ) dy, (3.2)

where wa
ξ is the unique solution of the so-called local problem⎧⎨⎩

∫
Y

(a(y, ξ +∇wa
ξ ),∇φ) dx = 0, ∀φ ∈ H1

#0(Y ),

wa
ξ ∈ H1

#0(Y ).
(3.3)

Moreover, ba : Rd → R
d satisfies the following estimates

|ba(ξ)− ba(η)| � L̃|ξ − η|, ∀ξ, η ∈ R
d, (3.4)

(ba(ξ)− ba(η), ξ − η) � α|ξ − η|2, ∀ξ, η ∈ R
d, (3.5)

where the constant L̃ depends on α,L and the bound on the coefficient a(y, ξ)
at the point ξ = 0.

A detailed proof of this theorem can be found in [6, Thm. 5.3]. Let us sketch the
procedure. For v = uε in (2.1) and using (2.5), (2.4) we obtain the boundedness
of the sequences {uaε} and {aε(x,∇uaε )} in H1

0 (Ω) and L2(Ω;Rd), respectively.
Thus there exists a subsequence (still denoted by ε) such that

uaε ⇀ u∗ in H1
0 (Ω), aε(x,∇uaε ) ⇀ a∗ in L2(Ω;Rd).

Passing to the limit in (2.1), the last convergence implies that the equation∫
Ω

(a∗,∇v) dx = 〈f, v〉.

is satisfied. The crucial step of the proof is to show that a∗ = ba(∇u∗) a.e. in Ω,
where ba is given by (3.2). To this end we need to introduce a sequence of the
functions vξε(x) = (ξ, x)+εwξ(x/ε), where wξ(y) is the Y -periodic extension of
the solution wa

ξ to the local problem (3.3). The periodicity of vξε and aε yield

vξε ⇀ (ξ, x) in H1(Ω), ∇vξε ⇀ ξ in L2(Ω;Rd),

aε(x,∇vξε) ⇀ ba(ξ) in L2(Ω;Rd).
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Due to the strong monotonicity of aε we have∫
Ω

(aε(x,∇uaε )− aε(x,∇vξε),∇uaε −∇vξε)ϕ(x) dx � 0, ϕ ∈ C∞0 (Ω), ϕ � 0.

The left-hand side contains a product of two weakly converging sequences,
nevertheless the assumptions of the compensated compactness lemma (see e.g.
[10, Lemma 1]) are fulfilled so that we can pass to the limit∫

Ω

(a∗(x) − ba(ξ),∇u∗(x)− ξ)ϕ(x) dx � 0, ϕ ∈ C∞0 (Ω), ϕ � 0. (3.6)

It is not difficult to verify that ba is monotone and satisfies (3.4). It implies that
ba is also maximal monotone and thus by (3.6) we have a∗(x) = ba(∇u∗(x)). In
the sequel, it is possible to prove (3.5) with help of the sequence of vξε . Finally,
by uniqueness of the solution of (3.1) we have u∗ = ua and the entire sequences
converge.

In the literature, the additional assumption a(y, 0) = 0 is usually used which
slightly simplifies some steps in the proof. In that case, the estimate (3.4) holds

with L̃ = L2/α, see [8, Prop. 2.7 and Lemma 2.4].
Note, that the auxiliary sequence {vξε} is constructed via the solution of the

local problem (3.3) – the problem which, in particular, defines the homogenized
problem. The form of (3.1)—(3.3) itself can be derived using the asymptotic
expansion method (the procedure for problems of the type (2.1) can be found
e.g. in [2, Chap. 3, §7]).

The same homogenization result for the case of Sobolev space H1,p
0 (Ω),

p 
= 2, under analogous hypothesis on a(y, ξ) was first presented in [8]. Let
us note that some other variants of monotonicity and continuity assumptions
have also been studied. The most general result on homogenization of monotone
operators was formulated in [3] covering also the case of multivalued mappings.

4 Worst Scenario Method

In this section we introduce the criterion functional over the set Uad and formu-
late the corresponding worst scenario problem. We have fairly enough freedom
with the choice of this functional based on the aim of interest and expert deci-
sions, however certain continuity assumptions must be satisfied, for details see
[9, Chap. II]. For our purposes the following definition is satisfactory:

Definition 1. The criterion functional is a functional Φ : Uad ×H1
0 (Ω) → R

satisfying: if an, a ∈ Uad, an ⇒ a and vn → v in H1
0 (Ω) as n → ∞, then

Φ(an, vn)→ Φ(a, v).

In our problem, Φ can be given by Φ(a, ua) = |Ω̃|−1
∫
Ω̃
ua dx, where ua is

the solution of (3.1) and Ω̃ a subset of Ω of a positive measure. This choice
is motivated by having interest in finding some critical values of the homog-
enized solution (representing e.g. temperature) in some crucial places of the
material (e.g. where measurements take place). Since the solution need not
be continuous and thus the maximum need not exist, the integral mean value

Math. Model. Anal., 16(3):432–441, 2011.
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is used. Similarly, the solution ua in Φ can be replaced e.g. by its gradient
or the generalized gradient. Once the set of admissible data and the criterion
functional are given, we can formulate the worst scenario problem:

Problem 1. Find â ∈ Uad such that Φ(a, ua) � Φ(â, uâ), ∀a ∈ Uad, where ua is
the solution of the homogenized problem (3.1) and Φ is the criterion functional
from Definition 1.

Now, let us state the main result of the paper:

Theorem 4. There exists a solution (generally non-unique) of Problem 1.

The proof of this theorem relies on the following lemmas.

Lemma 1. The set Uad is compact in the following sense: each sequence of
functions {an} ⊂ Uad contains a uniformly convergent subsequence {an′} of
{an}, i.e. there exists an element a ∈ Uad such that an′ ⇒ a on Y × R

d.

Proof. Let Uad
Ii

denote the set of admissible functions from Uad
i restricted to

the set Y × R
i−1 × Ii × R

d−i, i = 1, . . . , d. Since every function ai ∈ Uad
Ii

can

be identified with m one-variable functions aki that are Lipschitz continuous
and bounded on Ii with the same constants, Arselà-Ascoli theorem yields that
every sequence {ani } of Uad

Ii
contains a subsequence {an′

i } converging uniformly

to an element ai ∈ Uad
Ii

(this limit belongs to Uad
Ii

as it is a closed set). Further,

since outside the interval Ii the function aki is a continuous extension by lines
with the same slope, the uniform convergence on the whole Y ×R

d follows. ��

Lemma 2. Let an, a ∈ Uad be such that an ⇒ a on Y × R
d as n → ∞. Then

ban
⇒ ba on R

d, where ban
and ba are defined by (3.2) with the integrand an

and a, respectively.

Proof. Let us set hin = sup(y,ξ) |ai(y, ξ) − ain(y, ξ)|, hn = (h1n, . . . , h
d
n), where

ai and ain is the i-th component of the vector a and an, respectively. Note that
these suprema are finite due to the definition of the set Uad. Then by (2.5)

α‖∇wan

ξ −∇wa
ξ ‖2L2(Y ;Rd)

�

∫
Y

(an(y, ξ +∇wan

ξ )− an(y, ξ +∇wa
ξ ),∇wan

ξ −∇wa
ξ ) dy

=

∫
Y

(an(y, ξ +∇wan

ξ ),∇wan

ξ −∇wa
ξ ) dy

+

∫
Y

(a(y, ξ +∇wa
ξ )− an(y, ξ +∇wa

ξ ),∇wan

ξ −∇wa
ξ ) dy

−
∫
Y

(a(y, ξ +∇wa
ξ ),∇wan

ξ −∇wa
ξ ) dy.

Due to the weak formulation (3.3) for the solutions wan

ξ and wa
ξ , the first and

the third term are zero. Using the Cauchy–Schwarz inequality, the second term
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can be estimated by∫
Y

|a(y, ξ +∇wa
ξ )− an(y, ξ +∇wa

ξ )| |∇wan

ξ −∇wa
ξ | dy

� |hn|
∫
Y

|∇wan

ξ −∇wa
ξ | dy � |hn| |Y |1/2‖∇wan

ξ −∇wa
ξ ‖L2(Y ;Rd).

Since |Y | = 1, we have

‖∇wan

ξ −∇wa
ξ ‖L2(Y ;Rd) �

|hn|
α

. (4.1)

Similarly, using the definition (3.2) we have for the i-th component of b(ξ)

|bian
(ξ) − bia(ξ)| =

∣∣∣ ∫
Y

[
ain(y, ξ +∇wan

ξ )− ai(y, ξ +∇wa
ξ )
]
dy
∣∣∣

�

∫
Y

|ain(y, ξ +∇wan

ξ )− ain(y, ξ +∇wa
ξ )| dy

+

∫
Y

∣∣ain(y, ξ +∇wa
ξ )− ai(y, ξ +∇wa

ξ )
∣∣ dy

� L

∫
Y

|∇wan

ξ −∇wa
ξ | dy + hin

� L‖∇van

ξ −∇vaξ ‖L2(Ω;Rd) + hin �
L

α
|hn|+ hin,

where we have used (2.4), the Cauchy–Schwarz inequality, |Y | = 1 and (4.1).
Since the estimate of the left-hand side does not depend on ξ, the uniform
convergence is a consequence of hn → 0 due to the assumption an ⇒ a. ��

Lemma 3. Let an, a ∈ Uad be such that an ⇒ a on Y × R
d as n → ∞. Then

uan → ua in H1
0 (Ω), where uan and ua are the solutions of (3.1) with the

coefficient ban
and ba, respectively.

Proof. The proof utilizes the similar line of arguments as in the proof of
Lemma 2. Due to the Friedrichs inequality it is enough to show the convergence
of the gradient ∇uan → ∇ua in L2(Ω;Rd). Denoting hin = supξ |bi(ξ)− bin(ξ)|,
hn = (h1n, . . . , h

d
n), then by (3.5) we have

α‖∇uan −∇ua‖2L2(Ω;Rd) �

∫
Ω

(ban
(∇uan)− ban

(∇ua),∇uan −∇ua) dx

=

∫
Ω

ban
(∇uan),∇uan −∇ua) dx+

∫
Ω

(ba(∇ua)−ban
(∇ua),∇uan−∇ua) dx

−
∫
Ω

(ba(∇ua),∇uan −∇ua) dx.

Due to (3.1), the first and the third term equal to 〈f, uan − ua〉 with the
opposite signs and thus they vanish. The middle term can be estimated by
|hn| |Ω|1/2 ‖∇uan − ∇ua‖L2(Ω;Rd). Lemma 2 implies hn → 0 so that the de-
manded convergence follows. ��
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Proof of Theorem 4. Since the set of values of Φ(a, ua) on Uad is a subset of
the reals, there exists a maximizing sequence {an} ⊂ Uad satisfying

lim
n→∞

Φ(an, u
an) = sup

a∈Uad

Φ(a, ua). (4.2)

By Lemma 1 there exists an element ã ∈ Uad and a subsequence {an′} ⊂ {an}
such that an′ ⇒ ã on Y × R

d. Lemma 3 yields uan′ → uã in H1
0 (Ω) and due

to Definition 1 we have also the convergence

Φ(an′ , uan′ )→ Φ(ã, uã) as n′ →∞. (4.3)

Combining (4.2) and (4.3) we obtain

lim
n′→∞

Φ(an′ , uan′ ) = Φ(ã, uã) = sup
a∈Uad

Φ(a, ua).

Since Φ(ã, uã) <∞, the element ã maximizes Φ which proves the result. ��

5 Concluding Remarks

The worst scenario method searches for the danger situations caused by uncer-
tainties in the input data. Knowledge of the worst states (and of the data under
which these states arise) can serve as a feedback to make some adjustments in
the model/technological process. The method is sometimes too pessimistic, es-
pecially in cases when the probability of occurrence of the “bad” data is small.
On the other hand, compared to stochastic methods, it does not require any
probabilistic information (distribution) of the inputs.

We have applied the worst scenario method to the homogenization of non-
linear monotone type boundary value problem with uncertain coefficients in
the equation. We restricted uncertainties of the coefficients to their values,
the partition of the period and the periodicity were considered to be exact.
This approach reflects the fact that these values are obtained by experimental
measurements, tabular (laboratory) parameters can differ from those of com-
monly manufactured materials, they can change in time, etc. Obviously, all
mentioned aspects contain a “noise” that can be superimposed in the case of
highly heterogeneous materials. Using the worst scenario method for study of
influence of the spatial distribution uncertainty of the material components is
an open question.

One of the keystones of the worst scenario method is the compactness of the
set of admissible functions Uad in a suitable topology. Here, we were successful
due to the two restrictions. First, the i-th component of the coefficient a(y, ξ)
was considered to be constant in the variable ξ except the i-th component
ξi, i.e. the problem is not treated in its full generality. Second, the uncertain
coefficients were restricted to intervals of finite lengths so that the Arzelà-Ascoli
theorem could be applied (it is not a significant limitation in practical problems,
since these intervals can be arbitrarily large). A possible generalization and
weakening the introduced properties are subjects of further research.

We have not discussed the finite dimensional approximations of the studied
problems and their convergence analysis. We only note that such procedure
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requires a discretization of both the set of admissible data and spaces, where
the solutions are looked for. This is left for further research.
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[3] V. Chiadò Piat and A. Defranceschi. Homogenization of monotone operators.
Nonlin. Anal., 14(9):717–732, 1990. Doi:10.1016/0362-546X(90)90102-M.

[4] D. Cioranescu and P. Donato. An Introduction to Homogenization. Oxford
University Press, 1999.

[5] G. Dal Maso. Introduction to Γ -convergence. Progress in Nonlinear Differential
Equations and Their Applications, Birkhäuser, Boston, 1993.
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