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Abstract. In this paper, we investigate the m-order linear ordinary differential
equation with m linearly independent additional conditions. We have found the
solution to this problem and give the formula and the existence condition of Green’s
function. We compare two Green’s functions for two such problems with different
additional conditions and apply these results to the problems with nonlocal boundary
conditions.
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1 Introduction

Green’s functions play an important role in the theory of linear ODE and PDE.
Their exact form depends on the differential equation and the type of boundary
conditions (BC). Green’s function helps us investigate the existence and unique-
ness of the solutions for many boundary-value problems (BVP) [23]. For multi-
dimensional stationary problems and non-stationary problems the formulae for
Green’s function are more complicated and Green’s functions are represented as
functional series even for simple rectangular, spherical and cylindrical domains
[15].

The formulae of Green’s functions for many problems with classical BCs
are presented in [4]. In this book, Green’s functions are constructed for regular
and singular BVP for ODEs, the Helmholtz equation and linear non-stationary
equations (heat equation, wave equation). We can reduce the Sturm–Liouville
problem with classical boundary conditions to an integral equation with a sym-
metrical continuous kernel, which is Green’s function for the Sturm–Liouville
differential operator. The investigation of Green’s functions for problems with
nonclassical BCs is quite a new area. We often have no self-adjoint operators

∗ This research was funded by a grant (No. MIP-051/2011) from the Research Council of
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in this case. Problems with Nonlocal Boundary Conditions (NBC) [13, 14, 20,
21, 22, 24, 27] are good examples in this area.

Green’s functions for second-order BVPs with various NBCs have been con-
structed in [32]. In [17, 26], Green’s function has been constructed for a second-
order and third-order linear ODE with two and three additional conditions, re-
spectively. Green’s function for discrete second-order problems with NBCs was
investigated in [19]. The examples, in which the expression of Green’s func-
tion obtained in [26] is used, are presented in [16, 18]. Third- and higher-order
BVPs have been considered in many papers. In [28, 31], the authors investigate
the existence of positive solutions to the third-order BVPs, they apply various
methods: lower and upper solution method, and Leggett–Williams fixed-point
theorem, Leray–Schauder continuation principle. In these references, expres-
sions and some useful properties of Green’s functions have been obtained. The
uniqueness and the necessary and sufficient conditions for the existence of so-
lutions to the fourth-order problems with various BCs have been investigated
in [12, 30].

Xie et al. [29] have studied the existence of positive solutions, they have
presented Green’s function for the m-order three-point BVP

u(m)(t) + h(t)f(t, u(t)) = 0, t ∈ [a, b],

u(a) = αu(ν), u′(a) = 0, . . . , u(m−2)(a) = 0, u(b) = βu(ν).

This problem is also investigated by Ji and Guo [7] for a = 0 and Hao et al. [6]
for a = α = 0 and b = 1. Jiang [8] has investigated a similar problem with
n-point BCs

u(0) = u′(0) = · · · = u(m−2)(0) = θ, u(1) =

n−2∑
i=1

kiu(ξi).

The problem for θ = 0 with the latter condition replaced with αu(m−2)(ν) =
u(m−2)(1) is investigated by Graef et al. [5]. The main objective of these papers
is to investigate the existence and multiplicity of solutions. To this end, the
authors have constructed Green’s functions and studied their properties.

In this paper, we consider the m-order linear ODE

Lu := u(m) + am−1(x)u(m−1) + · · ·+ a1(x)u′ + a0(x)u = f. (1.1)

Expressions for Green’s functions have been obtained using the method of varia-
tion of parameters [3]. The advantage of this method is that it is possible
to construct Green’s function for a nonhomogeneous equation (1.1) with the
variable coefficients a0, . . . , am−1 ∈ C[0, L] and various additional conditions
(for example NBCs).

The structure of the paper is as follows. In Section 2, we review the pro-
perties of functional determinants and linear functionals. We give a definition
of the Generalized Fundamental Solution in Section 3. Then we construct a
special basis in Section 4 and find an expression for the solution of the m-order
linear ODE with m additional conditions in Section 5. Formulae for Green’s
functions are derived in Section 6. Finally, in Section 7, we apply formulae
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to Green’s functions for problems with NBCs and propose examples how to
construct Green’s function for nonclassical problems. The main result of this
article is formulated in Theorems 1 and 2.

2 Notation

Let F = F (X) := {u | u : X → K} be a linear space of real (complex) functions,
where X can be any set, K = R or K = C and 1 � k ∈ N. If we have a vector
x = (x1, . . . , xk) ∈ Xk and the vector-function w = [w1, . . . , wk] ∈ F k, then
we consider the matrix [w](x) ∈Mk×k(K) and its determinant:

[w](x) = [w1, . . . , wk](x1, . . . , xk) :=

⎛⎝w1(x1) . . . w1(xk)
. . . . . . . . .

wk(x1) . . . wk(xk)

⎞⎠ ,

D[w](x) = det[w1, . . . , wk](x1, . . . , xk) :=

∣∣∣∣∣∣
w1(x1) . . . w1(xk)
. . . . . . . . .

wk(x1) . . . wk(xk)

∣∣∣∣∣∣ .
We consider the space F ∗ of linear functionals in the space F , and we

use the notation 〈f, w〉, 〈f(·), w(·)〉, 〈f(x), w(x)〉 for a functional f value of
the function w. For example, we have a regular functional f ∈ (Cp[0, L])∗ if

there exists f̃ ∈ L1(0, L) such that 〈f, w〉 = (f̃ , w) :=
∫ L

0 f̃(x)w(x) dx, and

δ
(r)
x is a singular functional such that 〈δ(r)x , w〉 = (−1)rw(r)(x), r = 0, p. We

denote δx := δ
(0)
x . If we have the vector-function w and the vector-functional

f = (f1, . . . , fk) ∈ (F ∗)k, then we define the matrix (f )[w] and its determinant:

(f )[w] = (f1, . . . , fk)[w
1, . . . , wk] :=

⎛⎝〈f1, w1〉 . . . 〈fk, w1〉
. . . . . . . . .

〈f1, wk〉 . . . 〈fk, wk〉

⎞⎠ ,

D(f )[w] = det(f1, . . . , fk)[w
1, . . . , wk] :=

∣∣∣∣∣∣
〈f1, w1〉 . . . 〈fk, w1〉
. . . . . . . . .

〈f1, wk〉 . . . 〈fk, wk〉

∣∣∣∣∣∣ .
Example 1. The relations between two matrices and two determinants are:

(δx1
, . . . , δxk

)[w] = [w](x), D(δx1
, . . . , δxk

)[w] = D[w](x).

Example 2. We will use functions f̂ l[w] ∈ F (X), l = 1, k:

f̂ l[w](x) := D(f1, . . . , fl−1, δx, fl+1, . . . , fk)[w]. (2.1)

Lemma 1. Let us take vectors Aj ,Bj ∈ Mk×1(K), j = 1, . . . , k and matrices
A = (A1, . . . ,Ak), B = (B1, . . . ,Bk) ∈Mk×k(K). Then the equality∣∣∣∣∣∣∣∣

det(B1,A2, . . . ,Ak) . . . det(Bk,A2, . . . ,Ak)
det(A1,B1, . . . ,Ak) . . . det(A1,Bk, . . . ,Ak)

. . . . . . . . .
det(A1,A2, . . . ,B1) . . . det(A1,A2, . . . ,Bk)

∣∣∣∣∣∣∣∣ = detB · (detA)k−1

Math. Model. Anal., 16(3):401–417, 2011.
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is valid.

Proof. An adjugate of A is the matrix adjA ∈ Mk×k(K), whose (i, j) entry
is the (j, i) cofactor of A (see [11]):

adjA =

⎛⎝A1
1 . . . A1

k

. . . . . . . . .
Ak

1 . . . Ak
k

⎞⎠T

=

⎛⎜⎜⎝
det(E1,A2, . . . ,Ak) . . . det(Ek,A2, . . . ,Ak)
det(A1,E1, . . . ,Ak) . . . det(A1,Ek, . . . ,Ak)

. . . . . . . . .
det(A1,A2, . . . ,E1) . . . det(A1,A2, . . . ,Ek)

⎞⎟⎟⎠ .

The adjugate of A has the property det
(
adjA

)
=
(
detA

)k−1
(see [11]). So,

we derive the equality∣∣∣∣∣∣∣∣
det(E1,A2, . . . ,Ak) . . . det(Ek,A2, . . . ,Ak)
det(A1,E1, . . . ,Ak) . . . det(A1,Ek, . . . ,Ak)

. . . . . . . . .
det(A1,A2, . . . ,E1) . . . det(A1,A2, . . . ,Ek)

∣∣∣∣∣∣∣∣ = (detA)k−1. (2.2)

The function D : Kk × · · · ×K
k → K (for fixed vectors A1, . . . ,Ak)

D(B1, . . . ,Bk) :=

∣∣∣∣∣∣∣∣
det(B1,A2, . . . ,Ak) . . . det(Bk,A2, . . . ,Ak)
det(A1,B1, . . . ,Ak) . . . det(A1,Bk, . . . ,Ak)

. . . . . . . . .
det(A1,A2, . . . ,B1) . . . det(A1,A2, . . . ,Bk)

∣∣∣∣∣∣∣∣
is an alternating multilinear function. Therefore, the equality D(B1, . . . ,Bk) =
detB ·D(E1, . . . ,Ek) is valid. But D(E1, . . . ,Ek) is equal to the left-hand side
of (2.2). So, the lemma is proved. ��

Corollary 1. The following equality is valid:

D(g)[f̂ [w]] = D(g)[w] · (D(f )[w])k−1, (2.3)

where f̂ is defined by formula (2.1).

Wronskian W [w](x) and determinant W̃ [w](x, y) are used in the theory of
linear differential equations for w = [w1, . . . , wk] ∈ Ck−1[0, L] (see [3]):

W [w](y) :=

∣∣∣∣∣∣
w1(y) (w1)′(y) . . . (w1)(k−2)(y) (w1)(k−1)(y)
. . . . . . . . . . . . . . .

wk(y) (wk)′(y) . . . (wk)(k−2)(y) (wk)(k−1)(y)

∣∣∣∣∣∣ , y ∈ [0, L],

W̃ [w](x, y) :=

∣∣∣∣∣∣
w1(y) (w1)′(y) . . . (w1)(k−2)(y) w1(x)
. . . . . . . . . . . . . . .

wk(y) (wk)′(y) . . . (wk)(k−2)(y) wk(x)

∣∣∣∣∣∣ , x, y ∈ [0, L].
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Then we get from equality (2.3):

W [f̂ [w]](y) =W [w](y) · (D(f )[w]
)k−1

,

W̃ [f̂ [w]](x, y) = W̃ [w](x, y) · (D(f)[w]
)k−1

.

For W [w](y) 
= 0, let us introduce V [w](x, y) := W̃ [w](x, y)/W [w](y). The
function V [w](x, y) is invariant with respect to {w1, ..., wk}. Ifw ∈ Ck−1+l[0, L],

l = 0, k − 1, then ∂k−1+2l

∂xk−1+l∂ylV ∈ C[0, L]2, and

∂n+l

∂xn∂yl
V (x, y)

∣∣∣
y=x

= 0, n = 0, . . . , k − 2− l, (2.4)

∂k−1

∂xk−1−l∂yl
V (x, y)

∣∣∣
y=x

= (−1)l. (2.5)

Let us consider functions wi ∈ Cp[ξi, ξi+1], i = 0, N − 1, p = 0, 1, . . . , where
−∞ < ξ0 = a < ξ1 < · · · < ξN−1 < ξN = b < +∞ (N ∈ N) and a function w,
such that w(x) = wi(x) for x ∈ (ξi, ξi+1). This function is not defined at the
points ξ ∈ ΞN = {ξ0, ξ1, . . . , ξN}. We must consider the classes of functions in
[a, b] (two functions w and v are equivalent if w = v for all x ∈ ∪N−1

i=0 (ξi, ξi+1)).
We can change the N and the set ΞN . We denote a linear space of all such
functions (classes) as C [p][a, b], and Cr,[p][a, b] := C [p][a, b]∩Cr[a, b], 0 � r � p.

Let us recall the Heaviside function

H(x) :=

{
0, x < 0,

1, x > 0.

The function H(x) ∈ C [∞][−a, a] with ξ0 = −a, ξ1 = 0, ξ2 = a > 0. In this
example, H ≡ 0 for x ∈ [−a, 0] and H ≡ 1 for x ∈ [0, a].

Let us consider the function

Gc(x, y) := H(x− y)V (x, y). (2.6)

In the domain [0, L]2, we consider two parts Dy := {(x, y) ∈ [0, L]2 : y � x}
and Dx := {(x, y) ∈ [0, L]2 : y � x}. The function Gc ≡ 0 in Dy and Gc = V
in Dx. If w ∈ Ck−1+l[0, L], l = 0, k − 1, then Gc ∈ Cl[0, L]2 and

∂n+lGc(x, y)

∂xn∂yl
∈ C[0, L]2, n = 0, k − 2− l,

∂k−1+lGc(x, x+ 0)

∂xk−1∂yl
=
∂k−1+lGc(x− 0, x)

∂xk−1∂yl
= 0,

∂k−1+lGc(x, x− 0)

∂xk−1∂yl
=
∂k−1+lGc(x+ 0, x)

∂xk−1∂yl
= (−1)l.

Note, that Gc(x, y0) ∈ C
k−2,[k−1+l]
x [0, L] for all y0 ∈ [0, L] with ξ0 = 0, ξ1 = y0,

ξ2 = L; Gc(x0, y) ∈ Cl
y[0, L], l < k − 1, Gc(x0, y) ∈ C

k−2,[k−1]
y [0, L], l = k − 1,

with ξ0 = 0, ξ1 = x0, ξ2 = L for all x0 ∈ [0, L].

Math. Model. Anal., 16(3):401–417, 2011.
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3 Fundamental Solutions

Let u = [u1, . . . , um] ∈ Cm[0, L], m � 1, such that W [u](x) 
= 0 for all
x ∈ [0, L]. These functions are solutions of the m-order linear homogeneous
differential equation

Lu := u(m) + am−1u(m−1) + · · ·+ a1u′ + a0u = 0, (3.1)

where

ai[u](x) = −det
(
u(x), . . . ,u(i−1)(x),u(m)(x),u(i+1)(x), . . . ,u(m−1)(x)

)
W [u](x)

,

i = 0,m− 1. Thus, the functions a0(x), . . . , am−1(x) ∈ C[0, L] define all the so-
lutions, i.e., the linear space S := {u ∈ Cm[0, L] : Lu = 0} that can be described
by the fundamental system {u1, . . . , um}, and, conversely, the fundamental
system {u1, . . . , um} defines a0(x), . . . , am−1(x). If {ū1, . . . , ūm} is another
fundamental system, and [ū1, . . . , ūm] = P[u1, . . . , um], where P ∈ GLm(K),
then ai[ū] = ai[u](x), i = 0,m− 1, i.e., they are invariant with respect to the
fundamental system.

Definition 1 [Fundamental Solution, see [9]]. The function g(x, y), defined on
0 ≤ x, y ≤ L, is called the fundamental solution of differential equation (3.1) if
it has the following properties:

1. g(x, y) has m partial derivatives in x in each of the two triangles Dy and
Dx and these derivatives are continuous in both x and y;

2. g(x, y) (as a function of x) satisfies equation (3.1) in each of those trian-
gles;

3. g(x, y) is continuous in the whole square 0 ≤ x, y ≤ L and has partial
derivatives in x up to order m− 2 and derivatives are continuous in both
x and y in this square;

4. The equality

∂m−1g(y + 0, y)

∂xm−1
− ∂m−1g(y − 0, y)

∂xm−1
= 1

is valid for 0 < y < L.

The function Gc (see (2.6)) is an example of the fundamental solution and
its domain is shown in Figure 1a.

Let us consider the finite set ΞN = {ξ0, ξ1, . . . , ξN} where ξ0 = 0 < ξ1 <
· · · < ξN−1 < ξN = L (N ∈ N). The lines y = ξi, i = 0, N as well as y = x
divide the square [0, L]2 into triangles and trapezoids: Di

x, D
i
y, i = 0, N − 1 (see

Figure 1b). We use this notation for triangles and trapezoids with boundary,
i.e., Di

x, D
i
y, i = 0, N − 1 are closed sets.

Definition 2 [Generalized Fundamental Solution]. The function g(x, y) de-
fined on 0 ≤ x, y ≤ L is called the Generalized Fundamental Solution (GFS) of
differential equation (3.1) if it has the following properties:



Linear Differential Equation with Additional Conditions 407

�����

x

y

D

Dx

y

( )0,L

� ���L

(a) classical fundamental so-
lution

�����

x

y

Dy

Dy

Dy

Dx

Dx

Dx

Dx

1
1

0

0

2

2

�

�

1

2

( )0,L

� ���L

(b) generalized fundamental
solution

����� � ���L

( )0,L

x

y

Dy
Dx

11
10

Dy
00

Dy
10

Dy
21 Dy

20

Dx

20

Dx

11

Dx

00

Dx

01

�

�

1

2

�

�

1

2

x

(c)

Figure 1. Domains of the Fundamental Solutions.

1. g(x, y) has m partial derivatives in x in each figure Di
y and Di

x, i =

0, N − 1 and these derivatives are continuous in both x and y;

2. g(x, y) (as a function of x) satisfies equation (3.1) in each of those figures,
i.e., Lxg(x, y) = 0;

3. g(x, y) is continuous in each rectangle Di
x ∪ Di

y, i = 0, N − 1 and has
partial derivatives in x up to order m− 2 and derivatives are continuous
in both x and y in these rectangles;

4. The equality

∂m−1g(y + 0, y)

∂xm−1
− ∂m−1g(y − 0, y)

∂xm−1
= 1 (3.2)

is valid for y ∈ [0, L]� ΞN .

Remark 1. We can rewrite equality (3.2) as

∂m−1g(x, x− 0)

∂xm−1
− ∂m−1g(x, x+ 0)

∂xm−1
= 1, x ∈ [0, L]� ΞN .

Remark 2. Each fundamental solution is a generalized fundamental solution
(N = 1, ξ0 = 0, ξ1 = L), too. In this paper, we regard the fundamental
solution as a Generalized Fundamental Solution.

If g is GFS and f ∈ C[0, L], then we define the integral

u(x) =

∫ L

0

g(x, y)f(y) dy =

N∑
j=1

∫ ξj

ξj−1

g(x, y)f(y) dy.

We have the following formulae

u(p)(x) =

N∑
j=1

∫ ξj

ξj−1

∂pg(x, y)

∂xp
f(y) dy, p = 1,m− 2

Math. Model. Anal., 16(3):401–417, 2011.
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(see the definition of GFS, Property 3), and

u(m−1)(x) =

N∑
j=1, j 
=k

∫ ξj

ξj−1

∂m−1g(x, y)

∂xm−1
f(y) dy

+

∫ x

ξk−1

∂m−1g(x, y)

∂xm−1
f(y) dy +

∫ ξk

x

∂m−1g(x, y)

∂xm−1
f(y) dy

(see the definition of GFS, Property 1), and

u(m)(x) =

N∑
j=1, j 
=k

∫ ξj

ξj−1

∂mg(x, y)

∂xm
f(y) dy

+

∫ x

ξk−1

∂mg(x, y)

∂xm
f(y) dy +

∫ ξk

x

∂mg(x, y)

∂xm
f(y) dy + f(x)

(see the definition of GFS, Properties 1 and 4). Consequently, we get that
u ∈ Cm[0, L]. We prove that

Lu =
N∑

j=1,j 
=k

∫ ξj

ξj−1

Lxg(x, y) f(y) dy

+

∫ x

ξk−1

Lxg(x, y) f(y) dy +

∫ ξk

x

Lxg(x, y) f(y) dy + f(x) = f(x)

for x ∈ [ξk−1, ξk] (see the definition of GFS, Property 2). So, u satisfies the
equation Lu = f .

Remark 3 [see [9]]. If g(x, y) is some GFS, then the formula for all GFS is

g(x, y) + c1(y)u
1(x) + · · ·+ cm(y)um(x),

where u = [u1, . . . , um] ∈ Cm[0, L] is the fundamental system of homogeneous
equation (3.1) and cj ∈ C [0][0, L]. For example, we can take

Gc(x, y) + c1(y)u
1(x) + · · ·+ cm(y)um(x).

Remark 4. GFS has the properties of fundamental solutions in some subdo-
mains of [0, L]2 such as D00

y ∪ D00
y and the properties of the solution to the

homogeneous problem in some subdomains of [0, L]2 such as D20
y (see Fig-

ure 1c).

Let us consider linear integral operators Aj : C[0, L]→ C[0, L]:

(Aju)(x) =

∫ L

0

∂jg(x, y)

∂xj
u(y) dy + u(x)δjm, j = 0, . . . ,m.

Lemma 2. Integral linear operators Aj, j = 0,m, are completely continuous
operators.

Proof. It is easy to see that the kernels Kj(x, y) =
∂jg(x,y)

∂xj satisfy the condi-
tions of Theorem 1 [10, p. 241]. ��
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4 Special basis in the space of the solutions

Let functions w1, . . . , wm ∈ F (X) be linearly independent. Then the following
lemma is valid (see [17], too).

Lemma 3. Functionals f1, . . . , fm are linearly independent on span(w1, . . . ,
wm) ⊂ F (X) if and only if D(f )[w] 
= 0.

Let us consider homogeneous linear differential equation (3.1) and let u =
{u1, . . . , um} be a fixed basis of the m-dimensional linear space S of solutions.
We investigate additional conditions:

〈L1, u〉 = 0, . . . , 〈Lm, u〉 = 0, u ∈ S, (4.1)

where L1, . . . , Lm ∈ S∗ are linearly independent linear functionals. Denote
L = (L1, . . . , Lm). Let us introduce new functions

v̂i[u](x) := D(L1, . . . , Li−1, δx, Li+1, . . . , Lm)[u], i = 1,m. (4.2)

For these functions 〈Li, v̂
j [u]〉 = δjiD(L)[u], i, j = 1,m. Thus, we can extend

Lemma 3.

Lemma 4. Let {u1, . . . , um} be the basis of linear space S. Then the next
propositions are equivalent:

1. The functionals L1, . . . , Lm are linearly independent;

2. The functions v̂1, . . . , v̂m are linearly independent;

3. D(L) 
= 0.

Remark 5. The condition D(L) = 0 does not depend on the fundamental sys-
tem. Therefore, we use the notation D(L) instead of D(L)[u] in this lemma.

The equalities

W [v̂](x) = W [u](x) · (D(L)[u]
)m−1

, W̃ [v̂](x, y) = W̃ [u](x, y)
(
D(L)[u]

)m−1
,

D[v̂](x) = D[u](x)
(
D(L)[u]

)m−1

are valid, too. So, the propositions in Lemma 4 are equivalent to W [v̂](x) 
= 0.
If the functionals L1, . . . , Lm are linearly independent, and

vi(x) :=
D(L1, . . . , Li−1, δx, Li+1, . . . , Lm)[u]

D(L)[u]
=

v̂i[u](x)

D(L)[u]
, i = 1,m, (4.3)

then two bases {v1, . . . , vm} and {L1, . . . , Lm} are biorthogonal: 〈Li, v
j〉 = δji ,

i, j = 1,m, and

D[v](x) =
D[u](x)

D(L)[u]
, W [v](x) =

W [u](x)

D(L)[u]
, W̃ [v](x, y) =

W̃ [u](x, y)

D(L)[u]
,

V [v](x, y) = V [u](x, y) = V (x, y), Gc[v](x, y) = Gc[u](x, y) = Gc(x, y).

Remark 6. The Propositions in Lemma 4 are valid, if we take {v1, . . . , vm}
instead of {v̂1[u], . . . , v̂m[u]}. The definition of v := [v1, . . . , vm] is invariant
with respect to basis {u1, . . . , um}.
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5 Linear differential equation with additional conditions

In this section, we consider the m-order inhomogeneous differential equation

Lu := u(m) + am−1(x)u(m−1) + · · ·+ a1(x)u′ + a0(x)u = f(x), (5.1)

where f ∈ C[0, L], with m additional conditions

〈Li, u〉 = fi ∈ K, i = 1,m, (5.2)

where L1, . . . , Lm are linearly independent functionals in Cm[0, L]. We denote
L = (L1, . . . , Lm), f = (f1, . . . , fm), f̃ = [0, . . . , 0︸ ︷︷ ︸

m−1

, f ].

5.1 The solution to an inhomogeneous problem with homogeneous

additional conditions

Let {u1, . . . , um} be a fixed fundamental system of homogeneous equation (3.1)
and u = [u1, . . . , um]. Then the general solution of this equation is uh(x) =
Cu(x), where C = (C1, . . . , Cm) are arbitrary constants. We replace the con-
stants C with the functions c(x) =

(
c1(x), . . . , cm(x)

)
, respectively (Method of

Variation of Parameters, see [3]). Then we substitute u(x) = c(x)u(x) into a
inhomogeneous equation (5.1) and determine these functions c(x) [3]. Finally,
we obtain:

u(x) =

∫ L

0

H(x−s)V (x, s)f(s) ds+Au(x) = (Gc(x, s), f(s))
X
+Au(x), (5.3)

where (g, f)
X
:=
∫ L

0 g(x)f(x) dx, g ∈ L1(0, L), f ∈ C[0, L]. We use this formula
for the special basis {v1, . . . , vm} (see Eq. (4.3)). In this case, we have

u(x) = (Gc(x, s), f(s))
X
+A1v

1(x) + · · ·+Amv
m(x). (5.4)

Let us have homogeneous conditions

〈L1, u〉 = 0, . . . , 〈Lm, u〉 = 0. (5.5)

Then, by substituting general solution (5.4) into homogeneous additional con-
ditions, we find:

Ai = −〈Li(y), (G
c(y, s), f(s))

X
〉 = −(〈Li(y), G

c(y, s)〉, f(s))
X
, i = 1,m.

Next we obtain a formula of the solution in the case of the m-order linear ODE
with m additional homogeneous conditions

uf (x) = (〈δx(y)−L(y)v(x), Gc(y, s)〉, f(s))
X
. (5.6)



Linear Differential Equation with Additional Conditions 411

5.2 Inhomogeneous problem

Let us consider homogeneous equation (3.1) with additional conditions (5.2):
Lu = 0, 〈Li, u〉 = fi, i = 1,m. We can find a solution uh(x) = fv(x) to
this problem if the general solution is inserted into additional conditions. The
solution of inhomogeneous problems has the form u(x) = uf(x) + uh(x).

Theorem 1. The solution of problem (5.1)–(5.2) can be written by the formula

u(x) = (〈δx(y)−L(y)v(x), Gc(y, s)〉, f(s))
X
+ fv(x). (5.7)

Formula (5.7) is known (in more classical forms) in very different cases of
classical boundary conditions of the first, second, and third type. The inves-
tigation of linear and quasi-linear problems with NBCs (see, [28, 31]) requires
the general theory how to construct a solution with very different boundary
conditions. Formula (5.7) can be effectively employed to get the solutions to
a linear m-order differential equation, where a0(x),. . . , am−1(x) are not con-
stants and with any right-hand side function f(x) and any functionals L1,. . . ,
Lm and any f1,. . . , fm, provided that the general solution of the homogeneous
equation is known. In this paper, we use it to get formulae for Green’s function.

5.3 Relation between two solutions

Next, let us consider two problems with the same m-order nonhomogeneous
differential equation with a differential operator as in the previous subsection:{

Lu = f,

〈li, u〉 = fi, i = 1,m,

{
Lv = f,

〈Li, v〉 = Fi, i = 1,m,
(5.8)

and D(L) 
= 0. The difference w = v − u satisfies the problem with a homoge-
neous equation {

Lw = 0,

〈Li, w〉 = Fi − 〈Li, u〉, i = 1,m.

Thus, it follows from formula (5.7) that w(x) = Fv(x)− 〈L(y)v(x), u(y)〉 or

v(x) = u(x)− 〈L(y)v(x), u(y)〉 + Fv(x), (5.9)

and we can express the solution of the second problem (5.8) via the solution of
the first problem. We can rewrite (5.9) as follows

v(x) =
D(L, δx)[u, u]

D(L)[u]
+ Fv(x). (5.10)

Note that, in this formula, the function u is in the first term only and v(x) is
invariant with respect to the basis {u1, . . . , um}.
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6 Green’s functions

We propose the definition of Green’s function (see, [3, 4, 23]). The fundamental
Solution G(x, y) of equation (5.1) is Green’s function for BVP (5.1)–(5.2) (in
the case of local or periodic BC), if it satisfies (as a function of x) homoge-
neous boundary conditions (5.2), too. We will use here a slightly more general
definition of Green’s function.

Definition 3. A GFS G(x, y) of equation (5.1) is Green’s function for (5.1)–
(5.2) if it satisfies (as a function of x) homogeneous additional conditions (5.2)
for y ∈ [0, L]� ΞN , i.e.,

〈Li(x), G(x, y)〉 = 0, i = 1,m, y ∈ [0, L]� ΞN .

If Green’s function G(x, y) exists for problem (5.1)–(5.2), then its solution
allows the following integral representation:

u(x) =

∫ L

0

G(x, y)f(y) dy. (6.1)

So, we have

〈Li, u〉 =
∫ L

0

〈Li(x), G(x, y)〉f(y) dy = 0.

6.1 Green’s functions for a linear differential equation with addi-

tional conditions

Let us consider an inhomogeneous equation with an operator (5.1): L : U → F ,
where F = C[0, L] and additional homogeneous conditions define the subspace
U = {u ∈ Cm[0, L] : 〈L1, u〉 = 0, . . . , 〈Lm, u〉 = 0}. We derive a formula for the
solution (see Theorem 1 for f = 0):

u(x) =

∫ L

0

〈δx(y)−L(y)v(x), Gc(y, s)〉f(s) ds.

Thus, we have proved the following lemma about Green’s function.

Lemma 5. Green’s function for problem (5.1) with m homogeneous additional
conditions 〈L1, u〉 = 0, . . . , 〈Lm, u〉 = 0 is equal to:

G(x, s) = 〈δx(y)−L(y)v(x), Gc(y, s)〉 = D(L, δx)[u, G
c(·, s)]

D(L)[u]
. (6.2)

Green’s function G(x, s) = G[ū](x, s) = G[u](x, s), i.e., it is invariant with
respect to the basis {u1, . . . , um}. It is easy to verify that Gc(x, s) is Green’s
function for problem (5.1) with the special additional (in this case, initial con-
ditions) conditions u(0) = 0, . . . , u(m−1)(0) = 0.

For the theoretical investigation of problems with nonlocal boundary condi-
tions, the next result on the relations between Green’s functions Gu(x, s) and
Gv(x, s) of two inhomogeneous problems with the same f :{

Lu = f,

〈li, u〉 = 0, i = 1,m,

{
Lv = f,

〈Li, v〉 = 0, i = 1,m,
(6.3)
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is useful.

Theorem 2. The relations between Green’s functions Gv(x, s) and Gu(x, s) for
problems (6.3) are:

Gv(x, s) = 〈δx(y)−L(y)v(x), Gu(y, s)〉 = D(L, δx)[u, G
u(·, s)]

D(L)[u]
. (6.4)

Proof. The proof of these relations follows from Eq. (5.10) (the case F = 0)
and integral representation (6.1) of the solutions u and v.

7 Applications to problems with NBC

Let us investigate Green’s function for the problem with nonlocal boundary
conditions

Lu := u(m) + am−1(x)u(m−1) + · · ·+ a1(x)u′ + a0(x)u = f(x), (7.1)

〈Li, u〉 := 〈κi, u〉 − γi〈κi, u〉 = 0, i = 1,m, (7.2)

where ai ∈ C[0, L], f ∈ C(0, L). We can write many problems with nonlocal
boundary conditions (NBC) in this form, where 〈κi, u〉 := 〈κi(x), u(x)〉 is a
classical part, and 〈κi, u〉 := 〈κi(x), u(x)〉, i = 1,m, is a nonlocal part of
boundary conditions. For example, the functionals κi, i = 1,m, can describe
the multi-point (ξj ∈ [0, 1], j = 1,m) or integral NBCs

〈κ, u〉 =
m∑
j=1

m∑
k=1

(
κ
k
j u

(k−1)(ξj)
)
, 〈κ, u〉 =

∫ 1

0

κ(t)u(t) dt,

and the functional κi, i = 1,m, can describe the local (classical) boundary
conditions.

If γ1, . . . , γm = 0, then problem (7.1)–(7.2) becomes classical. Suppose that
there exists Green’s function Gcl(x, s) for this classical case. Then, Green’s
function exists for problem (7.1)–(7.2) if ϑ = D(L)[u] 
= 0. For Li = κi− γiκi,
i = 1,m, we derive

ϑ =

1∑
σ1=0,...,σm=0

m∏
j=1

(−γj)σjD
(
(κσ1

1 κ1−σ1

1 ), . . . , (κσm

m κ1−σm

m )
)
. (7.3)

If we define the matrices K := (κij), κij = 〈κj , ui〉, N := (κij), κij = 〈κj , ui〉,
Γ := (γiδij), then the condition ϑ 
= 0 is equivalent to det(I − ΓNK−1) 
= 0.
This result generalizes a similar condition for the second order equation (see,
[1, 2, 25]). Since 〈κi(·), Gcl(·, s)〉 = 0, i = 1,m, we can rewrite formula (6.4) as

G(x, s) = Gcl(x, s) +

m∑
j=1

γj〈κj(y), G
cl(y, s)〉vj(x). (7.4)
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Example 3. Let us consider the problem

u(m) = f(x), x ∈ (0, 1), (7.5)

u(0) = βu(α), u′(0) = · · · = u(m−2)(0) = 0, u(1) = γu(η), (7.6)

We can take uj(x) = xj−1/(j − 1)!, j = 1,m. Then

W̃ (x, s) =
(x− s)m−1

(m− 1)!
, W (s) = 1.

So, we get

V (x, s) =
(x − s)m−1

(m− 1)!
, Gc(x, s) = H(x− s)

(x − s)m−1

(m− 1)!
. (7.7)

We find W̃ (x, s) directly, but it is easier to find V (x, s) using properties (2.4)–
(2.5). For a problem with boundary conditions

u(0) = 0, u′(0) = · · · = u(m−2)(0) = 0, u(1) = 0, (7.8)

we derive

D(L)[u] =
1

(m− 1)!
, D(L, δx)[u, G

c(·, s)] = Gc(x, s)− xm−1V (1, s)

(m− 1)!
,

and “classical” Green’s function

Gcl(x, s) = H(x− s)V (x, s) − xm−1V (1, s)

=
1

(m− 1)!

{
−xm−1(1− s)m−1, x ≤ s,

(x− s)m−1 − xm−1(1− s)m−1, s ≤ x.

For a “nonlocal” problem with boundary conditions u(0) − βu(α) = 0,
u′(0) = · · · = u(m−2)(0) = 0, u(1)− γu(η) = 0, we calculate

D(L)[u] =
(
(1− β)(1 − γηm−1) + (1− γ)βαm−1

)
/(m− 1)!,

D(δx, L2, . . . , Lm)[u] =
(
1− γηm−1 − (1− γ)xm−1

)
/(m− 1)!,

D(L1, . . . , Lm−1, δx)[u] =
(
(1− β)xm−1 + βαm−1

)
/(m− 1)!.

It follows from Eq. (7.4) that

G(x, s) = Gcl(x, s) + βGcl(α, s)
1− γηm−1 − (1− γ)xm−1

(1 − β)(1 − γηm−1) + (1− γ)βαm−1

+ γGcl(η, s)
(1 − β)xm−1 + βαm−1

(1− β)(1 − γηm−1) + (1− γ)βαm−1
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if ϑ := (1− β)(1 − γηm−1) + (1 − γ)βαm−1 
= 0. Thus,

G(x, s) =
1

(m− 1)!

{
−xm−1(1 − s)m−1, x ≤ s,

(x− s)m−1 − xm−1(1− s)m−1, s ≤ x,

+β
1− γηm−1 − (1− γ)xm−1

(1−β)(1−γηm−1)+(1−γ)βαm−1

⎧⎨⎩−
αm−1(1−s)m−1

(m−1)! , α ≤ s,

(α−s)m−1−αm−1(1−s)m−1

(m−1)! , s ≤ α,

+γ
(1− β)xm−1 + βαm−1

(1−β)(1−γηm−1)+(1−γ)βαm−1

⎧⎨⎩−
ηm−1(1−s)m−1

(m−1)! , η ≤ s,

(η−s)m−1−ηm−1(1−s)m−1

(m−1)! , s ≤ η.

Remark 7. The problem (7.5)–(7.6) was considered in the case α = η by Ji and
Guo [7]. Green’s function for this problem is of the form

G(x, s) = Gcl(x, s) +
xm−1(γ − β) + β

1− β − ηm−1(γ − β)
Gcl(η, s)

=
1

(m− 1)!

{
−xm−1(1− s)m−1, x ≤ s,

(x− s)m−1 − xm−1(1− s)m−1, s ≤ x,

+
xm−1(γ − β) + β

1− β − ηm−1(γ − β)

⎧⎨⎩−
ηm−1(1−s)m−1

(m−1)! , η ≤ s,

(η−s)m−1−ηm−1(1−s)m−1

(m−1)! , s ≤ η.

Remark 8. Problem (7.5)–(7.6) was considered in the case β = 0 by Hao, Liu
and Wu [6, Section 2]. As γηm−1 
= 1 Green’s function for this problem is equal
to

G(x, s) = Gcl(x, s) + γGcl(η, s)
xm−1

1− γηm−1

=

{
φ(s)xm−1/(m− 1)!, 0 ≤ x ≤ s ≤ 1,

(φ(s)xm−1 + (x − s)m−1)/(m− 1)!, 0 ≤ s ≤ x ≤ 1,

where

φ(s) =

{
−(1− s)m−1/(1− γηm−1), η ≤ s,

−((1− s)m−1 − γ(η − s)m−1)/(1− γηm−1), s ≤ η.

8 Conclusions

The main result of this paper is that Green’s function for the linear ODE with
additional conditions is related with Green’s function of a similar problem, and
this relation is expressed by formulae (6.4). If D(L)[u] 
= 0, the functionals
L1,. . . ,Lm are linearly independent. This condition yields the necessary and
sufficient condition for the existence of Green’s function for the problem with
m functional conditions. We give few examples, but formulae (6.4) can be
applied to a very wide class of problems with nonconstant coefficients and
various boundary conditions as well as additional conditions.
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