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Abstract. This paper is concerned with oscillations of numerical solutions for the
nonlinear delay differential equation of population dynamics. The equation proposed
by Mackey and Glass for a ”dynamic disease” involves respiratory disorders and its
solution resembles the envelope of lung ventilation for pathological breathing, called
Cheyne-Stokes respiration. Some conditions under which the numerical solution is
oscillatory are obtained. The properties of non-oscillatory numerical solutions are
investigated. To verify our results, we give numerical experiments.
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1 Introduction

Recently, there have been a lot of studies concerning the oscillatory behaviour
of delay differential equations and difference equations. In particular, the lit-
erature on the applications of oscillation theory for nonlinear delay differential
equations and difference equations is growing rapidly [4, 7, 11, 12, 14, 16]. This
study is very interesting in applications in some mathematical models, such as
ecology, biology, spread of some infectious diseases in humans and so on. But to
the best of our knowledge, only a few papers have been devoted to oscillations
of numerical solutions for delay differential equations(see [8, 9]). The papers [8]
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and [9] are concerned with oscillations of numerical solutions for linear delay
differential equations.

In this paper, oscillations of numerical solutions for the nonlinear delay dif-
ferential equations of population dynamics is studied. We consider the equation

x′(t) +
αVmx(t)x

p(t− τ)

βp + xp(t− τ)
= λ, t ≥ 0, (1.1)

with conditions
α, Vm, β, τ, λ, p ∈ (0,∞). (1.2)

Equation (1.1) is proposed by Mackey and Glass [10] for a ”dynamic disease”
which involves respiratory disorders, where x(t) denotes the arterial CO2 con-
centration of a mammal, λ is the CO2 production rate, Vm denotes the maxi-
mum ventilation rate, and τ is the time between oxygenation of blood in lungs
and stimulation of chemoreceptors in the brainstem.The solution of Eq.(1.1)
resembles the envelope of lung ventilation for pathological breathing, called
Cheyne-Stokes respiration. It is known that such respiration is observed in
the conditions of severe, life threatening pathology, when for some reason the
duration of travel of blood from lungs to the chemoreceptors located in the
brain stem increases or, as a result of the deterioration of some neurons in
the brain stem, sensitivity of the ventilation to the CO2 concentration rises.
Cheyne-Stokes respiration is also observed in healthy subjects in specific con-
ditions, e.g., high in mountains where oxygen is insufficient. In this paper, we
will investigate some sufficient conditions under which the numerical solution
is oscillatory. We also investigate the behaviour of non-oscillatory numerical
solutions.

As usual, a function x(t) is said to be oscillatory about K, if the function
x(t)−K has arbitrarily large zeros. We say that a function x(t) oscillates if it
oscillates about zero.

Similarly, a sequence {xn} is said to oscillate about {yn} if {xn − yn} is
neither eventually positive nor eventually negative. If {yn} = {y} is a constant
sequence, we simply say that {xn} oscillates about y. In particular, when {yn}
= {0}, we just say that {xn} oscillates.

Definition 1. We say a differential equation is oscillatory if all the solutions
of the equation are oscillatory.

We consider the solution of equation (1.1) with the initial condition of the
form

x(t) = ϕ(t), −τ ≤ t ≤ 0, ϕ ∈ C
(
[−τ, 0], (0,∞)

)
. (1.3)

In view of [5], we know that Eq. (1.1) can be reduced to

y′(t) = y(t)
[ p1
q1 + yp(t− τ)

− λy(t)
]

(1.4)

by setting x(t) = 1/y(t). Let y(t) = kez(t),we can get

z′(t) + λkf1(z(t)) +Mf2(z(t− τ)) = 0, (1.5)
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where

f1(u) = eu − 1, f2(u) =
q1 + kp

p

epu − 1

q1 + kpepu
,

M = p1pk
p/(q1 + kp)2, p1 = αVm/β

p, q1 = 1/βp and k is the positive equilib-
rium point of (1.4). Then K∗ = 1/k is the equilibrium point of (1.1) and x(t)
oscillates about K∗ if and only if z(t) oscillates.

The following theorems are helpful in presenting the main results of the
paper.

Theorem 1 [[5]]. Assume that (1.2) holds and M = p1pk
p/(q1 + kp)2, p1 =

αVm/β
p, q1 = 1/βp, then every positive solution of (1.1) oscillates about the

equilibrium point K∗ if Meλkτ τ > 1/e.

Theorem 2 [[2]]. Consider the difference equation

an+1 − an +Σl
j=−kqjan+j = 0 (1.6)

Assume that k, l ∈ N and qj ∈ R for j = −k, · · · , l. Then the following
statements are equivalent.

• Every solution of equation (1.6) oscillates.

• The characteristic equation λ− 1+Σl
j=−kqjλ

j = 0 has no positive roots.

Theorem 3 [see [2]]. Consider the difference equation

an+1 − an + pan−k + qan = 0, (1.7)

where k > 0, p > 0 and q > 0. Then the necessary and sufficient conditions
for the oscillation of all solutions of (1.7) are q ∈ (0, 1) and pK > (1− q)k+1,
where K denotes the constant (k + 1)k+1/kk.

The following lemma is obvious.

Lemma 1. For x > −1 and x 
= 0, we have ln(1 + x) > x/(1 + x).

2 Oscillations of Numerical Solutions

Applying the linear θ-method to equation (1.5), we get

zn+1 = zn − hθλkf1(zn+1)− hθMf2(zn+1−m)

− h(1− θ)λkf1(zn)− h(1− θ)Mf2(zn−m), (2.1)

where 0 ≤ θ ≤ 1, h = τ/m, m is a positive integer. zn+1 and zn+1−m are
approximations to the analytic solutions z(t) and z(t− τ) of (1.5) at tn+1. Let
zn = − ln(kxn), then

xn+1 = xn exp
( hθλ

xn+1
+
h(1 − θ)λ

xn
− hλk + hθλkβp 1− kpxpn+1−m

βp + xpn+1−m

+ h(1 − θ)λkβp 1− kpxpn−m

βp + xpn−m

)
(2.2)
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Definition 2. We call the formula (2.2) as the exponential linear θ-method
for (1.1), where 0 ≤ θ ≤ 1, h = τ/m, m is a positive integer, xn+1 and xn+1−m

are approximations to the analytic solutions x(t) and x(t− τ) of (1.1) at tn+1.

Theorem 4. The numerical method (2.2) is convergent. Further, it is of the
first order when θ 
= 1/2 and of the second order when θ = 1/2.

Proof. In view of [3],we can solve the equation (1.5) by the method of steps.
In the following, we introduce it in brief. We have the following initial value
problem from (1.3)

z′(t) + λkf1(z(t)) +Mf2(z(t− τ)) = 0, t > 0,

z(t) = − ln(kϕ(t)),−τ ≤ t ≤ 0, ϕ ∈ C[[−τ, 0], (0,∞)].

Hence equation (1.5) becomes

z′(t) + λkf1(z(t)) +Mf2(− ln(kϕ(t− τ))) = 0 (2.3)

for t ∈ [0, τ ]. We denote z(t) as z1(t) for t ∈ [0, τ ].
When t ∈ [τ, 2τ ], equation (1.5) becomes

z′(t) + λkf1(z(t)) +Mf2(z1(t− τ))) = 0. (2.4)

We denote z(t) as z2(t) for t ∈ [τ, 2τ ].
Similarly, when t ∈ [2τ, 3τ ], equation (1.5) becomes

z′(t) + λkf1(z(t)) +Mf2(z2(t− τ))) = 0. (2.5)

We denote z(t) as z3(t) for t ∈ [2τ, 3τ ]. This process can be repeated. The
obtained equations are ordinary differential equations. It is well known that
the convergent order of the linear θ-method for ordinary differential equations
is equal p = 1 for θ 
= 1/2 and p = 2 for θ = 1/2. So we have

zn − z(tn) = O(hp). (2.6)

Hence

xn−x(tn)=1

k

(
exp(−zn)− exp(−z(tn))

)
=
1

k
exp(−δn)

(
zn − z(tn)

)
=O(hp),

where δn is in between zn and z(tn). ��

In fact, since the linear θ-method is a special form of the Runge-Kutta
method, we can easily get (2.6) from [1].

It is obvious that xn is oscillatory about K∗ if and only if zn is oscillatory.
In order to investigate oscillations of (2.2), we only need to study equation
(2.1). From [5], it is known that⎧⎨⎩uf1(u) > 0 for u 
= 0, lim

u→0
f1(u)/u = 1,

uf2(u) > 0 for u 
= 0, lim
u→0

f2(u)/u = 1.
(2.7)
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The linearized equation associated with equation (2.1) is given by

zn+1 = zn−hθλkzn+1−hθMzn+1−m−h(1− θ)λkzn−h(1− θ)Mzn−m, (2.8)

that is

zn+1 −R(−λkh)zn +
Mθh

1 + θλkh
zn+1−m +

M(1− θ)h

1 + θλkh
zn−m = 0, (2.9)

where R(−λkh) = (1− (1− θ)λkh
)
/
(
1 + θλkh

)
is the stability function of the

linear θ-method. It follows from [2] that equation (2.1) oscillates if equation
(2.9) oscillates in the case of (2.7).

Definition 3. Equation (2.2) is said to be oscillatory if every solution of (2.2)
is oscillatory.

It is natural to ask whether (2.2) is oscillatory when (1.1) oscillates. Until
now we only know the sufficient condition Meλkτ τ > 1/e for oscillations of
equation (1.1). In the following we assume Meλkτ τ > 1/e and investigate the
conditions under which (2.2) is oscillatory.

In the rest of the paper, we denote Meλkττ by a for simplicity.

Lemma 2. The characteristic equation of Eq.(2.8) is given by

ξ = R(−h(λk +Mξ−m)). (2.10)

Proof. We look at numerical approximations for (2.8) of the form zn = ξnz0,
then we get

ξn+1z0 = ξnz0 − hθλkξn+1z0 − hθMξn+1−mz0

− h(1− θ)λkξnz0 − h(1− θ)Mξn−mz0.

After simple computations it follows that

ξ = 1− hθ(λk +Mξ−m)ξ − h(1− θ)(λk +Mξ−m),

which leads to the characteristic equation

ξ =
1− h(1 − θ)(λk +Mξ−m)

1 + hθ(λk +Mξ−m)
= 1− h(λk +Mξ−m)

1 + θh(λk +Mξ−m)
.

Since the stability function of the linear θ-method is R(x) = 1+(1−θ)x
1−θx ,then the

characteristic equation of (2.8) is given by (2.10). ��

Lemma 3. If a > 1/e, then the characteristic equation (2.10) has no positive
roots for 0 ≤ θ ≤ 1/2.

Proof. Let f(ξ) = ξ −R(−h(λk +Mξ−m)). It is known from [13, 15] that

R(−h(λk+Mξ−m)) ≤ exp(−h(λk+Mξ−m)), ξ > 0, 0 ≤ θ ≤ 1/2. (2.11)

Math. Model. Anal., 16(3):365–375, 2011.



370 J.F Gao, M.H Song and M.Z. Liu

In the following, we will prove g(ξ) = ξ − exp(−hλk − hMξ−m) > 0 for ξ > 0.
Suppose that there is a ξ0 > 0 such that g(ξ0) ≤ 0, then ξ0 ≤ exp(−hλk −
hMξ−m

0 ), and ξm0 ≤ exp(−λkτ −Mτξ−m
0 ). Hence

ae = Mτ exp(λkτ)e ≤Mτξ−m
0 exp(1−Mτξ−m

0 ).

Now we have that

• If 1−Mτξ−m
0 = 0, then ae ≤ 1, which is a contradiction to a > 1/e.

• If 1 −Mτξ−m
0 
= 0, then since ex < 1

1−x for x < 1 and x 
= 0, we again
have ae < 1, which is also a contradiction to a > 1e.

Therefore for ξ > 0

f(ξ) = ξ −R(−h(λk +Mξ−m)) ≥ ξ − exp(−hλk − hMξ−m) = g(ξ) > 0,

which implies that the characteristic equation (2.10) has no positive roots. ��

In the case of 1/2 < θ ≤ 1, we require m > 1.

Lemma 4. If a > 1/e and 1/2 < θ ≤ 1, then the characteristic equation (2.10)
has no positive roots for h < h0, where

h0 =

⎧⎪⎨⎪⎩
∞, for Mτ ≥ 1,

τ(1 + λkτ + lnMτ)

1 + λkτ(1 − lnMτ)
, for Mτ < 1.

Proof. Since R(−h(λk +Mξ−m)) is an increasing function of θ when ξ > 0,
then for ξ > 0 and 1/2 < θ ≤ 1

R(−h(λk +Mξ−m)) =
1− h(1− θ)(λk +Mξ−m)

1 + hθ(λk +Mξ−m)
≤ 1

1 + h(λk +Mξ−m)
.

In the following, we will prove that

ξ − 1

1 + h(λk +Mξ−m)
> 0, ξ > 0.

under some conditions. In fact,

ξ − 1

1 + h(λk +Mξ−m)
=

(1 + λkh)ξ−m+1

1 + h(λk +Mξ−m)
ϕ(ξ),

thus we only need to prove ϕ(ξ) > 0 for ξ > 0, where

ϕ(ξ) = ξm − 1

1 + λkh
ξm−1 +

Mh

1 + λkh
.

ϕ(ξ) is the characteristic polynomial of the difference equation

zn+1 − zn +
λkh

1 + λkh
zn +

Mh

1 + λkh
zn+1−m = 0.
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From Theorem 2 and Theorem 3, we have that ϕ(ξ) has no positive roots if
and only if

Mh

1 + λkh

mm

(m− 1)m−1
>
(
1− λkh

1 + λkh

)m
,

which is equivalent to

lnMτ + (m− 1) ln(1 +
1 + λkτ

m− 1
) > 0. (2.12)

If Mτ ≥ 1, then (2.12) holds. If Mτ < 1 and h < τ(1+λkτ+lnMτ)
1+λkτ(1−lnMτ) , then in view

of Lemma 1

lnMτ + (m− 1) ln(1 +
1 + λkτ

m− 1
) > lnMτ +

(m− 1)(1 + λkτ)

m+ λkτ
> 0.

Hence we prove that ξ − 1/
(
1 + h(λk +Mξ−m)

)
> 0, ξ > 0 for h < h0, where

h0 =

⎧⎨⎩
∞, for Mτ ≥ 1,

τ(1 + λkτ + lnMτ)

1 + λkτ(1 − lnMτ)
, for Mτ < 1.

So we have for h < h0 and ξ > 0,

f(ξ) = ξ −R(−h(λk +Mξ−m)) > ξ − 1

1 + h(λk +Mξ−m)
> 0,

which implies that the characteristic equation (2.10) has no positive roots. ��

Remark 1. Since a > 1
e and Mτ < 1, then τ(1+λkτ+lnMτ)

1+λkτ(1−lnMτ) > 0 , hence h0 is well

defined.

In view of (2.7), Lemma 3 , Lemma 4 and Theorem 2, we have the following
theorem.

Theorem 5. If a > 1/e, then equation (2.2) is oscillatory for

h <

{
∞, for 0 ≤ θ ≤ 1/2,

h0, for 1/2 < θ ≤ 1,

where h0 is defined in Lemma 4.

3 Non-Oscillatory Solutions

In this section, we will study the asymptotic behaviour of non-oscillatory solu-
tions of (2.2). In [5], there are results about asymptotic behaviour of (1.1).

Lemma 5 [[5]]. Let x(t) be a positive solution of equation (1.1), which does
not oscillate about K∗. Then lim

t→∞
x(t) = K∗.

Math. Model. Anal., 16(3):365–375, 2011.
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Clearly, if Lemma 5 holds, then the solution of (1.5), which does not oscillate,
satisfies lim

t→∞
z(t) = 0. In the following, we will prove that xn which is defined

by (2.2) can preserve this property.

Lemma 6. Let zn be a solution of equation (2.1), which does not oscillate.
Then lim

n→∞
zn = 0.

Proof. Assume that zn > 0 for n sufficiently large (the proof when zn < 0 is
similar and will be omitted). Then f1(zi) > 0 and f2(zi) > 0 for i sufficiently
large. From (2.1) we have

zn+1 − zn + hθMf2(zn+1−m) + h(1− θ)Mf2(zn−m) < 0. (3.1)

Similarly, we can get that zn+1 − zn < 0, then {zn} is decreasing. Hence there
exists an η ≥ 0 such that

lim
n→∞

zn = η. (3.2)

We prove that η = 0. Otherwise η > 0, then there is N ∈ N and ε > 0 such that
0 < η−ε < zn < η+ε for n−m > N , hence η−ε < zn−m and η−ε < zn−m+1.
So (3.1) yields

zn+1−zn+hθM
q1 + kp

p

ep(η−ε) − 1

q1 + kpep(η−ε)
+h(1−θ)Mq1 + kp

p

ep(η−ε) − 1

q1 + kpep(η−ε)
< 0,

which implies that zn+1− zn < B < 0, where B = hM q1+kp

p
1−ep(η−ε)

q1+kpep(η−ε) . Thus

zn → −∞ as n→∞, which contradicts to (3.2). ��

Theorem 6. Let xn be a positive solution of equation (2.2), which does not
oscillate about K∗ , then lim

n→∞
xn = K∗.

4 Numerical Experiments

In order to give a numerical illustration to the conclusions of this paper, we
consider the following equation [6]

x′(t) +
0.0856

3 x(t)x62.62(t− 15)
73
7 4062.62 + x62.62(t− 15)

= 0.1. (4.1)

From [6], we know that equation (4.1) is oscillatory. In Fig. 1, we present the
graphs of the analytic solution x(t) and the numerical solution xn respectively.
We can see that the numerical solution xn is oscillatory, which is in agreement
with Theorem 5.

We shall use formula (2.2) with different θ listed in Table 1 with the stepsize
h = τ

m to get the numerical solution at t = 150, where the true solution is
x(150) = 40.689. In Table 1 , we list the errors of the numerical solution at
t = 150 and the ratio of the errors of the case m = 50 over that of m = 100.
We can see that the numerical method (2.2) preserves the order of convergence,
which is in agreement with the conclusions done in Theorem 4.
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Figure 1. The analytic solution x(t) and the numerical solution xn for Eq.(4.1) with
θ = 0.2 and h = 0.75. The solid line denotes x(t) and the dashdot line denotes xn.

Table 1. The errors of the exponential linear θ-method for (4.1) at t = 150.

m θ = 0.1 θ = 0.5 θ = 0.8

m = 5 1.278e-0 2.402e-2 1.583e-1
m = 10 5.370e-1 6.387e-3 1.218e-1
m = 20 2.311e-1 1.621e-3 1.024e-1
m = 50 8.133e-2 2.604e-4 4.952e-2
m = 100 3.860e-2 6.513e-5 2.607e-2

ratio 2.107 4.000 1.900

In the second example we illustrate the validity of Lemma 3 and Lemma 4.
From [2], we know that equation (2.8) is oscillatory if and only if the character-
istic equation (2.10) has no positive roots. It is known that f(ξ) has positive
roots if and only if it has roots in (0, 1) , which is equivalent to

g(ξ) = ξm+1 −R(−λkh)ξm +
Mθh

1 + θλkh
ξ +

M(1− θ)h

1 + θλkh
(4.2)

has roots in (0, 1). In order to illustrate oscillations of (2.8) we only need to
draw the graphs of g(ξ) in [0, 1]. We consider the following equation:

x′(t) +
0.4x(t)x(t− 2.5)

3 + x(t− 2.5)
= 3. (4.3)

From Theorem 1, equation (4.3) is oscillatory. Let h = τ/m. We draw the
graphs of g(ξ) in Fig. 2, where h0 = 0.0388. In (4.3), we haveMτ = 0.1795 < 1.

From Fig. 2(a) we can see that the polynomial g(ξ) has two positive roots,
r1 = 0.86, r2 = 0.8103, then (2.8) has a non-oscillatory solution. In (b) and
(c) of Fig. 2, we change the value of θ and h respectively, then we can see the
that polynomial g(ξ) has no positive roots. Then equation (2.8) is oscillatory,
which is in agreement with Lemma 3 and Lemma 4. In Fig. 2(d), we can see
that despite h > h0, equation (2.8) is still oscillatory. Then h0 in Lemma 4 is
not optimal.

Math. Model. Anal., 16(3):365–375, 2011.
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Figure 2. The graphs of g(ξ) for equation (4.3).

5 Conclusions

In the paper, we investigate oscillations of the numerical solution of a nonlinear
delay differential equation of population dynamics. The convergent exponential
linear θ-method is constructed. We get conditions under which the numerical
solution oscillates in the case of oscillations of the analytic solution. We also
prove that non-oscillatory numerical solutions can preserve properties of non-
oscillatory analytic solutions. For the future work, we will investigate the
approximation more accurately. Moreover, parameter h0 in Lemma 4 is not
optimal. We will look for another stepsize h1, which is more accurate than h0
and is easily verified.
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