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Abstract. The main objective of the present paper is to consider the dynamical
analysis of a three dimensional prey-predator model within deterministic environ-
ment and the influence of environmental driving forces on the dynamics of the model
system. For the deterministic model we have obtained the local asymptotic stability
criteria of various equilibrium points and derived the condition for the existence of
small amplitude periodic solution bifurcating from interior equilibrium point through
Hopf bifurcation. We have obtained the parametric domain within which the model
system exhibit chaotic oscillation and determined the route to chaos. Finally, we have
shown that chaotic oscillation disappears in presence of environmental driving forces
which actually affect the deterministic growth rates. These driving forces are unable
to drive the system from a regime of deterministic chaos towards a stochastically sta-
ble situation. The stochastic stability results are discussed in terms of the stability
of first and second order moments. Exhaustive numerical simulations are carried out
to validate the analytical findings.
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1 Introduction

“Ecological systems are open systems in which the interaction between the
component parts is nonlinear and the interaction with the environment is noisy.
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This intrinsic nonlinearity can give rise to a complex behaviour of the system,
which becomes very sensitive to initial conditions, various deterministic exter-
nal perturbations, and to fluctuations present in nature” (Spagnolo et al., [36]).
Mathematical modelling and nonlinear dynamics provide powerful tools in the
analysis of such problems and many different models have been used to study
the dynamics of interacting species in a variety of different contexts (see, e.g.,
May, [26]; Murray, [27]; Renshaw, [33]; Turchin, [40]). Many ecological interac-
tions such as those between predator and prey, hosts and parasites, and hosts
and parasitoids, are able to generate fluctuations. This is also the case in model
systems whose rate of disturbance depends on local biological conditions, such
as population densities (Possingham et al., [31]). On the other hand, in popu-
lation dynamics of natural ecosystems, no clear example of deterministic chaos
has been ever observed. Ellner and Turchin, [14] have developed a methodology
and tools to detect deterministic chaos in a short and noisy time series. These
authors analysed laboratory and field data extracted from published records
and found that deterministic chaos is not a dominant explanation for the vari-
ability exhibited by these records, although many of these could support the
phenomenon (Rai, [32]).

Predator-prey interactions often lead to oscillatory dynamics in temporal
systems and in spatial systems when the rate of movement is large, so that
individuals are effectively well-mixed and space becomes unimportant (Pascual
et al., [29]). When individuals are not well mixed, however, properties of fluc-
tuations in population densities, and in particular their amplitudes are known
to vary with the spatial scale at which the model system is observed (Pascual
et al., [29]). Modeling population dynamics in random environment is a way
of studying the fluctuations of population size that has been affected by the
stochasticity of external factors like weather (Abbas et al., [1]). Chaotically
fluctuating populations face the danger of becoming extinct from two poten-
tial sources: demographic and environmental stochasticity. However, recent
theoretical and experimental evidence suggest that chaos cannot be responsi-
ble for population extinction. Moreover, theoretical investigations showed that
large random noise added by the environment seems to be a decisive factor
responsible for the extinction of population (Lande, [21]; Allen et al., [3]). All
natural systems are noisy. Chaotic dynamics in appearance is noise-like. The
noisy character of these systems is caused either by intrinsic factor or extrinsic
forces. When a system is subjected to external influences (deterministic or
stochastic), complex dynamical phenomena (chaos and noisy chaos) emerge.
These phenomena are often indistinguishable. This leads to failure of attempts
to observe chaos (Upadhyay, [42]).

May, [26] analysed a predator-prey system under stochastic fluctuation con-
sidering white noise for population, and observed that a greater deviation from
equilibrium shows instability (the deviations from mean population increases).
The ecological effects for terrestrial and aquatic systems depend on the charac-
ter of the physical frequency distributions as the general qualitative response
of these systems could be inherently different. For terrestrial systems, the en-
vironmental variability is large at both short and long time periods and can
be expected to develop internal mechanisms, which could cope with short-term
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variability and minimize the effects of long-term variations. Hence, analysis of
the system with white noise gives better results. However for aquatic systems,
less robust internal processes are needed to handle the smaller amplitude vari-
ability at short time periods commensurate with the life span of the organisms.
Aquatic ecological systems are more likely to have coloured noise, instead of
white noise as compared to terrestrial systems (Steel, [37]; Pimm, [30]). A pop-
ulation time series is said to be ‘white’ when no frequency dominates, ‘red’ when
fluctuations are dominated by low-frequency, long term variations and ‘blue’
when high-frequency fluctuations dominate (Cohen, [13]; Lawton, [22]). There
are two major mathematical schemes by which noise influences the dynamical
systems, viz. output and dynamical noise. Such noise may take the form of
an additive or multiplicative expression, illustrating the kind of parameters by
which noise may appear in the equations of a dynamical system. In the case
of an output noise, the geometrical structure of an attractor is stable which
means that as the values of parameters increase, the dimension of the attractor
also increases, but remains finite. On the other hand, in the case of dynamical
noise, the geometrical structure of an attractor is unstable. This means that as
the values of parameters are increased, the geometrical structure of the attrac-
tor vanishes (Argyris et al., [4]). Analyzes that explicitly taken into account
the dynamical noise in the time series suggest that most ecological populations
are not chaotic (Ellner and Turchin, [14]), but there have been very limited
tests of these techniques with ecological models (Nychka et al., [28]). In this
context, we will study the problem of existence of a stationary distribution of
model system and its asymptotic stability.

In order to introduce our analysis we recall that earlier theoretical stud-
ies have shown that population dynamics in real ecosystems can be explained
by the stochasticity arising from random fluctuations of environmental vari-
ables, and the complex and chaotic behaviour originating from the nonlin-
earities of the system. Many studies theoretically show that ecological factors
such as habitat-heterogeneity, immigration and omnivore may impede and con-
trol chaos (Cai-lin and Zi-Zhen, [24]). Recent advances in modelling natural
systems take into account for stochasticity in the dynamics of physical and
biological variables, introducing noise sources which act directly on the species
dynamics (multiplicative noise in the stochastic differential equations of the
populations) and considering also random fluctuations in the dynamics of en-
vironmental parameters (Spagnolo et al., [36]). A number of investigations
suggest that population dynamics is sensitive to noise colour (see, e.g., Xu and
Li, [46]; Laakso et al., [20]). Based upon a few empirical records and simple
forcing models Steele have suggested that terrestrial noise should be white,
while marine noise should be red (Steele and Henderson, [38]).

Researchers have mainly been interested in the dynamical consequences
of population interactions, often ignoring environmental variability altogether.
However, the role of environmental fluctuations has recently been recognized
in theoretical ecology. The deterministic models of various ecological systems
do not incorporate environmental fluctuations, because in case of large pop-
ulations, stochastic deviations are small enough to be ignored (Bandyopad-
hyay, [6]). Further, advances in community dynamics will require the use and

Math. Model. Anal., 16(3):343–364, 2011.



346 R.K. Upadhyay, M. Banerjee, R. Parshad and S.N. Raw

analysis of nonlinear stochastic models, as illustrated by the studies reviewed by
Bjornstad and Greenfell, [11]. The environmental fluctuations or noise, via their
interaction with the nonlinearity of the system, has given rise to new counterin-
tuitive phenomena: stochastic resonance (Valenti et al., [44]), noise- enhanced
stability (Agudov and Spagnolo, [2]) noise-induced nonequilibrium transitions
(Van Den Broeck et al., [45]), noise-induced multistability and nonequilibrium
phase transitions (see, e.g., Li and Hanggi, [23]; Berry, [10]).

The main objective of the present paper is to investigate the existence of de-
terministic chaos and stochastic oscillations in a food chain consisting of three
trophic levels and involving Holling type IV functional response. Organization
of this paper is as follows: in Section 2 we describe briefly the determinis-
tic model system and also show the boundedness of the model system. Local
stability analysis and conditions for the Hopf bifurcation are derived in Sec-
tion 3. In Section 4, we show the results of numerical simulations. In Section 5,
we introduce the stochastic extension of our model. Significant outcomes and
a comparative study between deterministic and stochastic model system are
given in the concluding section.

2 Model System

We consider the following system as a model simulating a tritrophic food chain.
The dynamics of a food chain consisting of three species and characterized by
a Holling type-IV functional response, is governed by the following system
of differential equations, where x(t) is the population density of the lowest
trophic level species (prey) at time t, y(t) is the population density of the
middle trophic level species (intermediate predator) at time t and z(t) is the
population density of highest trophic level species (top predator) at time t. The
intermediate predator y feeds on the prey x according to the Holling type-IV
functional response and the top predator z preys on y according to the same
functional response.

dx

dt
= a1x− b1x

2 − wxy

x2/i+ x+ a
, (2.1)

dy

dt
=

w1xy

x2/i+ x+ a
− a2y − w2yz

y2/i+ y + a
, (2.2)

dz

dt
=

w3yz

y2/i+ y + a
− cz, (2.3)

where a1, b1, a2, w, w1, w2, w3, c, i and a are positive constants. a1 is the
intrinsic growth rate of the prey population x, a2 is the intrinsic death rate
of predator population y in the absence of the only food x, the parameter
c is the decay rate of the top predator z in the absence of its prey y and
w3 is the maximum value which per capita increase or growth rate of z can
attain, and the ratio w3/w2 is measure of its assimilation efficiency. w is the
maximum value which per capita reduction rate of x can attain, w1 has similar
meaning to w with per capita increase rate. w2 is the maximum value which
per capita reduction rate of y can attain. b1 is the strength of intra-specific
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competition among individuals of the prey species x. The parameter a can
be interpreted as the half-saturation constant in the absence of any inhibitory
effect. The parameter i, in turn, is a direct measure of the predator’s immunity
or tolerance of the prey. The model system (2.1)–(2.3) has ten parameters in
total and it can be written in the following form:

dx

dt
= x

[
a1 − b1x− wy

x2/i+ x+ a

]
= xg1(x, y, z), (2.4)

dy

dt
= y

[
w1x

x2/i+ x+ a
− a2 − w2z

y2/i+ y + a

]
= yg2(x, y, z), (2.5)

dz

dt
= z

[
w3y

y2/i+ y + a
− c

]
= zg3(x, y, z). (2.6)

Obviously the right hand sides of the model system (2.4)–(2.6) are smooth func-
tions on R

3
+ =

{
(x, y, z) ∈ R

3 : x ≥ 0, y ≥ 0, z ≥ 0
}
. Therefore, the positive

octant of the interior of R3
+ is an invariant region. Further the boundedness of

system (2.4)–(2.6) is shown via the following theorem.

Theorem 1. The solution of the model system (2.4)–(2.6) initiating in R
3
+ is

bounded for all t ≥ 0.

Proof. From (2.4) of the model system we have

dx

dt
≤ x(a1 − b1x) ⇒ x(t) ≤ a1

b1 + ke−a1t
, ∀t ≥ 0, (2.7)

here k = a1/x(0)− b1 is the constant of integration. Hence for large values of
time we get x(t) ≤ a1/b1, for all t ≥ 0. Let m(t) = w1

w x + y + w2

w3
z, then it is

easy to verify that
dm

dt
+ pm ≤ w1a1

wb1
(a1 + p), (2.8)

where p = min(a2, c). By Comparison Lemma we obtain, for all t ≥ T̃ ≥ 0,

m(t) ≤ w1a1(a1 + p)

wb1p
−
(
w1a1(a1 + p)

wb1p
−m(T̃ )

)
e−p(t−T̃ ). (2.9)

If T̃ = 0, then for all t > 0 we get

m(t) ≤ w1a1(a1 + p)

wb1p
−
(
w1a1(a1 + p)

wb1p
−m(0)

)
e−pt ≤ w1a1(a1 + p)

wb1p
.

Thus all the species are uniformly bounded for any initial value in R
3
+. ��

3 Stability Analysis and Hopf Bifurcation

The model system (2.4)–(2.6) has the following equilibrium points
(i) The trivial equilibrium point E0 = (0, 0, 0) always exists.
(ii) The equilibrium point E1 = (a1/b1, 0, 0) exists on the boundary of the

first octant.
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(iii) E2 = (x̃, ỹ, 0) is the planar equilibrium point on the xy-plane, where x̃
is the positive root of the equation

x̃2 + i (1− w1/a2) x̃+ ai = 0. (3.1)

This implies

x̃=
1

2

(
i

(
w1

a2
−1
)
±
√
(i(

w1

a2
−1))2−4ai

)
, ỹ=

1

w
(a1−b1x̃)

(
x̃2

i
+x̃+a

)
,

clearly E2 exists provided the condition 0 < x̃ < a1/b1 is satisfied.
(iv) The nontrivial equilibrium E3 = (x∗, y∗, z∗) exists if and only if there

is a positive solution to the following set of equations

g1(x, y, z) = a1 − b1x− wy

x2/i+ x+ a
= 0, (3.2)

g2(x, y, z) =
w1x

x2/i+ x+ a
− a2 − w2z

y2/i+ y + a
= 0, (3.3)

g3(x, y, z) =
w3y

y2/i+ y + a
− c = 0. (3.4)

Straight forward computation show that

y∗ =
(−r ±√r2 − 4ai)

2
, where r = i

(
1− w3

c

)
.

x∗ is a positive root of the cubic equation

(x∗)3 + (i− a1/b1) (x
∗)2 + i (a− a1/b1)x

∗ + i(wy∗ − aa1)/b1 = 0. (3.5)

Now this equation can be written as

f(x∗) = A(x∗)3 +B(x∗)2 + Cx∗ + E = 0 (3.6)

where A = 1, B = i − a1/b1, C = i(a − a1/b1), E = i(wy∗ − aa1)/b1. We
note that 0 < x∗ < a1/b1. We have f(0) = E < 0 if y∗ < aa1/w and
f(a1/b1) = iwy∗/b1 > 0. Since f(0)f(a1/b1) < 0 there is a positive root of
(3.6) that lies in (0, a1/b1) when y∗ < aa1/w is satisfied. Also

z∗ =
1

w2

(
−a2 + w1x

∗

(x∗)2/i+ x∗ + a

)(
(y∗)2

i
+ y∗ + a

)
.

Therefore the positive equilibrium point E3 = (x∗, y∗, z∗) exists uniquely under
the following conditions

a2
w1

<
x∗(

(x∗)2/i+ x∗ + a
) , 4a

i
<
(
1− w3

c

)2
.

Now in order to investigate the local behaviour of the model system (2.4)–(2.6)
around each of the equilibrium points , the variational matrix V of the point
(x, y, z) is computed as

V =

⎡⎢⎢⎣
x∂g1

∂x + g1 x∂g1
∂y x∂g1

∂z

y ∂g2
∂x y ∂g2

∂y + y y ∂g2
∂z

z ∂g3
∂x z ∂g3

∂y z ∂g3
∂z + g3

⎤⎥⎥⎦ .
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Let Vi, i = 0, 1, 2, 3 denotes the variational matrix at Ei, i = 0, 1, 2, 3 respec-
tively. For E0 we have

V0 =

⎡⎣a1 0 0
0 −a2 0
0 0 −c

⎤⎦ .
The eigenvalues of V0 are a1, −a2, −c. There is an unstable manifold

along the x-direction and a stable manifold along yz-direction. Therefore, the
equilibrium point E0 is a saddle point. The variational matrix for E1 is given
by

V1 =

⎡⎢⎢⎢⎣
−a1 −w

a1
ib1

+
ab1
a1

+1
0

0 −a2 + w1
a1
ib1

+
ab1
a1

+1
0

0 0 −c

⎤⎥⎥⎥⎦ .
From the variational matrix V1, it is found that the equilibrium point E1 is
locally asymptotically stable provided

w1

a2
<

a1
ib1

+
ab1
a1

+ 1.

The variational matrix about the equilibrium point E2 = (x̃, ỹ, 0) is given by

V2 =

⎡⎢⎢⎢⎣
x̃
(
−b1 + wỹ(2x̃/i+1)

(x̃2/i+x̃+a)2

)
−wx̃

(x̃2/i+x̃+a) 0

w1ỹ(a−x̃2/i)

(x̃2/i+x̃+a)2
0 −w2ỹ

(ỹ2/i+ỹ+a)

0 0 −c+ w3ỹ
(ỹ2/i+ỹ+a)

⎤⎥⎥⎥⎦ .
The root of the characteristic equation p3(λ) = 0 of the above variational
matrix about E2 = (x̃, ỹ, 0) satisfy the following:

λ1 + λ2 = x̃

[(
−b1 + wỹ(2x̃/i+ 1)

(x̃2/i+ x̃+ a)
2

)]
,

λ1λ2 =
ww1x̃ỹ(a− x̃2/i)

(x̃2/i+ x̃+ a)
3 , λ3 =

w3ỹ

(ỹ2/i+ ỹ + a)
− c.

The equilibrium point E2 = (x̃, ỹ, 0) is stable or unstable in the positive di-
rection orthogonal to the x − y plane, i.e. z -direction depending on whether
λ3 = w3ỹ/

(
ỹ2/i+ ỹ + a

)− c is negative or positive, respectively.

For the positive equilibrium point E3 = (x∗, y∗, z∗) the variational matrix
is given by

V3 =

⎡⎢⎢⎢⎣
x∗
(
−b1 + wy∗(2x∗/i+1)

((x̃∗)2/i+x̃∗+a)2

)
−wx∗

((x̃∗)2/i+x̃∗+a) 0

w1y
∗(a−(x∗)2/i)

((x̃∗)2/i+x̃∗+a)2
w2y

∗z∗((2y∗)/i+1)

((y∗)2/i+y∗+a)2
−w2y

∗

((y∗)2/i+y∗+a)

0 c2

w3
z∗
(

a
(y∗)2 − 1

i

)
0

⎤⎥⎥⎥⎦ .
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According to the Routh–Hurwitz criterion, E3 = (x∗, y∗, z∗) is locally asymp-
totically stable provided the following conditions are satisfied

A1 > 0, A2 > 0, A3 > 0, A1A2 > A3,

where Ai, i = 1, 2, 3 are the coefficients of the characteristic equation of V3 =
[aij ], i, j = 1, 2, 3:

λ3 +A1λ
2 +A2λ+A3 = 0,

with A1 = −(a11 + a22), A2 = a11a22 − a23a32 − a12a21, A3 = a11a23a32.
It is easy to show that, A1 > 0, A2 > 0, A3 > 0 iff the following condition

is satisfied

wy∗(2x∗/i+ 1)

((x∗)2/i+ x∗ + a)
2 +

w2y
∗z∗(2y∗/i+ 1)

x∗ ((y∗)2/i+ y∗ + a)
2 < b1. (3.7)

Also since, A1A2 − A3 = (a11 + a22)(a12a21 − a11a22) + a22a23a32, then the
necessary condition for A1A2 − A3 > 0 is satisfied if a12a21 − a11a22 < 0, or
equivalently

b1<
w(

(x∗)2

i + x∗+a
)2
⎡⎢⎣w1(a− (x∗)2

i )
(

(y∗)2

i +y∗+a
)2

w2z∗(
2y∗

i +1)
(

(x∗)2

i +x∗+a
)+y∗(2x∗

i
+1

)⎤⎥⎦ . (3.8)

By substituting the values of aij , i, j = 1, 2, 3 we get

A1A2 −A3 =
x∗y∗

α5β4

⎡⎣M1M2 −
w2

2c
2α5β(z∗)2y∗( (2y

∗)
i + 1)( a

(y∗)2 − 1
i )

w3x∗

⎤⎦ ,
where

α = (x∗)2/i+ x∗ + a, β = (y∗)2/i+ y∗ + a, (3.9)

M1 = b1α
2β2x∗ − β2wx∗y∗

(
(2x∗)

i
+ 1

)
− α2w2y

∗z∗
(
(2y∗)

i
+ 1

)
, (3.10)

M2 = ww1β
2
(
a− (x∗)2/i

)− b1α
3w2z

∗ ((2y∗)/i+ 1)

+ ww2αy
∗z∗ ((2x∗)/i+ 1) ((2y∗)/i+ 1) . (3.11)

Clearly, M1 > 0 provided that condition (3.7) is satisfied and M2 > 0
provided that condition (3.8) is satisfied. Hence, if condition (3.7) and (3.8)
hold, then the necessary and sufficient condition for A1A2 −A3 > 0 is

c2 <
M1M2w3x

∗

w2
2α

5β(z∗)2y∗(2y∗/i+ 1)(a/(y∗)2 − 1/i)
. (3.12)

We summarize the above results in the following theorem,

Theorem 2. Suppose that the positive equilibrium point E3 = (x∗, y∗, z∗) of
model system (2.4)–(2.6) exists. The equilibrium point E3 = (x∗, y∗, z∗) is
locally asymptotically stable if and only if conditions (3.7), (3.8) and (3.12)
hold.
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In order to investigate the Hopf bifurcation of the model system (2.4)–
(2.6), we follow the technique given by Liu, [25]. According to this approach,
the simple Hopf bifurcation at μ = μ∗ can occur provided A1(μ), A3(μ) and
Ψ(μ) = A1(μ)A2(μ) − A3(μ) are smooth functions of μ in an open interval
which includes μ∗ ∈ R such that

(1) A1(μ∗) > 0, A3(μ∗) > 0 and Ψ(μ∗) = A1(μ∗)A2(μ∗)−A3(μ∗) = 0,

(2)
dΨ(μ)

dμ

∣∣∣∣
μ=μ∗


= 0.

Now, let the decay rate of the top predator c be the bifurcation parameter. If
conditions (3.7) and (3.8) hold together with the condition

c∗ =

[
M1M2w3x

∗

w2
2α

5β(z∗)2y∗(2y∗/i+ 1)(a/(y∗)2 − 1/i)

] 1
2

, (3.13)

Then, A1(c∗) > 0, A3(c∗) > 0 and Ψ(c∗) = A1(c∗)A2(c∗)−A3(c∗) = 0. Further,
it is easy to verify that

dΨ(c)

dc

∣∣∣
c=c∗

= −2w2
2c∗(z

∗)2(y∗)2((2y∗)/i+ 1)(a/(y∗)2 − 1/i)

w3β3

= 0. (3.14)

We summarize the results for the existence of Hopf bifurcation in the fol-
lowing theorem:

Theorem 3. Under the conditions (3.7), (3.8) and (3.13) , there is a simple
Hopf bifurcation of the positive equilibrium point E3 = (x∗, y∗, z∗) of the model
system (2.4)–(2.6) at some critical value of the parameter c given by (3.13).

4 Numerical Simulations

The model was numerically integrated to get the time series corresponding to
the variables of model system (2.4)–(2.6) using Matlab 7.5. Since every non-
linear system has a finite amount of transients, the data points representing
transient behaviour were discarded. Phase portraits were drawn using these
data to obtain the geometry of the attractors. The chaotic attractor and its
corresponding time series are depicted on the following data set (see Fig. 1 and
Fig. 2):

a1 = 1, b1 = 1, w = 1.95, i = 0.3, a = 1, a2 = 0.2,

w1 = 1.38, w2 = 2.85, c = 0.25, w3 = 1.6. (4.1)

Via the bifurcation analysis of the model system (2.4)–(2.6), very rich
and complex dynamics are observed, presenting various sequences of period-
doubling bifurcation leading to chaotic dynamics. For bifurcation diagram
presented in Fig. 3, the value of the control parameter a1 lies between 0.63 to
0.75, and the values of other parameter are the same as given in (4.1). Figure 3
shows clearly the evidence of the route to chaos through the cascade of period-
doubling. The period-doubling phenomenon leading to chaos is a well known

Math. Model. Anal., 16(3):343–364, 2011.
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Figure 1. Chaotic attractor for the
model system (2.4)–(2.6) with initial
condition [0.8848, 0.2903, 0.0002].

Figure 2. Temporal evolution of
population densities x(t), y(t), z(t) for
the chaotic attractor for the model

system (2.4)–(2.6).

feature of a range of nonlinear systems of biological populations. The increase
in size of a chaotic attractor as a system parameter is varied is considered to
be the hallmark of the crisis (sudden destruction of a chaotic attractor) route
to chaotic dynamics (see, e.g., Upadhyay and Rai, [43]; Upadhyay, [41]). The
crisis occurs precisely at the point (a1 = 0.687) where the unstable period-3
orbit created at the original saddle node bifurcation intersects with the narrow
chaotic region.

Figure 3. This figure represents the
period-doubling bifurcation of the model
system (2.4)–(2.6) for 0.63 ≤ a1 ≤ 0.75

and the other parameters are the same as
given in (4.1).

Figure 4. This figure represents the
period-halving bifurcation of the model

system (2.4)–(2.6) between z, the
population density of top predator and
control parameter c. The value of the
control parameter c is between 0.3 to

0.32, and the values of other parameter
are the same as given in (4.1).

From the Hopf-bifurcation analysis results presented in Theorem 3, we ob-
serve that the dynamics of the model system (2.4)–(2.6) is also sensitive to the
control parameter c, the death rate of the top predator z. Similar bifurcation
diagram is drawn in Fig. 4. Here we note that the solution of the model sys-
tem (2.4)–(2.6) is very sensitive to the death rate parameter c in the range
0.3 ≤ c ≤ 0.318. Moreover, it is evident that the route of chaos through the
cascade of period doubling for decreasing value of the control parameter c and
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other important change in the chaotic set include an interior crisis in which a
chaotic attractor undergoes a sudden increase in the size of attractor (Grebogi
et al., [18]). The occurrence of such phenomena in iterated maps was discussed
by Gottlieb, [17]. His algorithm for finding the cut-off parameter as boundary
crisis helps us to conclude that the existence of chaos in the model system con-
sidered here is a result of crisis-limited chaotic dynamics. Closed curves marked
as A and B in Fig. 4 correspond to invariant KAM tori (Upadhyay and Rai,
[43]) in the phase space. When the bifurcation parameter c is decreased fur-
ther, these curves break and give rise to chaotic dynamics (see, e.g., Upadhyay
and Rai, [43]; Upadhyay, [41]).

5 Stochastic Analysis

There are various ways of constructing a stochastic differential equation model
corresponding to an existing deterministic one, in order to study the effect
of fluctuations in the environment. Researches studying environmental fluc-
tuation in population dynamics adhere to two of these. The first way is to
replace the environmental parameters in the deterministic model, by some
random parameters (e.g. the growth rate parameter “r” can be replaced by
r0 + εγ(ω, t), where r0 is the average growth rate, γ(ω, t) is the noise func-
tion, and ε is the intensity of fluctuation). Secondly, one can add a randomly
fluctuating driving force directly to the deterministic growth equations of prey
and predator populations without altering any particular parameter (see, e.g.,
Baishya and Chakraborti [5]; Bandopadhyay and Chakraborti [7]; Tapaswi
and Mukhopdhyay [39]). This kind of stochastic model formulation is known
as noise-added/noise-driven system and this kind of modelling approach is ca-
pable of capturing the change in net growth rate of either population or change
in different parametric values of the model, due to environmental driving force.
A third kind of noise, multiplicative noise is also used sometimes, [19]. This is
feasible when some of the coefficients in the problem are unknown apriori, and
best modelled as random. The analysis here is often more involved than the
additive case, which we will stick to in our setting.

We assume that stochastic perturbations of the state variables around their
steady-state values E∗ are of Gaussian white noise type which is proportional to
the distances of x, y from their steady-state values x∗, y∗ respectively (Beretta
et al., [9])

dx = F1(x, y) dt+ σ1(x− x∗) dζ1(t), dy = F2(x, y) dt+ σ2(y − y∗) dζ2(t).

Similar stochastic perturbations are considered also in (Carletti, [12]). This
type of stochastic perturbations firstly was proposed in (Beretta et al., [9];
Shaikhet, [35]) and was used later in (Bandyopadhyay and Chattopadhyay, [8];
Shaikhet, [34]; Carletti [12]) also in some other publications. The plus point
of this method is that the equilibrium point x∗, y∗ is a solution of stochastic
system too.

We work on the following stochastic differential equation model system
obtained from the deterministic model after introducing additive noise terms

Math. Model. Anal., 16(3):343–364, 2011.



354 R.K. Upadhyay, M. Banerjee, R. Parshad and S.N. Raw

to the growth equations, to yield the following system of stochastic differential
equation model

dx =

[
a1x− b1x

2 − wxy

x2/i+ x+ a

]
dt+ σ1 dw1(t), (5.1)

dy =

[
w1xy

x2/i+ x+ a
− a2y − w2yz

y2/i+ y + a

]
dt+ σ2 dw2(t), (5.2)

dz =

[
w3yz

y2/i+ y + a
− cz

]
dt+ σ3 dw3(t), (5.3)

subject to the non-negative initial condition x(0), y(0), z(0) ≥ 0 and σi’s (i =
1, 2, 3), are intensities of environmental forcing. dwr(ω, t) = ξr(ω, t) dt, r =
1, 2, 3, are path wise derivative of stationary Wiener processes. We suppress
the ω dependence hence forth. Here ξr(t) are mutually independent white noise
terms characterized by 〈ξr(t)〉 = 0 and 〈ξr(t)ξs(t1)〉 = δrsδ(t − t1), (see, e.g.,
Gard [15]; Gardiner [16]).

In order to minimize the mathematical expressions we rewrite the above
system into the following matrix form

dX = F (X) dt+GdW, (5.4)

where

X =

⎡⎢⎣x1x2
x3

⎤⎥⎦ , F (X) =

⎡⎢⎣f1(x1, x2, x3)f2(x1, x2, x3)

f3(x1, x2, x3)

⎤⎥⎦ , dW =

⎡⎢⎣dw1(t)

dw2(t)

dw3(t)

⎤⎥⎦
and G = diag(σ1, σ2, σ3). Here we have used x1, x2, x3 for x, y, z, and fi are
defined as follows

f1(x1, x2, x3) =

[
a1x1 − b1x

2
1 −

wx1x2
x21/i+ x1 + a

]
, (5.5)

f2(x1, x2, x3) =

[
w1x1x2

x21/i+ x1 + a
− a2x2 − w2x2x3

x22/i+ x2 + a

]
, (5.6)

f3(x1, x2, x3) =

[
w3x2x3

x22/i+ x2 + a
− cx3

]
. (5.7)

In rest of this work we consider the stochastic differential system (5.4),
whose solution (Xt, t > 0) with non-negative initial condition X(0) = X0 is
a process on a probability space (Ω,F ,P). F is a slowly varying continuous
component or drift coefficient and G is the diffusion coefficient. Since the
matrix G is independent of X , the system (5.4) is said to have additive noise
(see, e.g., Bandyopadhyay and Chattopadhyay [5]; Carletti [12]).

In the previous section we have studied the sufficient condition for local
asymptotic stability of coexisting equilibrium points and discussed the possi-
bility of Hopf-bifurcating periodic solution, and finally the parametric domain
within which system exhibits chaotic dynamics. Now we are in a position to
determine whether the introduction of noise imposes greater irregularity in the
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dynamical behaviour, or if it contributes towards stabilization. It is worthy
to note that the stochastic differential system (5.4) has no equilibrium point,
and hence we consider a perturbation of the deterministic system (5.4) around
the coexisting equilibrium point, and then add noise to these to formulate
the governing differential equation for the first and second order moments for
perturbation variables. Stability of trivial equilibrium for the system of differ-
ential equations will determine the amplitude of fluctuation of the populations
around their deterministic steady state values in the presence of environmen-
tal fluctuation. Let (x∗1, x

∗
2, x

∗
3) denote the interior equilibrium point of the

deterministic system whose components are given explicitly in earlier section.
Substituting the perturbations x1 = x∗1+u1, x2 = x∗2+u2, x3 = x∗3+u3, where
ui 
 1, (i = 1, 2, 3), into the deterministic system, expanding it in Taylor series
and omitting the second and higher order terms of small quantities we get the
following system of equations:

du1 = [a11u1 + a12u2 + a13u3] dt,

du2 = [a21u1 + a22u2 + a23u3] dt,

du3 = [a31u1 + a32u2 + a33u3] dt.

When noise is added to these perturbations we obtain,

du1 = [a11u1 + a12u2 + a13u3] dt+ σ1 dw1, (5.8)

du2 = [a21u1 + a22u2 + a23u3] dt+ σ2 dw2, (5.9)

du3 = [a31u1 + a32u2 + a33u3] dt+ σ3 dw3, (5.10)

where aij =
∂fi
∂xj

∣∣
(x∗

1
,x∗

2
,x∗

3
)
. One can easily verify that a13 = 0 and a31 = 0.

Thus the above is derived via simple Taylor expansion followed by addition of
noise, rather than a particular Ito or Stratanovich rule. From (5.8)–(5.10) we
can write the system of ordinary differential equations for first order moments
as follows

d

dt
〈u1〉 = a11〈u1〉+ a12〈u2〉,

d

dt
〈u2〉 = a21〈u1〉+ a22〈u2〉+ a23〈u3〉,

d

dt
〈u3〉 = a32〈u2〉+ a33〈u3〉.

Clearly the stability of interior equilibrium point for the deterministic system
implies the stochastic stability of the model system (5.4) in terms of the first
order moments. It is also interesting to note that the environmental driving
forces have no role to determine the stochastic stability of the system if we
introduce small perturbation from the equilibrium population density when
the first order moments are concerned. This is clearly due to the fact that

〈dwi〉 = 0, i = 1, 2, 3 (5.11)

Once we have the equations of the first order moments, in order to derive the
governing differential equations for the second order moments, we use Ito’s
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lemma to arrive at

du21 = [2a11u
2
1 + 2a12u1u2 + σ2

1 ] dt+ 2σ1u1 dw1, (5.12)

du22 = [2a21u1u2 + 2a22u
2
2 + 2a23u2u3 + σ2

2 ] dt+ 2σ2u2 dw2, (5.13)

du23 = [2a33u
2
3 + 2a32u3u2 + σ2

3 ] dt+ 2σ3u3 dw3, (5.14)

du1u2 = [a21u
2
1 + a12u

2
2 + (a11 + a22)u1u2 + a23u1u3] dt

+ σ1u2 dw1 + σ2u1 dw2, (5.15)

du1u3=[a32u1u2+a12u2u3+(a11+a33)u1u3] dt+ σ1u3 dw1 + σ3u1 dw3, (5.16)

du2u3 = [a32u
2
2 + a23u

2
3 + (a22 + a33)u2u3 + a21u1u3] dt

+ σ2u3 dw2 + σ3u2 dw3. (5.17)

Since ui is a small perturbation, we make the additional assumption that∫ t

0

E[u2i (s)] ds <∞. (5.18)

This is physically realistic from the small magnitude of the perturbations, and
will also help us in the forthcoming analysis. The above assumption is feasible
via the following lemma.

Lemma 1. Consider the system of stochastic differential equations (5.12)–
(5.17). Given a arbitarilly large but finite time T , there exists a constant C
dependent only on T and the initial data, such that the following estimates
hold uniformly for t ≤ T ∫ t

0

E[u2i (s)] ds <∞. (5.19)

Proof. We demonstrate via Ito’s lemma on the function F (ui) = |ui|22,

du21 = [2a11u
2
1 + 2a12u1u2 + σ2

1 ] dt+ 2σ1u1 dw1,

du22 = [2a21u1u2 + 2a22u
2
2 + 2a23u2u3 + σ2

1 ] dt+ 2σ2u2 dw2,

du23 = [2a33u
2
3 + 2a32u3u2 + σ2

3 ] dt+ 2σ3u3 dw3,

Integrating the above in the time interval [0, T ] yields

u21(T ) = u21(0) +

∫ T

0

2a11u
2
1 ds+

∫ T

0

2a12u1u2 ds+ σ2
1T +

∫ T

0

2σ1u1 dw1,

u22(T ) = u22(0) +

∫ T

0

2a21u1u2 ds+

∫ T

0

2a22u
2
2 ds+

∫ T

0

2a23u2u3 ds+ σ2
2T

+

∫ T

0

2σ2u2 dw2,

u23(T ) = u23(0) +

∫ T

0

2a33u
2
3 ds+

∫ T

0

2a32u3u2 ds+ σ2
3T +

∫ T

0

2σ3u3 dw3.
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Now adding up the above,taking expectations and using Cauchy Schwartz
and Holder’s inequality1 yields

E[u21(T ) + u22(T ) + u23(T )] ≤ u21(0) + u22(0) + u23(0) + C1

∫ T

0

E[u21] ds

+ C2

∫ T

0

E[u22] ds+ C3

∫ T

0

E[u23] ds+ σ2
1T + σ2

2T + σ2
3T

≤ 3max(C1, C2, C3)

∫ T

0

E[u21 + u22 + u23] ds+ 3max(σ2
1 , σ

2
2 , σ

2
3)T. (5.20)

Now using the integral version of Gronwall’s lemma, and using the fact that

E[u2i (T )] ≤ E[u21(T ) + u22(T ) + u23(T )]

yields

E[u2i (T )] ≤ (u21(0) + u22(0) + u23(0) + 3max(σ2
1 , σ

2
2 , σ

2
3)T )e

3max(C1,C2,C3)T ≤ C.

Hence, via mean value theorem for integrals∫ t

0

Eu2i (s) ds < tE[u2i (t
∗)] < C <∞, for t∗ ∈ [0, t].

This completes the proof. ��

In order to proceed with the calculations of the second moment we demon-
strate with (5.12). The analysis of the other equations is similar. We take
expectations to yield

d

dt
〈u21〉 = 2a11〈u21〉+ 2a12〈u1u2〉+ σ2

1 + 2σ1〈u1dw1〉. (5.21)

Since u1 and dw1 are not independent, which is also true of the other variables
involved, we cannot conclude that

2σ1〈u1dw1〉 = 2σ1〈u1〉〈dw1〉 = 0.

A more rigorous stochastic analysis is required if we want to show the above.
We recap certain essentials to this end.

Definition 1. A continuous time stochastic process Mt is called a martingale
if 〈|Mt|〉 <∞ and for any filtration Fs it follows that 〈Mt|Fs〉 = Ms.

Definition 2. Consider a filtration (Ft)t∈R+
. A stopping time is a random

variable T : Ω → R+ ∪ {∞} with the property that {T ≤ t} ∈ Ft for all
t ∈ R+.

1 In order to see why terms such as
∫
T

0
2σiu3 dwi disappear upon taking expectations, note

∫
T

0
2σiu3 dwi are local martingales with finite quadratic variation, hence have zero mean.

Details of this are provided subsequently.
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Definition 3. A family X of random variables is called uniformly integrable
if for ∀ε > 0 there exists λ > 0 such that∫

{|X|>λ}

|X | dP < ε, ∀X ∈ X . (5.22)

Theorem 4. (Optional sampling with bounded stopping times). Let M =
(Mt)t∈R+

be a uniformly integrable, right continuous martingale. Let S and
T be stopping times satisfying S ≤ T . Then MS and MT are integrable, and
we have almost surely that E(MT |FS) = MS.

We now define a stopping time T for any given H as T = inf
{
t : u21 ≥ H

}
. Next we integrate (5.21) from 0 to t ∧ T and take expectations to yield

〈u21(t ∧ T )〉 = 2a11

∫ t∧T

0

〈u21〉 ds+ 2a12

∫ t∧T

0

〈u1u2〉 ds+ σ2
1(t ∧ T )

+ 2σ1

〈∫ t∧T

0

u1 dw1

〉
. (5.23)

Of primary interest is the last term
〈∫ t∧T

0 u1 dw1

〉
. We now define

Mt∧T =

∫ t∧T

0

u1 dw1. (5.24)

Remark 1. Mt in general is only a local martingale, and hence we cannot con-
clude 〈Mt〉 = 0. In order to justify this we will first demonstrate that Mt∧T

is a uniformly integrable martingale, and then take a suitable limit via which
Mt∧T →Mt. After which we will apply the earlier stated theory.

The first step follows via the following lemma.

Lemma 2. The local martingale Mt∧T , as defined via (5.24), is a uniformly
integrable martingale.

Proof. We have that∫
{|X|>λ}

|Mt∧T | dP ≤ 1

λ2
〈|Mt∧T |2〉 ≤ 1

λ2

〈∫ t∧T

0

u21 ds
〉

≤ 1

λ2

∫ t∧T

0

〈u21〉 ds <
C

λ2
< ε.

In order to derive the above given ε, we choose λ =
√
C/ε. Furthermore,

the above follows via Chebyshev’s inequality, Ito isometry and Lemma 1. This
shows thatMt∧T is a uniformly integrable martingale, and completes the proof.
��

We can now use the optional sampling theorem Theorem 4, to yield

〈Mt∧T |F0〉 = 〈M0〉 =
〈∫ 0

0

u1 dw1

〉
= 0.
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We now take H → ∞ and define a sequence of stopping times {Tn} such
that Tn →∞ and thus t ∧ Tn → t. Incorporating these limits in (5.23) yield

lim
n→∞

(
〈u21(t ∧ Tn)〉 − 2a11 lim

n→∞

∫ t∧Tn

0

〈u21〉 ds− 2a12

∫ t∧Tn

0

〈u1u2〉 ds
)

− lim
n→∞

(
σ2
1(t ∧ Tn) + 2σ1

〈∫ t∧Tn

0

u1 dw1

〉)

= 〈u21(t)〉 − 2a11

∫ t

0

〈u21〉 ds− 2a12

∫ t

0

〈u1u2〉 ds− σ2
1(t) + lim

n→∞
2σ1〈Mt∧Tn

〉

= 〈u21(t)〉 − 2a11

∫ t

0

〈u21〉 ds− 2a12

∫ t

0

〈u1u2〉 ds− σ2
1(t) + 〈Mt|F0〉

= 〈u21(t)〉 − 2a11

∫ t

0

〈u21〉 ds− 2a12

∫ t

0

〈u1u2〉 ds− σ2
1(t) + 〈Mt|F0〉+ 〈M0〉

= 〈u21(t)〉 − 2a11

∫ t

0

〈u21〉 ds− 2a12

∫ t

0

〈u1u2〉 ds− σ2
1(t) = 0.

This implies that

〈u21(t)〉 = 2a11

∫ t

0

〈u21〉 ds+ 2a12

∫ t

0

〈u1u2〉 ds+ σ2
1(t),

or equivalently,
d

dt
〈u21〉 = 2a11〈u21〉+ 2a12〈u1u2〉+ σ2

1 .

For the sake of the analysis we will assume u1(0) = 0. If this is not the case,
then the initial condition can be incorporated into the σ2

1 term. The analysis
for the other equations proceeds as the above and we thus arrive at

d

dt
〈u21〉 = 2a11〈u21〉+ 2a12〈u1u2〉+ σ2

1 ,

d

dt
〈u22〉 = 2a21〈u1u2〉+ 2a22〈u22〉+ 2a23〈u2u3〉+ σ2

2 ,

d

dt
〈u23〉 = 2a33〈u23〉+ 2a32〈u3u2〉+ σ2

3 ,

d

dt
〈u1u2〉 = a21〈u21〉+ a12〈u22〉+ (a11 + a22)〈u1u2〉+ a23〈u1u3〉,

d

dt
〈u2u3〉 = a32〈u22〉+ a23〈u23〉+ (a22 + a33)〈u2u3〉+ a21〈u1u3〉,

d

dt
〈u1u3〉 = a32〈u1u2〉+ a12〈u2u3〉+ (a11 + a33)〈u1u3〉.

Steady-states of second order moments are obtained by solving the linear sys-
tem of equations

2a11〈u21〉+ 2a12〈u1u2〉 = −σ2
1 ,

2a21〈u1u2〉+ 2a22〈u22〉+ 2a23〈u2u3〉 = −σ2
2 ,

2a33〈u23〉+ 2a32〈u3u2〉 = −σ2
3 ,
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a21〈u21〉+ a12〈u22〉+ (a11 + a22)〈u1u2〉+ a23〈u1u3〉 = 0,

a32〈u22〉+ a23〈u23〉+ (a22 + a33)〈u2u3〉+ a21〈u1u3〉 = 0,

a32〈u1u2〉+ a12〈u2u3〉+ (a11 + a33)〈u1u3〉 = 0.

Mathematically it is possible to find the solution of the above system of
equations but it is quite impossible to write the analytical expressions compo-
nentwise. For notational convenience we assume that the steady-state for the
second order moments is denoted by U∗ = (u11∗, u22∗, u33∗, u12∗, u23∗, u13∗),
where the steady state of 〈u2r〉 is denoted by urr∗ (r = 1, 2, 3) and that of
〈urus〉 is denoted by urs∗ , where r, s = 1, 2, 3 with r < s. Thus the stability
of steady-states for second order moments depends solely upon the sign of real
parts of eigenvalues of the matrix B defined by

B =

⎡⎢⎢⎢⎢⎢⎢⎣
a11 0 0 a12 0 0
0 a22 0 a21 a23 0
0 0 a33 0 a23 0
a21 a12 0 a11 + a22 0 a23
0 a32 a23 0 a22 + a33 a21
0 0 0 a32 a12 a11 + a33

⎤⎥⎥⎥⎥⎥⎥⎦ .

For the deterministic counterpart of above model system, when integrated nu-
merically with parametric values a1 = 1, w = 1.95, i = 0.3, a = 1, a2 = 0.2,
w1 = 1.38, w2 = 2.85, c = 0.25, w3 = 1.6, b1 = 1 and positive initial condition
(0.9302, 0.1795, 0.0132), the solution trajectories are chaotic. Every trajectory
approaches the chaotic attractor irrespective of the position of the initial point
in the interior of the first octant. For b1 ∈ [2.1, 3.85] the deterministic system
exhibits stable focus and for b1 ∈ [1.45, 2] system shows periodic oscillations
when all other parameters are the same as above.

Figure 5. Top panel → prey, middle panel → predator , bottom panel → top predator
for σ1 = 0.01, σ2 = 0.01, σ3 = 0.01.

Chaotic dynamics is observed in the ranges b1 ∈ [0.68, 1.44]. Next we nu-
merically integrate the stochastic model system with additive noise term for the
same set of parameter values except b1 = 2.3 using Euler–Maruyama scheme.
We mention that co-existing equilibrium point E∗(0.3275, 0.2133, 0.0327) is sta-
ble whenever b1 = 2.3 and all other parameters are the same as mentioned
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above. Simulation results indicate that the distribution of population is not
chaotic rather they fluctuate stochastically around some average value as shown
in Fig. 5.

Fig. 6 shows the distribution of prey, predator and top predator popula-
tion over the range of values within which they fluctuate. It is clear that for
stochastically driven system no steady state population distribution exists for
either component or this happens for the reason that top-predator population
distribution is low for most of the time compared to the prey and predators.

Figure 6. Histogram for prey, predator and top predator population obtained from ten
simulations run of the stochastic model system and data collected after neglecting the

initial transient values.

Now we are in a position to interpret the analytical results with the help
of the numerical simulations as well as by computing the matrix B and its
eigenvalues. For the choice of parameters mentioned at the beginning of this
paragraph except b1 = 2.3, solving the system of equations (5.12)–(5.17) we
find u11∗ = 0.00009345, u22∗ = 0.00004165, u33∗ = 0.00008638. Calculating
the eigenvalues of B we find that two eigenvalues are positive and hence the
second order moments are not stable and as a result the equilibrium popula-
tion density obtained from deterministic analysis is not a stochastically stable
equilibrium for the stochastic model system (5.1)–(5.3) in sense of the second
order moments.

6 Discussions and Conclusions

In this paper, we have studied a three dimensional continuous time prey-pre-
dator-top predator model system, modelling a tritrophic food chain based
on a Holling type-IV functional response. The stability analysis and Hopf-
bifurcation for non-negative equilibrium point has been analysed. The dynam-
ical behaviour of the model system is investigated by using stability analysis,
bifurcation theory and numerical simulation. Bifurcation analysis of model
system (2.4)–(2.6) shows that, the system has rich dynamics including periodic
and chaotic dynamics. Even if the selection of biologically realistic parameter

Math. Model. Anal., 16(3):343–364, 2011.



362 R.K. Upadhyay, M. Banerjee, R. Parshad and S.N. Raw

values for the numerical simulation of ecological models is difficult and our
parameter range is narrow, very rich and complex dynamics abound.

The effect of environmental fluctuation on the three species model system is
observed after introducing additive noise terms to the growth equation of pop-
ulation. Numerical simulation of the stochastic model using Euler–Maruyama
scheme suggest that the distribution of population is not chaotic rather they
fluctuate stochastically around some average value. Thus stochasticity has im-
portant consequences and, depending on the intensity of noise, may overwhelm
the stabilizing effects of control. If a chaotic population is to be controlled, it
is necessary to know what kind of variability is involved, and consequently to
estimate the strength and frequency of control necessary to override random
effects.
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