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Abstract. In this paper we present a novel procedure for the determination of
temperature in electric conductors. A Helmholtz-to-Poisson estimate is proved, that
justifies to restrict the temperature dependence of the electrical resistivity to the
conductor boundary. Hence we obtain a nonlinear potential problem for the rele-
vant boundary temperatures, where the temperature dependence of the heat transfer
coefficient is fully regarded. Using boundary integral operators, we represent the un-
knowns as the fixed point of a contraction. Finally a benchmark example is given in
the rotationally symmetric case.
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1 Introduction

At present, the use of electric conductors grows steadily in modern technol-
ogy and an economic choice of the conductor parameters becomes mandatory.
Especially in systems with limited weight and size - e.g. aircrafts, cars or
other mobile systems - it is necessary to find optimal geometric and material
parameters of the electric cable. For this reason, it is important to develop
effective procedures that permit the direct determination of temperature at
characteristic positions of the conductor.

The purpose of this article is the set up of a mathematical model which
starts from the physical background of the heat transfer problem and arrives
at a novel procedure for the determination of the relevant temperatures. In
contrast to numerical methods that employ finite element and finite volume
methods for discretization and use iterative schemes solving the discretized
nonlinear problems, see e.g. [10, 11, 24], we present a fixed point approach for
the continuous problem. One advantage of this approach is the comparatively
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late involvement of a discretization method to obtain numerical data. Thus we
are able to treat such problems without a restriction to a specific geometry.

We consider an insulated electric cable (main for short) of infinite length.
The given current flow induces a heat flow which - after attaining the ther-
modynamical equilibrium - leads to a steady temperature distribution in the
cross-section of the conductor. Supported by experimental observations, we as-
sume constant heat conductivities in the conductor and in the insulator of the
main. By comparatively large heat conductivity, small differences in temper-
ature in the conductor material can be expected. This motivates a restriction
of the dependence to a mean value boundary temperature. Here we prove a
Helmholtz-to-Poisson estimate which, to our knowledge, is a new result. The
corresponding error is minimized by an orthogonal projection and an optimal
Poincaré constant for convex domains [27]. Due to its generality, this estimate
applies also to other elliptic boundary value problems. Then we formulate the
heat transfer problem on the insulator domain only. Here the maximum prin-
ciple for elliptic equations implies that the temperatures at the boundary of
the insulator domain are the extremal and thus relevant unknowns.

These arguments give rise to treat the heat transfer problem by bound-
ary integral equations on the boundary of the multiply connected insulator
domain. The outer boundary condition is set up by the nonlinearly tempera-
ture dependent heat transfer coefficient. For a known qualitative temperature
dependence, the quantitative analytical determination of such a coefficient is
investigated as an inverse problem in [23].

We truncate the heat transfer coefficient function at the boundaries of a
physically consistent temperature interval by constant values. This, and a
scaling condition for the insulator domain gives us an existence and uniqueness
result for the boundary temperatures extending the analysis by Ruotsalainen
and Wendland in [31] from simply to doubly connected domains. Then we
transform the nonlinear boundary integral equation to a fixed point equation on
an appropriate Sobolev space and compute the solution via an iterative method
presented for abstract Hilbert spaces by Brézis and Sibony in [5]. The related
error estimate provides a linear order of convergence for the approximating
iterative sequence.

Next we extend these investigations to multiply connected domains. Here,
as in the doubly connected case, the strong monotonicity of the Poincaré–
Steklov operator of the underlying boundary value problem is essential. In
this context we introduce an abstract property for boundaries of multiply con-
nected domains - the damping property. This property enables us to verify the
strong monotonicity of the Poincaré–Steklov operator independently from the
conductor parameters, i.e. just using the outer boundary condition.

Finally we deal with the case of rotational symmetry. Here the boundary
integral operators reduce to matrices which can be computed explicitly. Thus
we obtain the solution as the limit of an iterative sequence of vectors. These
calculations show clearly that the scaling condition is essential for the positivity
of the single layer operator. The performed calculations serve as a benchmark
example for numerical computations of heat transfer problems with similar
geometries.
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For the occurring physical entities we use the following notation: I is the
electric current, ρ denotes the electric resistivity of the conductor material, λ1
is the heat conductivity of the conductor material, λ2 is the heat conductivity
of the insulator material, uenv denotes the temperature of the environment, α
is the heat transfer coefficient on the insulator surface. For the temperature
dependence of α in general we refer to [6, 9, 28, 34].

2 Modelling of the Heat Transfer Problem

Using standard notation for par-
tial differential equations [16] we
describe the cross-section of the
main by the simply connected and
open union Ω0 = Ωcond ∪ Ωins ⊂
R2 with Lipschitz boundaries ∂Ω0,
∂Ωcond . The temperature distri-
bution u : Ω0 → R has to sat-
isfy the following boundary value
problem

−div(λ1(u)∇u) = f(u) in Ωcond , (2.1)

−div(λ2(u)∇u) = 0 in Ωins , (2.2)

ucond = uins on ∂Ωcond ,

λ1(u)
∂ucond
∂n

= λ2(u)
∂uins
∂n

on ∂Ωcond ,

−λ2(u)
∂u

∂n
= α(u)(u− uenv ) on ∂Ω0.

Here uins and ucond denote the restrictions uins = u|Ωins
, ucond = u|Ωcond

and
n the outer normal w.r.t. the considered domain.

Thus the two equations on the boundary ∂Ωcond describe the transmission
conditions, i.e. the continuity of temperature and the equality of the heat flows.
In the following we will use the abbreviations Ω1 = Ωcond , Ω2 = Ωins . The
right-hand side

f(u) := ρ(u)
I2

|Ω1|2

stands for the temperature dependent heat power density in the conductor.

Specification of ρ(u) and λ1. We postulate the standard model of a linear-
affine temperature dependence of ρ : R+ → R+ by

ρ(u) = ρ0 (1 + αρ(u− u0)) ; u = u(x), x ∈ Ω1.
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ρ0 > 0 denotes the resistivity value to a reference temperature u0, αρ ∈ R

identifies the linear temperature coefficient of ρ. Assume moreover that the
heat conductivity λ1 > 0 is constant. These assumptions provide accurate
approximations to experimental data of many conductor materials. In this
modelling assumption we can approximate the solution ucond of (2.1) by the
solution of a related Poisson-equation where the temperature dependence of ρ
is restricted to a constant (conductor-)temperature.

Comparison with a constant right-hand side

Thus we are led to consider the following boundary value problems. For given
g ∈ H

1
2 (∂Ω1) we have the Dirichlet problem for the Helmholtz equation for

given ς ∈ R, fh ∈ L2(Ω1),

−∆uς = ςuς + fh in Ω1; uς = g on ∂Ω1 (2.3)

and the Dirichlet problem for the Poisson equation for given fp ∈ L2(Ω1),

−∆u = fp in Ω1; u = g on ∂Ω1. (2.4)

Now we estimate the difference uς − u with respect to ς , fh and fp in the
following result.

Lemma 1 [Helmholtz-to-Poisson estimate]. Let uς and u solve (2.3) and
(2.4), respectively and suppose that |ς | < Λ2, where

Λ = inf
v∈H1

0
(Ω1)

{

‖∇v‖L2(Ω1)
: ‖v‖L2(Ω1)

= 1
}

denotes the Poincaré constant of Ω1. Then

‖uς − u‖H1
0
(Ω1)

:= ‖∇(uς − u)‖L2(Ω1)
≤

Λ

Λ2 − |ς |
‖ςu+ fh − fp‖L2(Ω1)

.

Proof. Observe that by the Lemma of Lax–Milgram the solutions uς and u of
the associated weak formulations of (2.3) and (2.4) exist uniquely in H1(Ω1).
Hence the difference uς − u =: ψ ∈ H1

0 (Ω1) fulfills in the weak sense

−∆ψ = ςuς + fh − fp in Ω1; ψ = 0 on ∂Ω1. (2.5)

With ςuς = ςψ + ςu the variational form of (2.5) reads as

〈ψ, ϕ〉H1
0
(Ω1)

= ς 〈ψ, ϕ〉L2(Ω1)
+ 〈ςu+ fh − fp, ϕ〉L2(Ω1)

, ∀ϕ ∈ H1
0 (Ω1).

ϕ = ψ and the Cauchy–Schwarz inequality provides

‖ψ‖2H1
0
(Ω1)

≤ ‖ψ‖L2(Ω1)

(

|ς | ‖ψ‖L2(Ω1)
+ ‖ςu+ fh − fp‖L2(Ω1)

)

.

The Poincaré inequality yields

‖ψ‖H1
0
(Ω1)

≤
1

Λ

(

|ς |

Λ
‖ψ‖H1

0
(Ω1)

+ ‖ςu+ fh − fp‖L2(Ω1)

)

Math. Model. Anal., 16(2):286–303, 2011.
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and hence we get for |ς | < Λ2 the assertion of Lemma 1. ut

Using previous notations we treat now the equations

− λ1∆uς = f(uς) in Ω1 and − λ1∆u = f(ū) in Ω1 (2.6)

where for the moment ū ∈ R denotes an arbitrary constant temperature and
uς |∂Ω1

= u|∂Ω1
= g ∈ H1/2(∂Ω1). With the settings

fp =
f(ū)

λ1
; fh = fp + ςū and

Λ|ς |

Λ2 − |ς |
=: C(ς)

the right-hand side of the estimate in Lemma 1 reads as C(ς) ‖u− ū‖L2(Ω1)
.

We minimise this term with respect to ū ∈ R using the orthogonal projection
in L2(Ω1).

Corollary 1 [Best approximation]. Let uς , u solve the Helmholtz- respectively
the Poisson equation in (2.6). Suppose that the Poisson datum f(ū) is given
by the mean value ū = 1

|Ω1|

∫

Ω1
u dx ∈ R and |ς | < Λ2 where Λ denotes the

Poincaré constant of Ω1. Then ū yields the unique best approximation u of uς
i.e.

‖uς − u‖H1
0
(Ω1)

≤ C(ς) ‖u− ū‖L2(Ω1)
= C(ς)

√

‖u‖2L2(Ω1)
− |Ω1|ū2.

Proof. The first estimate follows directly from Lemma 1. The identities and the
minimal property of the mean value ū follow from the perpendicular principle
applied to the subspace

{

v ∈ L2(Ω1) : v ≡ const
}

= R of L2(Ω1): The unique
minimiser a ∈ R is given by the orthogonal projection of u on R, i.e. by the
solution of 〈a, a− u〉L2(Ω1)

= 0. This implies

a =
1

|Ω1|

∫

Ω1

u dx and inf
a∈R

‖u− a‖2L2(Ω1)
= ‖u‖2L2(Ω1)

− |Ω1|ū
2. ut

Thus uς converges asymptotically linear to u with the error bound

lim sup
ς→0

‖uς − u‖H1
0
(Ω1)

|ς |
≤

1

Λ

√

‖u‖2L2(Ω1)
− |Ω1|ū2

using the minimiser ū and the general error bound depending on ū ∈ R in the
Poisson-datum,

lim sup
ς→0

‖uς − u‖H1
0
(Ω1)

|ς |
≤

1

Λ
‖u− ū‖L2(Ω1)

. (2.7)

With ς =
ρ0αρI

2

λ1|Ω1|
2 , this asymptotic result means in particular that the solu-

tion of the Helmholtz equation converges to the solution of the Poisson equation
if the heat conductivity λ1 becomes large (constant temperature profile in the
conductor) or αρ → 0 (electrical resistivity ρ becomes temperature indepen-
dent). An even more explicit estimate can be given for convex domains Ω1,
where by [27] the optimal Poincaré constant is known as Λ = π

diam(Ω1)
. By

Corollary 1 we are able to control the error if instead of the fully temperature
dependent ρ, we only consider resistivities ρ(ū) that depend on constant tem-
peratures. We shall give an explicit example for the error bound when we treat
the case of rotational symmetry.
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The outer domain formulation. Now we formulate the boundary value
problem (2.1), (2.2) in the insulator domain only. We choose the constant mean
value boundary temperature (m.v.b.t.) ū := 1

|∂Ω1|

∫

∂Ω1
u dsx in the Poisson

datum of (2.6). This is not the error minimising choice; nevertheless, as we shall
see, it is the appropriate one for the forthcoming boundary integral formulation.
The error is bounded by (2.7).

Consider now the heat flow density q = q(u) over the boundary ∂Ω1 which
enters in the inner boundary condition −λ1

∂ucond

∂n
= q. Using the equality of

heat flows λ1
∂ucond

∂n
= λ2

∂uins

∂n
this condition becomes −λ2

∂u
∂n

= q on ∂Ω1 for
u = uins . Assume for the moment the heat flow density q as given. Note that
by the Gauß divergence theorem, q has to fulfill

∫

∂Ω1

q dsx = |Ω1|f(ū) = ρ(ū)
I2

|Ω1|
. (2.8)

The simplified form of the right-hand side is justified by the Helmholtz-to-
Poisson-estimate above. Thus we consider the following boundary value prob-
lem

−∆u = 0 in Ωins =: Ω,

λ2
∂u

∂n
= q(u) on ∂Ω1, (2.9)

−λ2
∂u

∂n
= α(u)(u − uenv ) on ∂Ω \ ∂Ω1 =: ∂Ω2, (2.10)

where now n denotes the outer normal w.r.t. Ω.

Specification of the heat flow density. For the computation of q = q(u)
one has to regard the specific geometry of the boundary ∂Ω1 and the source
term f = f(u). The general situation can be treated as an inverse problem.
We refer to [4, 14, 15, 36].

In our case the source term is given by the m.v.b.t. approximation discussed

above and reads as f = f(ū) = ρ(ū)I2

|Ω1|2
. Now we suggest an explicit form of

the heat flow density for the following considerations. Since conductor cross
sections of electric cables are nearly rotationally symmetric, let us assume q =
q(ū). I.e. q does not depend on x ∈ ∂Ω1. Then (2.8) yields q = q(ū) =
ρ(ū)I2

|∂Ω1||Ω1|
. Now if we drop the assumption that u is constant then again by

(2.8), q and f have locally the same monotonicity behaviour w.r.t. to the
boundary temperature. Thus we approximate a temperature dependent heat
flux by

q̃(u) :=
ρ(u)I2

|∂Ω1||Ω1|
. (2.11)

We observe that by the weak maximum principle (see e.g. [16]) the extremal
values of u are attained at the boundary of Ω. In applications, these values are
the most interesting ones which motivates the following method.

Math. Model. Anal., 16(2):286–303, 2011.
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3 Treatment by Nonlinear Boundary Integral Equations

In the following we are concerned with the temperatures on the boundary of
the insulator domain only. Using Green’s representation formula we derive
an equivalent nonlinear boundary integral equation for the doubly connected
domain Ω with ∂Ω1 =: Γ1, ∂Ω2 =: Γ2 that includes the boundary conditions
(2.9), (2.10). Starting from −∆u = 0 in Ω the representation formula for
harmonic functions and the jump relations of potential theory yield for the
boundary values of u:

u(x) = 2

∫

Γ

(

u(y)
∂

∂ny

F (x− y)−
∂u(y)

∂ny

F (x− y)

)

dsy, x ∈ Γ := ∂Ω, (3.1)

where F (z) := 1
2π ln (|z|) denotes the fundamental solution of the Laplace-

equation in R2 \ {0}.
Let Φ be defined componentwise by (ϕ1, ϕ2)

T and ui := u|Γi
; i = 1, 2

then (2.9) and (2.10) can be written in vector notation as − ∂u
∂n

= Φ(u) on Γ .

Moreover we need the Poincaré–Steklov-operator P : H1/2(Γ ) → H−1/2(Γ ),
u 7→ ϕ defined by

Pu = ϕ =

(

ϕ1

ϕ2

)

= Φ(u) =
1

λ2

(

−q(u1)
α(u2)(u2 − uenv)

)

. (3.2)

We emphasise that we consider a heat flux q = q(u1) that may fully depend
on the boundary temperature which can be obtained by an inverse treatment
or experimental data. Note that the nonlinearity of Φ appears in the second
component, due to the heat transfer coefficient α = α(u2), that enters in the
outer boundary condition.

The function spaces for the boundary Γ of the doubly connected domain
Ω are given by Hs(Γ ) := Hs(Γ1) ×Hs(Γ2), ‖·‖

2
Hs(Γ ) := ‖·‖2Hs(Γ1)

+ ‖·‖2Hs(Γ2)

for s ∈ {−1/2, 1/2}; see e.g. [3, 17, 19] for various approaches in multiply
connected domains.

3.1 Representation by single and double layer potential operators
in a doubly connected domain

Assume Γ ∈ C2. Following singular boundary integral operator theory [19, 22,
26] we define the continuous single layer operator S̃ : H−1/2(Γ ) → H1/2(Γ ) by

S̃(ϕ)(x) = −

∫

Γ

ϕ(y)F (x − y) dsy =

(

S̃11 S̃12

S̃21 S̃22

)

(

ϕ1

ϕ2

)

, (3.3)

where S̃ij(ϕj) = −
∫

Γj

ϕj(y)F (x − y) dsy, x ∈ Γi; i, j = 1, 2 and the compact

double layer potential operator K̃ : H1/2(Γ ) → H1/2(Γ ) with

K̃(u)(x) =

∫

Γ

u(y)
∂

∂ny

F (x− y) dsy =

(

K̃11 K̃12

K̃21 K̃22

)

(

u1
u2

)

, (3.4)
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where K̃ij(uj)(x) =
∫

Γj

uj(y)
∂

∂ny

F (x− y) dsy, x ∈ Γi; i, j = 1, 2.

Our aim is to obtain a strongly elliptic operator S on a boundary of a mul-
tiply connected domain i.e. ∃c > 0: 〈S(ϕ), ϕ〉L2(Γ ) ≥ c ‖ϕ‖2H−1/2(Γ ). Therefore
we introduce the diagonalized form:

Sij(ϕj) :=

{

S̃ij(ϕj), i = j

0, i 6= j,
Kij(uj, ϕj) :=

{

K̃ij(uj), i = j,

K̃ij(uj) + S̃ij(ϕj), i 6= j.

These definitions and (3.1) provide the following boundary integral equation

u

2
−K(u, ϕ) + S(Φ(u)) = 0, ϕ = Φ(u) =

1

λ2

(

−q(u1)
α(u2)(u2 − uenv )

)

. (3.5)

The compactness of Kij for i = j, Γ ∈ C2 is a classical result [19, 22] and it is
immediate for i 6= j since the kernel of Kij is continuous in this case. Thus K
is a compact operator in H1/2(Γ ).

3.2 Existence and uniqueness of a solution of the nonlinear bound-
ary integral equation

We assume the following conditions:

(A1) Scaling: diam(Ω) < 1.
As we shall see in Section 6 this assumption can be arranged without loss

of generality. It implies that S : H−1/2(Γ ) → H1/2(Γ ) is an isomorphism and
strongly elliptic ([18, 35]).

(A2) Asymptotic linearity: Setting h1(u) := − q(u)
λ2

and h2(u) :=
α(u)
λ2

(u −
uenv) we require that the derivatives satisfy

min
1≤i≤2

(

inf
u∈R

|h′i(u)|

)

≥ cmin > 0 and max
1≤i≤2

(

sup
u∈R

|h′i(u)|

)

≤ cmax <∞.

The assumption provides Lipschitz continuity and strong monotonicity of the
operator Φ : L2(Γ ) → L2(Γ ).

Theorem 1. Assume that (A1) and (A2) are satisfied. Then there exists a
unique solution u ∈ H1/2(Γ ) of (3.5).

Proof. The proof given in [31] easily extends from the simply connected case
to the doubly connected case considered here. ut

Remark. Let us a give an example for a suitable Φ that satisfies the condition
(A2) in both components, i.e. for x ∈ Γ1 and x ∈ Γ2. (A2) holds true in the
first component with the heat flow density q̃ = q̃(u) in view of the linear-affine
resistivity ρ(u) := ρ0 (1 + αρ(u− u0)), αρ > 0. In the second component (A2)
is satisfied e.g. for the following truncation and extension of the monotone and
continuous heat transfer coefficient α,

α̃(u) :=











αl for u < ul,

αh for u > uh,

α(u) in [ul, uh],

(3.6)

Math. Model. Anal., 16(2):286–303, 2011.
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where 0 < α(ul) = αl < α(uh) = αh for ul < uh. With these settings (A2) is
satisfied with

cmin =
min (αl, c0)

λ2
, cmax =

max (αh, c0)

λ2
, where c0 =

ρ0αρI
2

|Γ1||Ω1|
. (3.7)

For the strong monotonicity condition of Φ namely min (αl, c0) > 0 we require
I > 0. This is no restriction since I = 0 implies u ≡ uenv .

We note that condition (A2) can be relaxed to a polynomial growth con-
dition on Φ [29]. In view of applications it makes sense to consider bounded
temperature intervals. The truncation outside of the interval [ul, uh] does not
change the heat transfer in the relevant temperature range. Thus it suffices to
consider asymptotically linear operators Φ in (3.2).

4 Iterative Determination of the Boundary Temperature

as a Fixed Point

Consider T : H1/2(Γ ) → H1/2(Γ ) with T (u) := u/2 − K(u, ϕ) + S(Φ(u)),
ϕ = Φ(u). The equation (3.5) for the boundary temperature u is satisfied iff
the fixed point relation

Gγ(u) := u− γT (u) = u (4.1)

holds for at least one γ ∈ R \ {0}. By previous considerations there exists a
unique fixed point u ∈ H1/2(Γ ) for (4.1). In this section we will determine a γ
which ensures that Gγ is a contraction in H1/2(Γ ). For this purpose we need
Lipschitz-continuity of T .

Lemma 2. Suppose (A2). Then there exists L̃ > 0 such that

‖T (u)− T (v)‖H1/2(Γ ) ≤ L̃ ‖u− v‖H1/2(Γ ) for u, v ∈ H1/2(Γ ).

Proof. S : H−1/2(Γ ) → H1/2(Γ ) is a bounded linear operator, i.e.

‖S(ϕ)‖H1/2(Γ ) ≤ LS ‖ϕ‖H−1/2(Γ ) for ϕ ∈ H−1/2(Γ )

⇒ ‖S(Φ(u)) − S(Φ(v))‖H1/2(Γ ) ≤ LS ‖Φ(u)− Φ(v)‖L2(Γ ) .

Φ is Lipschitz continuous in L2(Γ ) by (A2) and hence

‖S(Φ(u)) − S(Φ(v))‖H1/2(Γ ) ≤ LSLΦ ‖u− v‖L2(Γ ) ≤ LSLΦ ‖u− v‖H1/2(Γ ) .

By (A2) K is a bounded operator in H1/2(Γ ). Hence

‖(I/2−K) (u)− (I/2−K) (v)‖H1/2(Γ ) ≤ LK ‖u− v‖H1/2(Γ )

and the assertion of the lemma follows with L̃ = LSLΦ + LK. ut

On the other hand, we need strong monotonicity of T with respect to an
appropriate Hilbert space norm. For this we follow [18, 35] and introduce a
norm on H1/2(Γ ) induced by the inverse of the single layer operator

‖u‖2
S−1(Γ ) :=

〈

u,S−1(u)
〉

L2(Γ )
, u ∈ H1/2(Γ ),
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which is well defined by assumption (A1). This norm is equivalent to the
Sobolev–Slobodetskii-norm on H1/2(Γ ), i.e.

∃cΓ > 0 :
1

cΓ
‖u‖

S−1(Γ ) ≤ ‖u‖H1/2(Γ ) ≤ cΓ ‖u‖
S−1(Γ ) .

Lemma 3. Suppose (A1) and (A2). For u, v ∈ H1/2(Γ ) there exists m̃ > 0
with

〈

T (u)− T (v),S−1(u− v)
〉

L2(Γ )
≥ m̃ ‖u− v‖2H1/2(Γ ) .

Proof. Setting 〈·,·〉L2(Γ ) :=
∑2

i=1 〈·,·〉L2(Γi)
, the proof follows directly from

[30, 31] applied componentwise. ut

Construction of the iterative sequence. Now we can establish an itera-
tive sequence (u(n))n∈N ⊂ H1/2(Γ ) which converges to the solution of (3.7) for
an arbitrary initial function u(1) ∈ H1/2(Γ ). Before doing so we observe that
the Lipschitz and monotonicity estimates in Lemmas 2 and 3 also hold w.r.t.
the S−1-norm on H1/2(Γ ).

Moreover by (A1), S : H−1/2(Γ ) → H1/2(Γ ) is a strongly elliptic, self-
adjoint operator and so is S−1 : H1/2(Γ ) → H−1/2(Γ ). Thus the bilinear
form 〈u, v〉

S−1(Γ ) :=
〈

u,S−1(v)
〉

L2(Γ )
is symmetric and we obtain the following

result.

Theorem 2. Let the assumptions (A1) and (A2) hold. Define the iterative
sequence (u(n))n∈N ⊂ H1/2(Γ ) by u(n+1) := Gγ

(

u(n)
)

, γ = m/L2 where L =

c2Γ L̃ denotes the S−1 - Lipschitz constant and m = m̃/c2Γ the S−1-monotonicity
constant of T . The Lipschitz constant is chosen sufficiently large such that
L > m. Then, for every initial function u(1) ∈ H1/2(Γ ), (u(n))n∈N converges
to the solution u of (3.7) with respect to ‖·‖

S−1 with the a priori error estimate

‖u(n) − u‖S−1 ≤
kn

1− k
‖u(2) − u(1)‖S−1 , k =

√

1−
m2

L2
.

Proof. It suffices to verify that Gγ : H1/2(Γ ) → H1/2(Γ ) is contractive w.r.t.
‖·‖S−1 . The assertions of Theorem 2 then follow by Banach’s fixed point the-
orem. Here

‖Gγ(u)− Gγ(v)‖
2
S−1 = ‖u− v‖2

S−1 − 2γ
〈

T (u)− T (v),S−1(u − v)
〉

L2(Γ )

+ γ2 ‖T (u)− T (v)‖2
S−1

≤
(

1− 2mγ + L2γ2
)

‖u− v‖2
S−1

where we used the self-adjointness of S−1. The estimate is provided by the
Lipschitz continuity and strong monotonicity of T . The minimum of 1−2mγ+

L2γ2 is attained at γ = m
L2 and amounts to 1−m2

L2 . Hence we get k =
√

1− m2

L2

as the constant of contraction. ut
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5 The Case of a Multiply Connected Domain

In this section we extend our previous considerations from a doubly connected
(insulator) domain to a multiply connected one. Hence we can treat electrical
cables with an ensemble of conductors with possibly different current loads.
We use the following notation: N denotes the quantity of conductor cross-
sections, Ωi are the conductor cross-sections i = 1, . . . , N , Ω is the insulator
cross-section, ΓN+1 denotes the (outer-) insulator boundary, uj ∈ H1/2(Γj)
denote the boundary temperatures j = 1, . . . , N +1, qi = q(ui) is the heat flux
over Γi, λ denotes the heat conductivity of the insulator.

For Γ = ∂Ω =
⋃N+1

j=1 Γj the
corresponding function spaces
Hs(Γ ), s ∈ {−1/2, 1/2} are given

by Hs(Γ ) =
∏N+1

j=1 Hs(Γj) and

‖·‖2Hs(Γ ) =
∑N+1

j=1 ‖·‖2Hs(Γj)
.

The boundary value problem

−∆u = 0 in Ω;

λ
∂u

∂n
= qi(u) on Γi; −λ

∂u

∂n
= α(u)(u− uenv ) on ΓN+1

leads again to a boundary integral equation for u=(u1, . . . , uN+1)
T ∈ H1/2(Γ ):

u

2
−K(u, ϕ) + S(Φ(u)) = 0

with ϕ = Φ(u) = 1
λ
(−q1(u1), . . . ,−qN (uN), α(uN+1)(uN+1 − uenv))

T . The
single and double layer potential operators S and K are defined and diago-
nalised in the same way as in (3.3), (3.4) for i, j = 1, . . . , N + 1. With these
settings Theorem 1 applies to the multiply connected domain case.

Application to multiwire cables. Now we will see how the crucial as-
sumption (A2) of Theorem 1 is satisfied and how the iterative determination
is realised in applications.

If the material out of the conductor cross sections is inhomogeneous (e.g. air
gaps between the insulator material), then the constant heat conductivity λ of
the insulator material, can be replaced by a homogenised heat conductivity λ̄.
Here we refer to [21, 25, 33].

The Helmholtz-to-Poisson estimate from Section 2 can be applied for each
conductor cross-section separately. Thus again, we use the approximate heat
flow densities over the boundary of the conductor cross section for i = 1, . . . , N
as

q̃i = q̃i(ui) =
ρi(ui)I

2
i

|Γi||Ωi|
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with ρi(ui) = (ρ0)i (1 + (αρ)i(ui − u0)). The indexed quantities have the same
meaning as before.

Moreover we use the truncated heat transfer coefficient α̃ from the Remark
in Section 3. Thus the associated functions hj : R → R; j = 1, . . . , N + 1 with

hi(u) :=
q̃i(u)

λ
; i = 1, . . . , N and hN+1(u) :=

α̃(u)

λ
(u− uenv )

fulfill the assumption (A2) with the following bounds

cmin = min(αl,bmin)
λ

and cmax = max(αh,bmax )
λ

where (5.1)

bmin = min1≤i≤n

{

(ρ0)i(αρ)iI
2
i

|Γi||Ωi|

}

and bmax = max1≤i≤n

{

(ρ0)i(αρ)iI
2
i

|Γi||Ωi|

}

.

For the strong monotonicity of Φ we assume w.l.o.g. Ii > 0; i = 1, . . . , N .
Otherwise, we only consider cross-sections with Ij > 0; the currentless cross-
sections are included in the insulator domain Ω and are taken into account
when the homogenised heat conductivity λ̄ is computed.

Damping property. Let u = (u1, . . . , uN+1)
T ∈ H1/2(Γ ) and function

ϕ = (ϕ1, . . . , ϕN+1)
T ∈ H−1/2(Γ ) denotes a solution of u

2 = K(u, ϕ) − S(ϕ).
Hereto we extract the diagonal components of the associated Poincaré–Steklov
operator P : u 7→ ϕ by Pj : H1/2(Γj) → H−1/2(Γj),Pj : uj 7→ ϕj with
Pj = S−1

jj ◦ (Kjj −
1
2 ); j = 1, . . . , N + 1.

Definition. Γ has the damping property if

min
1≤i≤N

mi ≥ mN+1, where mj = inf
v∈H1/2(Γj)\{0}

‖Pj(v)‖H−1/2(Γj)

‖v‖
S−1(Γj)

. (5.2)

This property means that the change of the boundary temperature changes the
inner normal derivatives more than the outer normal derivative.

For domains with the damping property the lower bounds in (3.7) and (5.1)
read as cmin = αl/λ2. Moreover, if (5.2) is verified by an a priori estimate,
there is no need to exclude the case I = 0. Now the Lipschitz- and monotonicity
estimates from the previous section and Theorem 2 can be applied analogously
to the doubly connected domain case.

6 The Case of Rotational Symmetry

Finally we treat the outer domain boundary value problem (2.9), (2.10) with
a rotationally symmetric cross section. This case can be used as a benchmark
example for the iteration in Theorem 2 or boundary element methods solving
(3.5). In addition to the previous notation we introduce
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r1 radius of the conductor

r2 radius of the main

u1 inner boundary temperature at Γ1=∂Br1

u2 outer boundary temperature at Γ2=∂Br2 .

Without loss of generality we can choose a suitable unit for the radius such
that the relation 0 < r1 < r2 < 1/2 is fulfilled. Due to the rotational symmetry
of the system, the boundary temperatures u1 and u2 are constant.

Helmholtz-to-Poisson estimate. The source term f in the conductor reads
as f(u) = ρ0(1 + αρ(u − u0))I

2/(π2r41). We compare the solutions of

− λ1∆uς = f(uς) in Br1 ,

− λ1∆u = f(u1) in Br1 , (6.1)

uς = u|∂Br1
= u1 on ∂Br1 .

Here the Helmholtz coefficient equals ς =
ρ0αρI

2

λ1π2r4
1

. The solution u of (6.1) is

given by u(r) = f(u1)
4λ1

(r21 − r2) + u1, r ∈ [0, r1]. Then for ς < Λ2 = π2

4r2
1

i.e.

4ρ0αρI
2 ≤ π4r21λ1 we have by Corollary 1

‖uς − u‖H1
0
(Br1

) ≤
ςΛ

Λ2 − ς

√

π

3

f(u1)r
3
1

4λ1
. (6.2)

Specification of q and α. By (2.8) the heat flow density q = q(u1) becomes

q(u1) =
|Ω1|

|Γ1|
f(u1) =

ρ0(1 + αρ(u1 − u0))I
2

2π2r31
.

We follow fluid mechanical considerations in [2, 7, 8, 20] concerning the heat
transfer coefficient on cylindrical surfaces α = α(u2). Accordingly we have

α(u2) =

(

αd
√
r2

+ αu
6
√
u2 − uenv

)2

︸ ︷︷ ︸

=αc

+ εσ(u22 + u2env)(u2 + uenv )
︸ ︷︷ ︸

=αr

.

Thus α decomposes in a convection part αc and a radiation part αr. Here σ
and ε denote the Stefan–Boltzmann constant, respectively the degree of ther-
mic emission of the insulator surface. The parameters αd and αu describe
the dependence of the convection part on the radius r2 and the difference in
temperature, respectively.
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Application of Theorem 2

We follow the Remark in Section 3 and truncate α such that (A2) is fulfilled.
The scaling condition (A1) is fulfilled for the choice of r2 <

1
2 . We can specify

T = Id
2 − K̃ + S̃ ◦ Φ for constant boundary temperatures u = (u1, u2)

T ∈

H1/2(Γ ) ∩R2 and for constant heat flux ϕ = (ϕ1, ϕ2)
T ∈ H−1/2(Γ ) ∩ R2 by

K(u, ϕ) =

(

(u1 + u2)/2− r2 ln r2ϕ2

(u1 + u2)/2− r1 ln r2ϕ1

)

,

S(ϕ) = −

(

r1 ln r1 0
0 r2 ln r2

)(

ϕ1

ϕ2

)

,

where ( ϕ1
ϕ2

) = 1
λ2
(

−q(u1)
α(u2)(u2−uenv )

).

Lemma 4 [Verification of the damping property]. Suppose that u satisfies
(3.5), i.e. T (u) = 0 is specified as above. Then

∣

∣

∣

∣

∂

∂u1
ϕ1

∣

∣

∣

∣

=
r2
r1

∣

∣

∣

∣

∂

∂u2
ϕ2

∣

∣

∣

∣

≥

∣

∣

∣

∣

∂

∂u2
ϕ2

∣

∣

∣

∣

≥
αl

λ2
. (6.3)

Proof. The equality in (6.3) follows by differentiation of the first and the
second row of u

2 = K(u, ϕ) − S(ϕ) w.r.t. u1 and u2. Using r2 > r1, the outer

boundary condition ϕ2 = α(u2)
λ2

(u2 − uenv) and the truncation of α in (3.6), we
see the estimates. ut

With the estimates for Φ in (3.7) and the damping property we can estimate
the Lipschitz and the monotonicity constants of T . This is essential for the
error estimate in the iterative scheme of Theorem 2.

We use the norm ‖·‖2
S−1(Γ ) := ‖·‖2

S−1(∂Br1
) + ‖·‖2

S−1(∂Br2
).

Lipschitz estimate. As ‖1‖
S−1(∂Br)

=
√

−2π/ln r, r < 1/2, we have

‖u− v‖2
S−1(Γ ) = −2π

2
∑

i=1

(ui − vi)
2

ln ri
≥

−2π

ln r1
|u− v|2.

On the other hand, the Lipschitz continuity of Φ yields for cmax =
max (αh, c0)

λ2

‖T (u)− T (v)‖2
S−1(Γ ) =

〈

T (u)− T (v),S−1(T (u)− T (v))
〉

L2(Γ )

≤−2π(u− v)T
(

Id

2
−K̃+ cmax S̃

)T ( 1
ln r1

0

0 1
ln r2

)(

Id

2
− K̃+ cmax S̃

)

︸ ︷︷ ︸

=:−AL

(u− v)

Let λmax denote the maximal eigenvalue of AL, then there holds

‖T (u)− T (v)‖2
S−1(Γ ) ≤ 2πλmax |u − v|2.

Thus we obtain the Lipschitz constant L =
√
−λmax ln r1.

Math. Model. Anal., 16(2):286–303, 2011.
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Monotonicity estimate. With the damping property the monotonicity of
Φ yields for cmin = αl/λ2

〈

T (u)− T (v),S−1(u− v)
〉

L2(Γ )

≥ −2π(u− v)T
(

Id

2
− K̃ + cmin S̃

)T ( 1
ln r1

0

0 1
ln r2

)

︸ ︷︷ ︸

=:−Am

(u− v).

Am is positive definite for every cmin > 0 and 0 < r1 < r2 < 1/2. Let λmin

denote the minimal eigenvalue of the symmetric part of Am then
〈

T (u)− T (v),S−1(u− v)
〉

L2(Γ )
≥ 2πλmin |u− v|2.

Analogously we get

‖u− v‖2
S−1(Γ ) = −2π

2
∑

i=1

(ui − vi)
2

ln ri
≤

−2π

ln r2
|u− v|2.

Hence by Lemma 3 we arrive at the monotonicity constant m = −λmin ln r2.

7 Conclusions

We present an application to physical data. Let us fix some physical data with

Temperatures: u0 = 20, uenv = 50

Conductor parameters: λ1 = 400, ρ0 = 1.72 · 10−8, αρ = 3.83 · 10−3

Insulator parameters: λ2 = 0.17, ε = 0.93, r1 = 7 · 10−4, r2 = 1 · 10−3.

For the given material and geometric parameters (in SI units) we firstly eval-
uate the Helmholtz to Poisson estimate provided that ς < Λ2, i.e. I < 8500.
Moreover, for applicational reasons, we fix an upper bound for the conductor
boundary temperature with u1max = 130 and obtain by (6.2)

‖uς−u‖H1
0
(Br1

) ≤ f(umax )
3, 5 · 10−11 I2

5 · 106 − 0, 1 I2
≤

3, 7 · 10−7 I4

5 · 106 − 0, 1 I2
I=20
= 1, 18 · 10−8.

In view of this estimate we fix the values ul = uenv = 50, uh = u1max = 130 and
consequently αl = 12, 2, αh = 30, 8 for the truncation of α. Considering the
case I ≤ 30, we obtain the S−1-Lipschitz- and the S−1-monotonicity constant
of T = Id

2 − K̃ + S̃ ◦ Φ (estimated above for the case of rot. symmetry) with
L = 1, 71 and m = 0, 34.

Thus the fixed point mapping Gγ of Theorem 2 is given by γ := m
L2 = 0.117

and is contractive with k = 0.9797. For u(1) ≡ uenv the a priori error estimate
of the corresponding iteration reads for n ≥ 800 as

‖u(n) − u‖S−1 ≤
kn

1− k
‖Gγ(uenv )− uenv‖S−1

≤

√
2γkn

1− k
‖1‖S−1(∂Br2

)

√

∣

∣

∣

∣

−uenv/2 + r1 ln r1
q(uenv )

λ2

∣

∣

∣

∣

≤ 5, 9 · 10−6.
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Figure 1. Iteration sequence Gγ(u(n)).

We iterate the sequence Gγ(u
(n)) and the computational results are shown

in Fig. 1. A very good agreement between these calculated temperatures and
experimental results is obtained. Our fixed point approach can be applied to
non-symmetric domains and result in numerical methods, provided the fixed
point iteration is combined with numerical quadrature for the occurring singu-
lar integrals. We refer to [1, 12, 13, 32].

On the other hand the approximative error of the heat flux q̃ from Section 2
should be estimated with respect to the considered non-symmetric geometries.
Note that the damping property of domains introduced in Section 5, is essential
for obtaining a numerically acceptable monotonicity constant in Theorem 2,
especially for low currents. This property can be seen as a natural property
of the insulator, i.e. of harmonic functions w.r.t. the considered boundary
conditions. However, it has to be verified separately in applications, which
motivates a study of this property for general situations.

References

[1] C. Allouch, P. Sablonnière, D. Sbibih and M. Tahrichi. Product integration
methods based on discrete spline quasi-interpolants and application to weakly
singular integral equations. J. Comput. Appl. Math., 133(11):2855–2866, 2010.
Doi:10.1016/j.cam.2009.11.031.

[2] H.M. Badr. Laminar combined convection from a horizontal cylinder - par-
allel and contra flow regimes. Int. J. Heat Mass Transfer, 27:15–27, 1984.
Doi:10.1016/0017-9310(84)90233-3.

[3] G.R. Baker and M.J. Shelley. Boundary integral techniques for multi-connected
domains. J. Comp. Phys., 64:112–132, 1984.
Doi:10.1016/0021-9991(86)90021-5.

[4] J. Beck, B. Blackwell and S. Clair. Inverse Heat Conduction. J. Wiley, 1985.
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