MATHEMATICAL MODELLING AND ANALYSIS www.tandf.co.uk/journals/ TMMA

Volume 16 Number 2, June 2011, 260-272 Publisher: Taylor&Francis and VGTU
Doi:10.3846,/13926292.2011.580015 Online ISSN: 1648-3510
(© Vilnius Gediminas Technical University, 2011 Print ISSN: 1392-6292

On Approximation of Value Functions for
Controlled Discontinuous Random Processes

Svetlana Danilenko® and Henrikas Pragarauskas’

¢ Vilnius Gediminas Technical University
Sauletekio al. 11, LT-10223 Vilnius, Lithuania
b Institute of Mathematics and Informatics, Vilnius University
Akademijos 4, LT-08663 Vilnius, Lithuania
E-mail: svetlana.danilenko@vgtu.lt
E-mail(corresp.): pragarauskash@yahoo . com

Received August 31, 2010; revised January 13, 2011; published online May 1, 2011

Abstract. We consider the problem of approximation of value functions for con-
trolled possibly degenerated diffusion processes with jumps by using piece-wise con-
stant control policies. A rate of convergence for the corresponding value functions
is established provided that the coefficients of controlled processes are sufficiently
smooth. The paper extends the results of N.V. Krylov to a more general class of
controlled processes.
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1 Introduction

The paper is devoted to numerical approximations in the control theory of ran-
dom processes. Recall that under suitable assumptions such value functions are
probabilistic solutions to fully nonlinear parabolic integro-differential Bellman
equations of the second order (see [3]). In the paper, the analysis of approxima-
tions of value functions is based on the same ideas as that for value functions
of controlled diffusion processes considered by N.V. Krylov in [2].

The paper is organised as follows. The main results are given in Section 2.
Section 3 contains auxiliary results. In Section 4, the proofs of the main results
are presented.

Throughout the paper R? is a d-dimensional Euclidean space, A is a sepa-
rable metric space, T' € (0,00), K € [1,00), dp € (0,1] and ¢ € (0, 1] are some
fixed constants. By N we denote various constants depending only on T, K, d
and dp, where d; is introduced in the next section.
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2 Main Results

Let IT be a o-finite nonnegative measure on (R™, B(R™)) such that II(z: |z] >
g) < oo for any ¢ > 0. Let (£2,F,P) be a complete probability space with
a filtration of o-algebras F = (F;, t > 0) satisfying the usual conditions.
Assume that on this probability space a d;-dimensional F-adapted Wiener pro-
cess Wy, t > 0, and F-adapted Poisson random measure p(dt, dz) on ([0, 00) x
R™, B([0,00)) ® B(R™)) with a compensator IT(dz)dt are given. Let

q(dt,dz) = p(dt,dz) — II(dz)dt
be a martingale measure.

DEFINITION 1. An A-valued random process oy = ay(w), t > 0, w € 2, is
called F-admissible if it is F @ B([0, c0))-measurable and «; is Fi-measurable
for each ¢t > 0.

The set of all F-admissible processes is denoted by 2A. Let 2, be the sub-
set of 2 consisting of all processes o;; which are constant on intervals [0, h?),
[h?,2h?), etc.

Fix integers d > 1, d; > 1, m > 1 and assume that we have the following
functions: a d x d; matrix-valued o(a,t,z) and R%valued b(«,t, ) on A x
[0,00) x RY, a R%-valued c(a,t,z,2) on A x [0,00) x RY x R™ and real-valued
g(x) on RY. We assume that these functions are Borel measurable.

For any matrix o = (0;;) and function ¢ : R™ — R denote

ol = {308} e z,n={ / |c<z>|2ﬂ<dz>}l/2.

4,7 R™

Further we shall use the following assumption.

AssuMPTION 1. (i) The functions o and b are continuous with respect to a and
for each o € A, t € [0,00), € R? we have

HC(O[n,t,.I, ) - C(Oé,t,.f, ')HQ,H — 0 as A — O
(ii) For each a € A, t € [0,00), z,y € R?
lo(a, t, 2)|| + [b(a, b, 2)| + [[e(a, b, 2, )l < K,

HU(O[,t, I) - O'(O[,t, y)“ + |b(O[,t, I) - b(O[,t, y)|
+ ||C(O(, t,x, ) - c(a, t, Y, )|

2,1 < Kz —yl;
(iii) For each o € A, s,t € [0,00), x € R¢

lo(a,t,x) —o(a, s, z)|| + |b(a, t,x) — b(a, s, x)]
+ e, t,x, ) — cla, s, @, ) ||2,m < K|t — s|6°/2;

(iv) For each z,y € R¢

lg(x)] < K, |g(z) — g(y)| < K|z —y|°.
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Let Assumption 1 (ii) be satisfied. Then, by It6’s theorem, for each « € 2,
s €[0,T) and x € R? there exists a unique solution X; = X, t > 0, of the
equation

t
X, = x—l—/ olap, s+r, X,.)dW,
0

t t
—|—/ b(aT,s—l—r,Xr)dr—i—/ /c(aT,s—l—r,Xr,z)q(dr,dz). (2.1)
0 0

For a € 2, s € [0,7] and x € R? define

’Ua(S,(E) = EQ(X%:S;I), ’U(va) = sup ’Ua(S,QC), ’Uh(S,(E) = sup Ua(8,$).
acA aeAp,

Theorem 1. Let Assumption 1 be satisfied. Then for each s € [0,T], x € R,
h e (0,1)
[v(s, ) — vp(s,x)] < Nh™,

where s = 863 /(2 + 600 + 8o — §) and the constant N depends only on T, K, d
and d; .

Remark 1. The largest value of s for 6y € (0,1], § € (0,1] is equal to 1/3 and
is achieved with §g = § = 1.

Theorem 1 can be used to reduce the problem of calculation of value function
v to that of value function vy, for piece-wise constant control policies.

Forae A, 0<s<t<oo,z€ R? and any Borel measurable bounded
real-valued function f on R? define

Geuf(2) =Ef(X0T7), Gouf(a) = sup G f ().
ac
According to the dynamic programming principle (see Lemma 1 in the next
section) for s + h2 < T
op(s,7) = Gy opp2on(s + h%, ) (2).

Therefore vy (s, x) can be found from its boundary value v, (T, -) = g(-) by
backward iteration.

In order to simplify the calculation one can apply the Euler scheme as the
simplest approximation of controlled process. For a € A, s,t > 0, x € R?
define

¢
Y0 =z +o(a, s, )Wy + b(a, s, 2)t + / /c(a, s,x, z) q(dr,dz)
0
and recursively
Tn(s,x) = g(z) if s€ (T —h? T,
Tn(s,7) = Gy o n2On(s + 1%, ) () if s <T —h?,

where

aszrtf(x) = Ef(y;fa)&m% as,s-i-tf(m) = Sug aszrtf(x)'
aec
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Theorem 2. Let Assumption 1 be satisfied. Then for each s € [0,T], x € R?
and h € (0,1)
[v(s,x) —Tp(s,x)| < Nh™,

3% =086%/(2+ 860+ 00 — &) and the constant N depends only on T, K, d and d;.

3 Auxiliary Results

The following lemma states the dynamic programming principle for the value
functions v and vy,.

Lemma 1. Let Assumption 1 be satisfied. Then:
(i) for each x € R* and 0 < s <t <T

v(s,x) = sup Bu(t, X;20%);
aeA

(ii) for each x € R and 0 < s <t < T such that (t — s)/h? is an integer

vp(s, ) = seugli) Eovp, (t, X;257).
@ h

The proof of the lemma is similar to that for controlled diffusion processes
(see Theorem 3.1.6, Exercise 3.2.1 and Lemma 3.3.1 in [1]) and therefore it is
omitted here.

In order to prove the main results of the paper, we introduce an auxiliary
controlled process and value functions u and uy, as follows. Let

By ={z € R%: |z| <1}, B=Ax{(r,¢):rec(-1,0), £ € B}.
We extend the functions o, b, ¢ for ¢t < 0 by
U(a7 t’I) = U(a507 'r)7 b(a7 t7I) = b(a707 'r)7 C(a7t7 x? Z) = C(a7 O7I7Z)

and for a fixed ¢ € (0,1) and each 3 = (o, 7,¢) € B,t € R, x € R* 2z € R™
define

o(B,t,x) = ooyt +e*ryx + ), b(B,t,x) = bla,t +%r, x + €),
c(Bt,w,2) = cla,t +%r,w + €€, 2).
Let B be the set of all measurable F-adapted B-valued processes and By, be
the subset of B consisting of functions which are constant on intervals [0, h?),
[h?,2h?), etc. Finally, for each 8 € B, s € [0, 5], z € RY, we define a controlled

jump-diffusion process X/'** t > 0, as a solution to (2.1) with o, replaced by
B, and the value functions

’U,'@(S’LL') = Eg(ngf)a U(S,(E) = sup ’U,B(S,(E), uh(s,x) = sup ’U,'@(S,LL'),
BeB BEDB)

where S = T + 2. Obviously, the process X/*** and value functions u,
depend also on € what is not explicitly shown just for brevity of notation.

Math. Model. Anal., 16(2):260-272, 2011.
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Remark 2. Since the controlled process X/*® and the value functions u, wy,
are defined in the same way as X;”*", v and vj,, Lemma 1 implies that for each
reRand0<s<t< S

u(s,z) = sup Eu(t,Xf}_’i’z)
BeB

and for each € R? and 0 < s < ¢t < § such that (t — s5)/h? is an integer

Uh(S,.I) = Ssup Euh(thf;?x)
BEDB

Let ygi), t>0,i=1,2, be d-dimensional solutions to the equations

t t t
%:wu/£@@%MM+/Mwmmwﬁ//w%MJMWJa
0 0 0

respectively, the coefficients of which are measurable and F-adapted random
functions satisfying the linear growth and Lipschitz conditions, i.e. for each
t>0,z,yce R, we Nandi=1,2

e, 2)|| + [pO (@) + 1D (t, 2, ) |lor < K (1 +|z),
o@D (t,z) — oD (t,y)| + 69 (t, z) — bD (¢, y)]
+ [l (t, 2z, ) — Dty y, ) or < Kz — y)).

Lemma 2. Let the above assumptions be satisfied and T € (0,00). Then there
is a constant N = N(K,T) such that

T
Esup [y — o7 < N(ja® 2P +E [ (|0 (s.5) - o5,
< 0
+ |b(1) (87 yg2)) - b(2) (87 y§2))|2 + ”c(l)(sv ygz)v ) - 0(2) (87 y§2)7 )H%,H) ds.
Proof. Using well-known properties of stochastic integrals, we have
T
Esup [y — 5 < N(ja 2@ +E [ (o (s,5) - (s,
< 0

+ |b(1)(87y.§1)) - b(2)(87y.§2))|2 + ”c(l)(su ygl)u ) - 0(2) (87 y£2)7 )| %,H) dSa

(3.1)

where the constant N depends only on K and T'. According to our assumptions,
o (5,587) = 02 (5,5 | < Ky = 5@+ oD (s,52) — 025,52
and similar inequalities hold for other terms on the right-hand side of (3.1).

Therefore, the assertion of the lemma follows by Gronwall’s inequality. 0O

Lemma 3. Let Assumption 1 be satisfied, s,s' € [0,S], z,y € R and B =
(a,7,&) € B. Then there is a constant N = N(T, K) such that

Esup | X/5% — X572 < Ne?% | Esup |X5" — XP*Y)? < N|z — y|?,
t<S t<S

E sup |X,5B’S’w — Xf’s/’””|2 < N|s— s’|5“,
1<S
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Proof. The estimates of the lemma follow easily from Lemma 2 and Assump-
tion 1. For example,

Esup | X% — X572 < Nsup(||o(a, t + &2,z + €) — oo, t, z)||?
t<S

+ b(, t + 2r, 2 + €€) — bla, t, x)|?
+ |le(a, t + e2r, x + €€, ) = (o t, x, )||§H) < Ne2%,

where N = N(T, K) and sup is taken over « € A, t < S, r € (—1,0), z € R?,
£eB;. O

Remark 3. Lemma 2 and Holder’s inequality imply that for each o € 2, s, > 0,
r € R%and p € (0,2]

E[X25" — gt < {EX5" — 2)?}? < Nt2,
where the constant N = N(K).

Lemma 4. Let Assumption 1 be satisfied. Then for each s € [0,T], x € R?
and B = (a,1,§) € B

[uP (s, 2) — v¥(s,z)| < Ne®?, |u(s,z) — v(s,z)| < Ne%°,
lun (s, ) — vn(s,z)| < Ne%?,
where the constant N = N(T, K).

Proof. As can be easily seen, it suffices to prove the first inequality. By As-
sumption 1, Holder’s inequality and Lemma 3,

(s, 2) — v (s,2)| < Elg(X57") — g(X°0)]
< KE|XG*F — X307 < K{E|X$®" — Xgo 0Py
< ZK{E|X§3551_Xﬁsm|2+E|XBsm_ X2 )2 16/2
< N(a + 8260)6/2 < N9, O

Lemma 5. Let Assumption 1 be satisfied. Then there is a constant N =
N(T,K) such that:

(i) for each s € [0,S] and x,y € R?
u(s, @) = u(s,y)] < Nlz—y|°, |un(s,2) — un(s,y)| < Nlz - y|’;
(ii) for each 0 < s <t < S and x € R?
lu(s, z) —u(t,z)| < Nt —s|*2,  |un(s,z) —u(t,z)| < N(h%% + |t — s]°/?).
Proof. (i) By Assumption 1, Holder’s inequality and Lemma 3,
u(s, ) — u(s,y)| < sup Elg(X5°") — g(X5°Y)| < K sup E| X557 — X5y

BeEB
<K sup{E|X" ST XD < N|x —yl’.
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The same arguments prove the second assertion in (i).
(ii) By Remark 2, the assertion (i), Holder’s inequality and Lemma 2,

lu(s, z) —u(t,z)| = | Sup Bu(t, X% —u(t,z)| < N Sup E| X257 _ g8
<N Sup{Elef;”” — 2} < NJt - s|5/2.
peDB

Similarly, if (t — s)/h? is an integer,
lun (s, ) — up(t,z)| < Nt — s|*/2. (3.2)

On the other hand, by Holder’s inequality and Lemmas 2, 3, for each 0 <
s<t<S8andx e R?
un(s,z) — un(t, )| < sup Elg(X5°7) — g(XE40)
€Dy
< K sup E|XB”C X§t$|5 < K sup {E|XB”” ngf|2}5/2

BEDB BEBR
< 2K sup {E|X§,_s,sz _ Xﬁ sz|2 —|—E|Xﬁ s,x ng%y|2}6/2
BEDB
< N(Jt — s 4|t — 5|)%/2 < Nt — 5]%%/2, (3.3)

The inequalities (3.2) and (3.3) imply the second assertion in (ii). The lemma
is proved. O

For a € A and smooth functions f : [0, 00) x RY — R introduce the operator
d

Lof(t,z) = %(t,x) + Jz_:l aij(a,tjx)%éf%(tjx)
d of 2
+ ;bi(a,t,x) o (t,z) + /Rm V2w (L) T (d2),
where a = %UU* and
d
vif(tvx):f(t:v-i-y Z

Let a nonnegative function ¢ € C§°((—1,0) x By) be such that

0
/ C(t,z)dtde = 1.
—1JB;

For ¢ > 0 define (.(t,x) = e~ 472((t/e%,x/¢). Further we use the following
notation:

FO(t,2) = / Gt = 5. = (s, 9) dsdy, [flo = s 17t

R+ z€R?

U ) B { )]
2 steoT|5_t|%/2+|‘T y|%7
zyGRd

» € (0,1].
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Lemma 6. Let Assumption 1 be satisfied and € > h%. Then for each o € A
[Laugf)]éTo760 S N572760+6,
where the constant N = N(T,K,d,dy).

Proof. Using Lemma 5 and the inequality € > h%, we have for s € [0,7] and
r € R?

’%ugg)(s,x)} =c2

0
/Rd+1 up(s —er, o — a{)%C(T, &) dr d{‘

:5_2/ [up(s — e%r,x — €) — up(s, )] a((r{“ drd§’
Rd+l 8
< Ne 2(h9%% 4 %) < Ne=2+9 (3.4)
and
0 _ 0
oz, ugf)(s,x)‘ = ! /Rd+1 up(s — e%r,x — €f) BzviC(T’ &) dr d{‘
= ! / [un(s — e%r,x — &) — up(s, z)] =— 9 ¢(r, &) drd§‘
Rd+1 8IEZ
< Ne H(ho% 4 £%) < Ne= 19, (3.5)
Similarly,
% (9 2
< Ne= 249 .
8;101-8%» h ’ = ’ (3 6)
93
Y Lu©| <« N3t
Bsaxzu ’axzaxjaxk” o= "'F ’ (3.7)
w© < Ne—4+o 3.8
85 ’8581318% = ' (3.8)
Let us prove the inequality
9 —2-§0+8
[%uﬁj‘)}é_o L S Ner, (3.9)

Assume that |t — s|2 + |z — y| < . Then using (3.7) and (3.8) we have

yl‘—a uy)
9sdx; "
< N(|t — s|le™F0 4 |z — y|e 319

< Nem2700H8 (|t — g|F 4 |z — y|%).

6 g 6 g g
%ug)(s,x)—a—ug)(t y)’<|t—s|‘ h)

+ N|x —
0

0

Assume that |t — s|2 4 |z — y| > &. Then using (3.4) we have

: (e) : () ’ ’ ¢ (e) —246
t <2|—u < Ne¢
S’Lbh (S,I) Uy, ( ,y) ~ S h 0=

Js

]
< Ne 270080 (|t — 5|2 4 |z — y|%),
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and (3.9) is proved.
Using similar arguments, Assumption 1 and estimates (3.4)—(3.8), we easily
prove that for each o € A, i,j=1,...,d

82 (5) a (E) 26
9 < No-2-d0+s '
[&Eiaiﬂj “h ]%“,50 + L?a:iuh } 30 5o Ne ’ (3.10)

0? R 9 o
[aij(a,-,-)8x_ax_u§l)(.7.)} s t {bi(a’.")ax-ug)("')} , , SNe 25045
? J - 590 i 980

It remains to prove the estimate

[ i) e,

%0
<%0

Obviously,
‘/ Vz(a s,w,z)ugj)( ) (dZ) /Vi(a,t,y,z)ugf) (tv y)H(dZ)
/ |vc(a s,z z)uh (87 ‘T) - vg(a,s,z z) (5 (t y)lH(dZ)

+ / |vg(a,s,m,z)u§1€) (t7y) v?(a ty, z)uh (t y)|H(dZ) =L+ 1.

Using the formula

32u§f)
3 I Z / 1-— (93318333 (S, x + Qy) deiyja

i,j=1

(3.10) and Assumption 1, we have

o

I < 83:1-8333 uy,’(s,x+ Oc(a, s, 2, 2))

1,7=1

_ (5) ) )
207 (t,y + Oc(a, s, x, z))} dOc;(a, s, z, z)cj(, s, x, 2)| I (dz)

<N max [

o], et s, )3
i,j=1,...,

O0x;0x; 20 54
S
X (|t = 5| + |z — /%) < Ne™270040 (|t — 5| F 4 |z — y|),
To estimate I, we notice that for each &,1 € R?

V2 (t,y) — V2l (ty)]

I 9 .
|2 [ [k ey 0 06 =) — il )] a6l — )

=1

|, (1€l + 1mDle = nl-

‘ 0
ij=1,...d' 0x;0x;
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Therefore, by Holder’s inequality, (3.6) and Assumption 1,

I < N572+5/(|0(0475,3372)| + le(ast, y, 2)|)|e(e s, 2, 2) — c(a,t, y, 2) |11 (dz)
< N572+6(||C(055 S, T, ')HZH + ||C(Oé, tvya ')HZH)”C(OQ S, T, ) - C(aa tvya ')HZH
< Ne 2H9(|t — 5|%0 + |z —y| A1) < Ne 2F9(|t — s|670 + |a — y]|%.

The lemma is proved. 0O

4 Proof of Main Results

Proof of Theorem 1. Since vy, < v, it suffices to prove that for each s € [0, T
and = € R?

v(s,x) < wp(s,x) + Nh™. (4.1)
If s € [T — h?,T], then, by Remark 3, for each o € 2

0% (s,2) — g(x)| < Elg(X77)") = g(2)] < KE[X7%) — 2|” < N,

Thus we have to prove (4.1) for s < T — h? assuming without loss of
generality that 7 > h2. Denote ¢ = h*/(%%)  Let f = (a,7,&) € By, and
t < h2. As can be easily seen,

B,s,x a,s+52r,z+5£
X, =X, —e€.

Therefore, by Remark 2, for each 8 = (a,r,&) € B, s € [0,S — h?] and
r € R?

un(s,x) > Buy(s + h?, X}fz;s’m) = Euy(s + h?, X}?Z,’SJFEQT’EJFEE —&f)
or for each a € A, 7 € (—1,0), £ € By, s < S —h%? +e%r and x € R?
up(s — e’r,x — e€) > Eup(s — e%r + h%, X557 — £€).

Multiplying the last inequality by the smooth kernel ¢ defined in Section 3
and integrating, we get for each a € A, s <T — h? and = € R?

ugf)(s, x) > Eugf) (s +h% X 557).

This inequality, together with Itd’s formula, implies
h2
IE/O Lo‘ugf)(s +r, X% dr <0.
Hence, by Remark 3 and Lemma 6, for each o € A, s <T — h? and = € R?
1
Lo‘uff)(s, x) < ﬁE/O [Lo‘ugf)(s,x) - Lo‘ugf)(s + 7, X50) dr

1"
< LU / (rF £ E|X®5% — g|%) dr < Ne=2-%0+6p0,

s _
70;50 h?2 0

Math. Model. Anal., 16(2):260-272, 2011.
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Therefore, by Ito’s formula, for each a € A, s < T — h? and = € R?

Eugf)(T — R XN ) — ugf)(s,aj)
T—h%—s
=E / Lo (s + £, X25%) dt < Ne= 2 00t0p%,
0

Since, by Lemma 5,

|ug€)(s, z) — un(s, z)| < / un(s — e, — &) — un(s, 2)|((r, &) dr d€
Rd+1
< N(h% 4+ &%) < N&°,
we have

Eun(T — h%, X X255 ) <un(s,x)+ N gd 4 72700+ pdoy,
h2?2—s

Furthermore, by Lemma 5,
un(T — h?,2) — g(x)| = Jun(T — h%,2) — up (S, 7))
< N((% + h?)? + hP%) < N&°.
Hence
Eg(X7%5% ) < un(s,x) + N(e? + =200+ pd0),
and, by Remark 3 and Lemma 4,
v (s,x) = Bg(X77) < Elg(X720) — 9(X7700 2| + Eg (X770 )

< KE|X3%" — X0or h2|5 +Eg(X35 )
< up(s, ) + N(h® 4 ° 4 g7 2700 F0 )
< vp(s,x) + N (20072 %0+0pdo)

The theorem is proved. O

Proof of Theorem 2. Fix h € (0,1) and for a € B, define the process T; =

—Q, S,

T, """ (h) recursively by
To = 7,
Ty = Tpp> + 0(anp2, 5 + 12 Tp2 ) (W — Wiap2)
+ b(apn2, s +nh? T2 ) (t — nh?)

/ / Qnp2, 8 +nh? T2, 2) q(dr, dz)

for nh? <t < (n+ 1)h%. Tt is easy to see that T, (h) satisfies the equation

t

t
T, = :E—l—/ o(ar, s+ 2, (1), T,y (r)) AWy —|—/ b(owr, s + 2an(7), Tsey, () dr
0

//m (s + 20 (1), Toey (), 2) q(dr, d2), (4.2)
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where s, (t) = h?[;5]. Let

Uy (s @) =Eg(@ ir_ (h)).

Notice that the function v, defined in Section 2 satisfies the dynamic pro-
gramming equation for the problem of maximizing v (s, z) over o € y,. There-
fore,

Tp(s,x) = sup Ty (s,x).
acAyp

Rewrite (4.2) as

t t t
T—a+ / (@) W, + / .(z,) dr + / / & (T, ) qldr, d2),
0 0 0 m

where
Fu(y) = olan, s+ D),y + 755 () = T ()

and similarly are defined b;(y) and (y, z). Then, by Lemma 2, for each o € 2,,
s€[0,T] and z € R?

T
Bsup[{ — X7 < NE [ (Jofew,s +1,.X77) ~ (X7 P
0

+[b(a, s + £, X{00F) = b (X))
+lle(ar s+, X707, ) = e(X0",)|I5 ) dt

<N/ (% + B[z (h) =T (h)[?) dt < Nh*.

This estimate and Remark 3 imply that for each o € 2y, s € [0,7] and z € R?

o (s, @) — B (s, )| < Blg(XG5) — g@2%a_ (1))

«,s,T —,s,T ) 50,
< KE|IXG00 — 700 (B)° < NRO.

Hence, for each s € [0,7] and z € R?
lon (s, ) — Tp (s, )] < NhO%

what, together with Theorem 1, implies the assertion of the theorem. 0O
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