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Abstract. The conditions when solutions of Huxley equation can be expressed in
special form and the procedure of finding exact solutions are presented in this pa-
per. Huxley equation is an evolution equation that describes the nerve propagation
in biology. It is often useful to obtain a generalized solitary solution for fully un-
derstanding its physical meanings. It is shown that the solution produced by the
Exp-function method may not hold for all initial conditions. It is proven that the
analytical condition describing the existence of the produced solution in the space of
initial conditions (or even in the space of the system’s parameters) can not be derived
by the Exp-function method because the question about the existence of that solu-
tion is omitted. The proposed operator method, on the contrary, brings the load of
symbolic computations before the structure of the solution is identified. The method
for the derivation of the solution is based on the concept of the rank of the Hankel
matrix constructed from the sequence of coefficients representing formal solution in
the series form. Moreover, the structure of the algebraic-analytic solution is generated
automatically together with all conditions of the solution’s existence. Computational
experiments are used to illustrate the properties of derived analytical solutions.

Keywords: Nonlinear differential equation, Hankel matrix, algebraic-analytical solution.

AMS Subject Classification: 34A45; 34A25.

1 Introduction

Huxley equation is a core mathematical framework for modern biophysically
based neural modelling. It is often useful to obtain a generalized solitary solu-
tion for fully understanding its physical meanings. The traditional approaches
to this task are variational iteration method [1], the homotopy perturbation
method [4, 16], Adomian‘s decomposition method [6], the tanh method [6],
the Exp-function method [7, 19]. Approximate numerical tools describing
Hodgkin-Huxley models help to identify peak currents in biological systems,
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[17]. The Hodgkin-Huxley reaction-diffusion system [8] plays an important
role in graph structures describing real neurons. Recent numerical approaches
for the solution of this demanding nonlinear problem are described in [2] where
finite-difference schemes and in [3] where parallel predictor-corrector schemes
for parabolic problems on graphs are employed. It is often useful to obtain a
generalized analytical solitary solution for fully understanding physical mean-
ings of nonlinear processes taking place in Hodgkin-Huxley models. However,
many methods for the construction of an analytical solution may sometimes
fail or the solution procedure becomes complicated as the degree of nonlinear-
ity increases. An analytical criterion determining if a solution of a differential
equation can be expressed in an analytical form comprising exponential func-
tions is developed in [12]. The employment of this criterion does not only give
an answer to the above-stated question but gives the structure of the solution
so that one does not have to guess what the form of the solution is. The load of
symbolic calculations is brought before the structure of the solution is identi-
fied. This is in contrary to the Exp-function type methods where the structure
of the solution is first guessed, and then symbolic calculations are exploited for
the identification of parameters. Hodkin and Huxley presented [8] the results
of electrophysiological experiments in which they investigated the flow of elec-
tric current through the surface membrane of the giant nerve fiber of a squid.
Huxley equation is a nonlinear partial differential equation of second order of
the form ut = uxx + u (k − u) (u− 1). This equation is an evolution equation
that describes the nerve propagation in biology. From this equation molecular
properties can be calculated. It also gives a description of the behaviour of the
miosin heads. This equation has many fascinating phenomena such as bursting
oscilation, interspike, bifurcation and chaos.

The Soliton model in neuroscience is a recently developed model that at-
tempts to explain how signals are conducted within neurons. It proposes that
signals travel along the cell’s membrane in the form of certain kinds of sound
(or density) pulses known as solitons. This model presents a direct challenge
to the widely accepted Hodgkin-Huxley model [8] which proposes that signals
travel as action potentials: voltage-gated ion channels in the membrane open
and allow ions to rush into the cell, thereby leading to the opening of other
nearby ion channels and thus propagating the signal in an essentially electrical
manner.

Using the wave variable η = ωx+ vt was obtained

−vu′ + ω2u′′ + u (k − u) (u− 1) = 0, (1.1)

where ω, k, v ∈ R.

The solitary solution of the Huxley equation, produced by the Exp-function
method, does not satisfy the original differential equation for all initial condi-
tions. We have used an alternative operator-based method to derive the solitary
solution of the Huxleys equation and have identified the region (in the param-
eter plane) of the initial conditions, where this solution does exist.
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2 Auxiliary Results

All the necessary notations, definitions and theorems associated with stating
conditions, under which the power series solution of a differential equation can
be reduced to a finite sum of standard functions, are presented below.

2.1 Structures of analytical solutions

Let two polynomials are defined as follows:

P1 (v, s) =
∑

k,l∈Z0

aklv
ksl; P2 (v, s, t) =

∑

k,l,r∈Z0

bklrv
ksltr;

where akl and bklr are fixed real (or complex) numbers; v, s and t are real (or
complex) variables. Then it is possible to construct two ordinary differential
equations with initial conditions:

y′x = P1 (x, y) , y = y (x, v, s) ; y (v, v, s) = s (2.1)

and

w′′
xx = P2 (x,w,w

′
x) ; w = w (x, v, s, t) ;

w (v, v, s, t) = s; w′
x (x, v, s, t)|x=v = t. (2.2)

Usual differentiation operations in respect of variables x, v, s and t are denoted
by symbols Dx, Dv, Ds and Dt. Then it is possible to construct generalised
differential operators Dy and Dw in respect of variables y and w [10]:

Dy := Dv + P 1 (v, s)Ds, Dw := Dv + tDs + P 2 (v, s, t)Dt.

These generalized differential operators satisfy all usual relationships of differ-
ential operators. Generalised differential operatorsDy and Dw can be exploited
to construct analytical solutions y (x, v, s) and w (x, v, s, t) of differentials equa-
tions (2.1) and (2.2) [10]:

y =

+∞
∑

j=0

(x− v)j

j!
Dj

ys, w =

+∞
∑

j=0

(x− v)j

j!
Dj

ws,

which converge in some nonempty neighbourhood |x− v| < ε in the complex
plane. Furthermore, functions y = y (x, v, s) and w = w (x, v, s, t) can be
extended into the whole complex plane with the exception of possible singular
points. Here Dj

ys and Dj
ws are generalised differentiation [10] and, for instance,

Dys = P1(v, s), D2
ys = (P1(v, s))

′
v + P1(v, s))(P1(v, s))

′
s.

2.2 Structure of analytical – algebraic solutions

It is important for many engineering applications to obtain analytical – alge-
braic representations of solutions in the form:

y =

m
∑

r=1

µrfr (ρ (x− v)),
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where m ∈ N ; µr ∈ C; fr and ρ are ordinary functions. We will define the H-
rank and associated H-eigenvalues for the construction of special analytical –
algebraic solutions. Let (pj ; j ∈ Z0) is a sequence of numbers or functions.
Then the corresponding sequence of Hankel matrixes (H1, H2, . . .) reads:

H1 :=
[

p0
]

; H2 :=

[

p0 p1
p1 p2

]

; H3 :=





p0 p1 p2
p1 p2 p3
p2 p3 p4



 ; . . .

and the sequence of determinants of these matrixes is denoted as (dk; k ∈ N),
where dk = detHk.

Definition 1. A sequence (pj ; j ∈ Z0) has an H-rank equal to m if dm 6= 0
but dm+n = 0 for all n ∈ N . The following notion will be used throughout the
manuscript:

Hr (pj ; j ∈ Z0) = m. (2.3)

Let (2.3) holds for a sequence (pj; j ∈ Z0). Then it is possible to construct
a characteristic H-equation [13]:

det













p0 p1 · · · pm
p1 p2 · · · pm+1

· · ·
pm−1 pm · · · p2m−1

1 ρ · · · ρm













= 0. (2.4)

Definition 2. Roots ρ1, ρ2, . . . , ρm of the characteristic H-equation (2.4) are
H-eigenvalues of the sequence (pj ; j ∈ Z0)

Theorem 1. Let the H-rank of a sequence (pj ; j ∈ Z0) is m. Moreover, let all
H-eigenvalues of that sequence are different: ρk 6=ρl for k 6= l (k, l=1, 2, . . . ,m).
Then, following equalities hold true:

pj =

m
∑

r=1

µrρ
j
r; j = 0, 1, 2, . . . . (2.5)

The proof of Theorem 1 is given in [11].
It can be noted that coefficients µ1, µ2, . . . , µm can be found by solving a

linear system of algebraic equations which consists of m different equalities
of (2.5) (H-eigenvalues ρ1, ρ2, . . . , ρm must be determined beforehand). The
simplest system is produced when the first m equalities of (2.4) are selected
(for j = 0, 1, . . . ,m − 1). But the same results can be produced for j =
k1, k2, . . . , km; 0 ≤ k1 < k2 < · · · < km. Moreover, this linear system of
algebraic equations has a unique solution. The sequence defined by (2.4)is
called an algebraic progression.

Let us assume that the following relationship holds for a sequence
(Dj

ys; j ∈ Z0):

Hr

(

1

j!
Dj

ys; j ∈ Z0

)

= m.
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Then, using Theorem 1 was obtained that

Dj
ys = j!

m
∑

r=1

µrρ
j
r, (2.6)

where µr=µr (v, s); ρr=ρr (v, s); ρk 6=ρl for k 6= l. For instance, when m = 1

D0
ys = µ1(v, s), Dys = µ1(v, s)ρ(v, s) = P1(v, s) = sρ(v, s),

i.e.ρ(v, s) = P1(v, s)/s and Dj
ys = j!s(P1(v, s)/s)

j.

Equation (2.6) can be exploited for the construction of the solution of dif-
ferential equation (2.1) in the form of a power series:

y =
+∞
∑

j=0

(x− v)
j

j!
Dj

ys =
+∞
∑

j=0

(x− v)j
m
∑

r=1

µrρ
j
r =

m
∑

r=1

µr

+∞
∑

j=0

(ρr (x− v))j (2.7)

which converges in the neighbourhood |x− v| < min
r

|ρr|
−1

. But the power

series (2.7) can be extended for all values of the variable x with the exception
of such values of x where ρr (x− v) = 1. In other words, the function y =
y (x, v, s) takes the following form:

y =

m
∑

r=1

µr (v, s)

1− ρr (v, s) · (x− v)
. (2.8)

Equation (2.8) is the analytical-algebraic solution of differential equation (2.1).

Following the papers [5, 15] the differential equations with Cauchy condi-
tions

y′x = a
(

y2 + αy + β
)

, (2.9)

where y = y (x, v, s) and y = y (v, v, s) = s, and

w′′
xx + b̂w′

x = â
(

w3 + α̂w2 + β̂w + γ̂
)

, (2.10)

w = w (x, v, s, t) and w = w (v, v, s, t) = s, w′
x = w (x, v, s, t)|x=v = t are called

the Riccati and Huxley equations respectively. Here the parameters a, α, β, b̂,
â, α̂, β̂, γ̂, s, t are real (complex) fixed numbers, besides, a, â 6= 0.

Using the algorithm of solution for differential equations and a change of
variables [13], it was obtained that the solution of the Riccati differential equa-
tion has the following form:

y (x, v, s) =
y2 (s− y1) exp (ay1 (x− v))− y1 (s− y2) exp (ay2 (x− v))

(s− y1) exp (ay1 (x− v))− (s− y2) exp (ay2 (x− v))
. (2.11)

But the Huxley differential equation has a solution expressed by (2.11) form
only with special Cauchy conditions whitch will be discussed further.
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2.3 Expanding and narrowing an ordinary differential equation

In paper [13] the algorithm of expansion and narrowing of differential equations
is presented and from this algorithm the theorem follows:

Theorem 2. Let two differential equations (2.1)and (2.2) be given. The rela-
tionship

w (x, v, s, P1(v, s)) = y (x, v, s)

holds true if and only if such identity is satisfied :

∂P1 (v, s)

∂v
+ P1 (v, s)

∂P1 (v, s)

∂s
:= P2 (v, s, P1(v, s)) . (2.12)

Proof of this theorem is given in [13].

Definition 3. The differential equation (2.2) is an expanded differential equa-
tion (2.1) and the differential equation (2.1) is a narrowed differential equa-
tion (2.2).

3 Expansion of Riccati Differential Equation to Huxley

Differential Equation

3.1 Composition of expansion

For the Riccati differential equation (2.9) is given as

P1 (v, s) = a
(

s2 + αs+ β
)

= a (s− y1) (s− y2) .

For the Huxley differential equation (2.10) is given as

P2 (v, s, t) = â
(

s3 + α̂s2 + β̂s+ γ̂
)

− b̂t = â (w − w1) (w − w2) (w − w3)− b̂t.

Here y1, y2 and w1, w2, w3 are roots by variable s of polynomials P1 (v, s) and
P2 (v, s, t) respectively.

Regarding expression (2.12) from Theorem 2 and choosing right sides of
equations (2.9) (y′x = P1(v, s)) and (2.10) (w′′

xx = P2(v, s, t)) the expansion of
Riccati differential equation to Huxley differential equation is obtained

∂P1

∂v
+ P1

∂P1

∂s
= a

(

s2 + αs+ β
)

a (2s+ α) , (3.1)

P2|t=P1
= â

(

s3 + α̂s2 + β̂s+ γ̂
)

− b̂a
(

s
2

+ αs+ β
)

. (3.2)

Using (2.12) relationships and after performing usual algebraic operations the
following expression is obtained from (3.1) and (3.2):

2a

(

s3 +
3α

2
s2 +

(

α2

2
+ β

)

s+
αβ

2

)

= â

(

s3 +

(

α̂−
b̂a

â

)

s2 +

(

β̂ −
b̂aα

â

)

s+

(

γ̂ −
b̂aβ

â

))

. (3.3)

Math. Model. Anal., 16(2):248–259, 2011.
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From relationships (3.3) it follows that expansion of Riccati differential
equation to Huxley differential equation is possible if and only if the equalities

â = 2a2, α̂−
b̂a

â
=

3α

2
, β̂ −

b̂aα

â
=

α2

2
+ β, γ̂ −

b̂aβ

â
=

αβ

2
(3.4)

are satisfied. For simplicity, if b̂ := b then we obtain from (3.4) that

â = 2a2, b̂ = b, α̂ =
b

2a
+

3α

2
, β̂ =

α2

2
+ β +

αb

2a
, γ̂ =

αβ

2
+

bβ

2a
. (3.5)

If the equalities (3.5) are satisfied, then Huxley differential equation, ob-
tained from Riccati differential equation has the following form

w′′
xx + bw′

x = 2a2
[

w3 +

(

3α

2
+

b

2a

)

w2

+

(

α2

2
+

αβ

2a
+ β

)

w +

(

αβ

2
+

bβ

2a

)]

. (3.6)

It follows from the Viète theorem that α = − (y1 + y2) and β = y1y2, the
relationships (3.6) is given by:

w′′
xx + bw′

x = 2a2
[

w3 +

(

b

2a
−

3 (y1 + y2)

2

)

w2

+

(

(y1 + y2)
2

2
−

y1 + y2
2a

+ y1y2

)

w +

(

by1y2
2a

−
(y1 + y2) y1y2

2

)

]

and it is equivalent to the relationship

w′′
xx + bw′

x = 2a2 (w − y1) (w − y2)

(

w −
1

2
(y1 + y2 − b)

)

.

Theorem 3. Structural solution (2.11) satisfies differential equation (2.2) if
and only if the relationship

w3 + α̂w2 + β̂w + γ̂ = (w − y1) (w − y2)

(

w −
1

2

(

y1 + y2 −
b̂

a

))

(3.7)

holds true.

It must be noticed that expression (2.11) is only a particular solution of
Huxley differential equation (2.2) which satisfies the relationship:

w (x, v, s, a (y − y1) (y − y2)) = y (x, v, s) (3.8)

or has such Cauchy conditions

w (v, v, s, t) = s, w′
x (x, v, s, t)|x=0 = a (s− y1) (s− y2) . (3.9)
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In case when y1 = y2 := y0, from (2.1) we obtain the Riccati differential
equation

y′x = a (y − y0)
2

and its common solution

y (x, v, s) = y0 +
s− y0

1 + a (y0 − s) (x− v)
.

Then relationships (3.8) and (3.9) have the following form:

w
(

x, v, s, a (y − y0)
2)

= y (x, v, s) (3.10)

w (v, v, s, t) = s, w′
x (x, v, s, t)|x=v = a (y − y0)

2
(3.11)

and condition (3.7) has the form

w3 + λ̂w2 + β̂w + γ̂ = (w − y0)
2
(

w − y0 + b̂/(2a)
)

.

3.2 Special solutions of Huxley differential equation: condition of
existence

The expression (3.8) and analogous expression (3.10) are considered as special
solutions of Huxley differential equation. From relationship (3.6) using Viète
theorem such system of equalities



















y1 + y2 + 0.5
(

y1 + y2 − b̂/a
)

= −α̂,

y1y2 + 0.5y1

(

y1 + y2 − b̂/a
)

+ 0.5y2

(

y1 + y2 − b̂/a
)

= β̂,

0.5y1y2

(

y1 + y2 − b̂/a
)

= −γ̂.

(3.12)

was obtained. From system (3.12) after elimination y1+y2 and y1y2 the equality

(

b̂− 2aα̂
)((

b̂+ aα̂
)

+ 9β̂a2
)(

b̂+ aα̂
)

= 27a3γ̂ (3.13)

was obtained. From (3.13), the following theorem follows.

Theorem 4. Relationship (3.7) holds true if and only if the equality (3.13) is
correct.

So, the equality (3.13) together with system of equalities (3.12) allows to
establish existence of special solution of the Huxley differential equation and if
this solution exists, we can find values of parameters a, y1 and y2.

It must be noticed that if in relationship (2.2) the parameters b̂ = 0 and
b = 0, then the Huxley differential equation reduces to the Maccari differential
equation [18] with adequate special solutions and conditions of existence.

Math. Model. Anal., 16(2):248–259, 2011.
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4 Computational Experiments

Let the Huxley differential equation

w′′
xx + w′

x = 2
(

w3 − 4w2 + 5w − 2
)

;

w = w (x, v, s, t) , w (v, v, s, t) = s, w′
x (x, v, s, t)|x=v = t (4.1)

be given. Then â = 2, a = 1, b̂ = b = 1, α̂ − 4, β̂ = 5, γ̂ = −2. From system
of equations (3.12), it is obtained that y1 + y2 = 3 and y1y2 = 2, i.e. y1 = 1,
y2 = 2, besides the relationship (3.13) is satisfied. Thus, the special solution of
Huxley differential equation has a form:

w (x, v, s, (s− 1) (s− 2)) =
2 (s− 1) ex−v − (s− 2) e2(x−v)

(s− 1) ex−v − (s− 2) e2(x−v)
, (4.2)

when Cauchy conditions are w(v, v, s, (s − 1)(s − 2)) = s and w′
x(x, v, s,

(s− 1)(s− 2))|x=v = (s− 1)(s− 2) and s is a real (complex) number.
The surface of graphical representation of the initial conditions at s = 0,

s = 3 and s = 5, t = y′ (x)|x=v = (s− y1) (s− y2) is plotted in Fig. 1. Here
variables on axes Ox and Oy are y1 and y2 respectively.

Figure 1. A graphical representation of the initial conditions at s=0, s=3 and s=5,
t = y′ (x)|

x=v
= (s− y1) (s− y2)

The validity of the produced results by a computational experiment is per-
formed. The initial problem (4.1) is solved using approximate computational
constant step marching technique. Let us denote the approximate partial so-
lution w̃k(0+ hk), k = 0, 1, 2, . . ., where w̃k depends on both initial conditions,
h is the step size and ỹ0 = s, where the analytical-algebraic partial solution
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Figure 2. The distribution of errors (4.3) between the analytical solution and the
computational solution in the parameter plane of initial conditions.

of (4.1) is defined on (4.2). But the constraint (4.2) was released and it was as-
sumed that the solution (4.1) is valid in all space of initial conditions. The 100
steps from the predefined initial conditions were travelled and the differences
between the approximate computational solution and the analytical “solution”
defined by (4.1) was computed:

ε(s, t) =

100
∑

k=1

|εk| =
100
∑

k=1

∣

∣

∣

∣

w̃k(hk)−
2 (1− s) exp (hk)− (2− s) exp (2hk)

(1− s) exp (hk)− (2− s) exp (2hk)

∣

∣

∣

∣

. (4.3)

The distribution of ε(s, t) is illustrated in Fig. 2. Numerical values of ε(s, t)
higher than 100 are truncated to 100 in order to make the figure more com-
prehensive. It can be clearly seen that errors are almost equal to zero on the
curve defined (4.2).

5 Concluding Remarks

The Exp-function method, with the help of symbolic computation, provides a
powerful mathematical tool for solving high-dimensional nonlinear evolutions
in mathematical physics. Unfortunately, there have been a number of cases
when straightforward and formal application of the Exp-function method has
produced irrelevant results. Seven typical errors done when using the Exp-
function method are discussed and illustrated in detail in [9, 14].

The solution produced by the Exp-function method may not hold for all ini-
tial conditions. We argue that the analytical condition describing the existence
of the produced solution in the space of initial conditions (or even in the space of
the system’s parameters) cannot be derived by the Exp-function method. The
Exp-function method is based on two main steps (omitting transformations
and variable changes leading to a nonlinear ordinary differential equation). In
the first step we should define the structure of the algebraic-analytical solution.
The second step consists in using symbolic computations for the determination

Math. Model. Anal., 16(2):248–259, 2011.
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of unknown parameters of the solution. The question about the existence of
that solution is typically omitted. The operator method, on the contrary, brings
the load of symbolic computations before the structure of the solution is iden-
tified. Moreover, the structure of the algebraic-analytic solution is generated
automatically together with all conditions of the solution’s existence.
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