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Abstract. Low-dimensional models, allowing quick prediction of fluid behaviour,
are key enablers of closed-loop flow control. Reduction of the model’s dimension and
inconsistency of high-fidelity data set and the reduced-order formulation lead to the
decrease of accuracy. The quality of Reduced-Order Models might be improved by
a calibration procedure. It leads to global optimization problem which consist in
minimizing objective function like the prediction error of the model.

In this paper, Reduced-Order Models of an incompressible flow around a bluff
body are constructed, basing on Galerkin Projection of governing equations onto a
space spanned by the most dominant eigenmodes of the Proper Orthogonal Decompo-
sition (POD). Calibration of such models is done by adding to Galerkin System some
linear and quadratic terms, which coefficients are estimated using Genetic Algorithm.
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1 Introduction

Numerical analysis of fluid flow, based on the Direct Numerical Simulation
(DNS) of Navier–Stokes or Euler equations, Large Eddy Simulation (LES) or
even Reynolds-averaged Navier–Stokes (RANS) analysis with various turbu-
lence models, are very time-consuming - especially when complex geometries
(like full aeroplane configuration) are analyzed. These high-fidelity models re-
quire computational grids of thousands (2D) or millions (3D) of degrees of
freedom to cover all important vertex scales.

In the cases when an approximate flow solution is satisfactory (e.g. aero-
elastic analysis [22]), or solution time is crucial (e.g. real-time, feedback flow
control [15]), low-fidelity, Reduced Order Models (ROMs) might be used.

The truncation of mode basis and the inconsistency of reduced order for-
mulation and full-dimensional data lead to a loss of quality, that might be
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improved using model calibration.

2 Reduced Order Modelling

2.1 Galerkin method

One of the most widely used methods of flow model reduction is projection of
the residual of governing equation (2.1):

u̇[N ] +∇ · (u[N ] ⊗ u[N ]) +∇p[N ] − ν4u[N ] = R[N ], (2.1)

approximated by a base flow u0 and a finite number of empirical, physical or
mathematical modes ui (describing the disturbance) (2.2):

u[N ](t) = u0 +

N
∑

i=1

ai(t)ui =

N
∑

i=0

ai(t)ui, a0 ≡ 1, (2.2)

onto the space spanned by these selected modes, called Galerkin Projection
[15, 24, 33]. In a Hilbert space, the reduction is done by the computation of
inner products of residual R[N ] and each of the modes ui, and equating them
to zero (2.3):

(

ui, R
[N ]
)

Ω
:=

∫

Ω

uiR
[N ] dΩ = 0. (2.3)

This approach leads to the system of ordinary differential equations (Galerkin
System) (2.4), linking the mode (Fourier) coefficients a, their time derivatives
ȧ and constant parameters lij and qij :

ȧi = ν
N
∑

j=0

lijaj +
N
∑

j=0

N
∑

k=0

qijkajak, (2.4)

where lij =
(

ui,4uj

)

Ω
, qijk = −

(

ui,∇ · (uj ⊗ uk)
)

Ω
.

In the case of absolutely unstable wake flow, the pressure-term is neglected.
A comprehensive study on low-dimensional pressure-term representation might
be found in [25].

2.2 Proper orthogonal decomposition

The most popular mode basis used in Reduced Order Modelling of the flow
results from Proper Orthogonal Decomposition [3] of snapshots (Fig. 1, top-
left) captured from numerical simulation or experiment.

The method is based on the assumption of correlation between M succes-
sive snapshots vi of the flow. These flow vectors (of size N) are centered by
subtracting the time-averaged solution ū (Fig. 1, top-right):

v́i = vi − ū, i = 1, . . . ,M. (2.5)

Resulting vectors v́i describe the fluctuations in the flow and are used to com-
pute the autocorrelation matrix C of size N ×N :

C =
1

M
SST , where S = [v́1, v́2, . . . , v́M ]. (2.6)
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The solution of standard eigenproblem Cu = λIu yields eigenvalues λ and
eigenvectors u (POD modes, Fig. 1), that form a complete, orthonormal set.

periodic flow time-avg. solution

POD mode 1 POD mode 2

POD mode 3 POD mode 4

Figure 1. Streamlines of a snapshot (top-left), time-averaged solution (top-right) and
first four POD modes for an incompressible flow around circular cylinder.

In the cases, where number of snapshotsM is mush smaller than the number
of degrees of freedom N , snapshot technique of Sirovich [32] is used.

3 Model Calibration

The POD mode basis is calculated for a given set of snapshots of unsteady flow
is truncated by keeping only the most energetic modes in the POD expansion,
corresponding to the largest eigenvalues λ. The neglect of small (dissipative)
scales results in filtering of high frequencies (e.g. turbulence) and vanishing of
energy transfers between resolved and unresolved scales of fluid flow [8].

Additional differences might be caused by the structural instability of Ga-
lerkin Projection [19, 24, 29] and the inconsistency of data set and the reduced-
order formulation, resulting from the neglect or inaccurate treatment of pres-
sure and boundary terms, or not verified incompressibility of the flow at small
Mach numbers [7]. The discrepancies between the Reduced-Order Galerkin
model and a high-fidelity model (like Direct Numerical Simulation of Navier–
Stokes equations or Large Eddy Simulation) distort the frequencies, phases
and amplitudes of mode coefficients, that results in different frequency of vor-
tex shedding, under- or overestimation of turbulent kinetic energy level and
different dynamical responses.

To correct the behaviour and improve the accuracy of Reduced Order
Galerkin Model, the coefficients of the Galerkin system of ODE might be ad-
justed [8]. One of the ways of such a calibration is the use of artificial, “eddy”
viscosities to recover the effects of truncated modes [1, 27, 28]. Such an artifi-
cial viscosity might be considered as a constant value νT , or N parameters νT,i

related to each one of the modes:

l+ij =
νT
ν
lij or l+ij =

νT,i

ν
lij , i = 1, . . . N.

Math. Model. Anal., 16(2):233–247, 2011.
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All linear coefficients l+ij are calibrated by Galletti et al. [14] in order to model
the terms relevant to the pressure in Galerkin System of laminar flow past a
square cylinder. To improve the results of calibration, both linear and quadratic
coefficients q+ijk of Galerkin System might be modified [8].

The resulting system of equations might be written as follows:

ȧi = ν

N
∑

j=0

(

lij + l+ij
)

aj +

N
∑

j=0

N
∑

k=0

(

qijk + q+ijk

)

ajak. (3.1)

In Reduced-Order Modelling, the objective function to be minimized is the
prediction error of the model. It can be chosen as mean square error of the
mode coefficients (3.2) or their time-derivatives (3.3):

χ0 :=

N
∑

i=1

∫ T

0

(

aROM
i (t)− aDNS

i (t)
)2

dt = Min, (3.2)

χ1 :=

N
∑

i=1

∫ T

0

(

ȧROM
i (t)− fi(a

DNS (t))
)2

dt = Min, (3.3)

where aROM
i and aDNS

i represent mode coefficients for Galerkin Model and
reference simulation. These definitions can be referred as Floquet and Poincaré
calibration, respectively [4, 23]. Another error definitions might based on the
turbulent kinetic energy:

χ2 :=

∫ T

0

(

N
∑

i=1

(

aROM
i (t)

)2
−

N
∑

i=1

(

aDNS
i (t)

)2

)2

dt = Min (3.4)

or modal energy flow balance:

χ3 :=

N
∑

i=1

(Pi + Ci +Di + Ti + Fi)
2 = Min, (3.5)

where Pi, Ci, Di, Ti and Fi represent modal production, convection, dissipa-
tion, transfer and pressure power, respectively, leading to E-flow calibration,
proposed by Bernd R. Noack [23].

4 Global Optimization

The goal of global optimization algorithms is to find the best possible element in
search space according to a set of objective functions (criteria). These functions
might be both pure mathematical expressions or algorithms involving multiple
simulations [36].

The probabilistic global optimization algorithms are useful in the cases
where the relation between a solution candidate and its “fitness” is compli-
cated or the dimension of search space is very high. Many of these algorithms
are inspired by the nature. Genetic Algorithms [5, 6, 13, 18, 30] and Evolu-
tionary Programming [12] mimic the evolution of life on Earth, while swarm
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intelligence algorithms like Particle Swarm Optimization [11, 20, 31, 35] and
Ant Colony Optimization [10, 21] simulate the behaviour of individuals of a
biological system, that spread in the environment looking for a food.

Another example of nature-based optimization is based on remodelling of
trabecular bones [26], and an exhaustive survey of global optimization algo-
rithms can be found in [36].

5 Genetic Algorithms

5.1 Data encoding

Genetic algorithm (Fig. 2) starts from an initial population, whose individuals
(candidate solutions) usually are randomly generated and vary in the values of
parameters (encoded in genes of chromosome), and is repeated until convergent
solution is found or for a given number of generations.

Figure 2. Flow chart of genetic algorithm.

The chromosomes of each individual, storing the information about the
parameters to be changed (the search space), consists of a number of genes.
They are usually encoded as binary strings (with the number of bits dependent
on the required accuracy and an expected range of values in the population),
but real-number another genetic representations are also possible.

In the calibration of Galerkin models presented here, the genes are encoded
using double-precision real numbers. The number of genes vary from one (cal-
ibration of “eddy” viscosity νT ) to N(N + 1)(N + 2) (calibration of linear and
quadratic coefficients l+ij and q+ijk).

5.2 Genetic operators

In each generation a number of genetic operations, like mutation and crossover,
are performed on the parent population to form an offspring.

Math. Model. Anal., 16(2):233–247, 2011.
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Mutation is used to preserve the genetic diversity of the population and to
prevent the individuals from becoming too similar to each other by introducing
small changes into their genotypes. This diversification allows to avoid local
minima. In the case of binary encoding, values of randomly selected bits are
toggled, and for real-number encoding the modification can be done by replac-
ing (with a given probability) the value of a gene with a number drawn from a
normal distribution [36].

Crossover operator allows recombination of chromosomes, that is done by
swapping parts of two genotypes (Fig. 3). For binary-encoded chromosomes,
single-point (SPX), two-point (TPX) and multi-point crossover (MPX) might
be considered. In the first case, both chromosomes are split in the same one
crossover point and the second parts of genotypes are replaced. In two-point
crossover the part of chromosome between two crossover points is replaced, and
multi-point crossover is generalized, n-point recombination of genes.

Figure 3. Sketch of crossover operation.

In real-number encoding, crossover is done by averaging the values of a
certain number of genes, while keeping other genes unchanged.

5.3 Evaluation of fitness function

After applying genetic operators, new generation of individuals is created. For
each individual of current population the genotype-phenotype mapping is per-
formed (in order to get the observable characteristics in the problem space
basing on the parameters from the search space) and the fitness (objective)
function is evaluated. This step is problem-specific, and in the case of Reduced-
Order Model calibration it requires the solution of a new Galerkin system and
calculation of prediction error.

The selection algorithms (described in Section 5.4) assume that the largest
values of fitness function are related to the best solutions. In respect of this,
the fitness function used here have been chosen as an inverse of χ0 (3.2) in the
case of Floquet calibration and χ1 (3.3) in the case of Poincaré calibration.

5.4 Selection methods

The final step is the selection of the fittest individuals to further modifications.
Among many selection algorithms, whose overview might be found in [16, 36],
the fitness proportionate reproduction, ranking, truncation and tournament are
the most widely used.

Roulette wheel selection [9] is the most popular variant of fitness propor-
tionate reproduction. The fitness function is normalized for each individual by
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dividing it by the sum of all fitness values, so that sum of fitness functions for
whole population equals 1. The share of the imaginable roulette wheel (Fig. 4)
corresponding to each individual is proportional to it’s normalized value of
fitness function.

Figure 4. Example of roulette wheel selection.

Then a random real number from a range < 0 · · · 1 > is chosen, and the in-
dividual whose accumulated normalized fitness value is grater than this random
number is selected for reproduction.

In the case of minimization problems, small values of error functions like
χ0 and χ1 denote better solutions. The possible modifications of the method
are different definition [36] of probability of individual’s selection:

P (i) =
max(χ)− χ(i)

Npopmax(χ)−
∑Npop

j=1 χ(j)
, (5.1)

or the use of inverse of error prediction χ as the fitness function, as mentioned
in Section 5.3.

In ranking selection [2], the individuals are sorted according to the value of
fitness function. Next, each individual is copied number of times corresponding
to it’s position, and proportionate reproduction according to this assignment
is performed.

Truncation selection is based on the selection of a part (e.g. half, one-fifth,
etc.) of the population with the fittest individuals and it’s duplication as long
as the size of population reaches it’s previous value.

Tournament selection [17] is one of the most popular and effective selection
schemes [36]. A certain number k of individuals are taken from the population.
From each group the best individual is selected for reproduction. The larger k,
the more copies of the fittest individuals will be used in reproduction, and the
more unfit elements will be discarded.

In this work, a combined truncation - roulette wheel selection is used. To
improve convergence, elitism is taken into account by retaining the best indi-
vidual of the population unchanged in the next generation.

Math. Model. Anal., 16(2):233–247, 2011.
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6 Application of Genetic Algorithm in the Calibration of

Reduced Order Models

6.1 Test-case description

In this paper, Reduced Order Models of an incompressible flow around circular
cylinder are calibrated using genetic algorithm described in Section 5. Reynolds
number, related to the diameter of the cylinder, is Re = 100, what means an
unstable flow with limit cycle oscillations. Snapshots of that flow (calculated
with the time step dt = 0.1) are used to get POD modes (Fig. 1, top-right).
The truncation of mode basis as well as the neglect of pressure term affect the
model quality. The fitness functions are based on mean square errors of mode
coefficients ai (χ0, Floquet calibration) and their time derivatives ∂ai/∂t (χ1,
Poincaré calibration) for 1200 snapshots of periodic flow.

6.2 Calibration of three-equation Galerkin model

Two Galerkin models are used. The first one (Fig. 5) uses time-averaged solu-
tion, the two most energetic POD modes and additional shift-mode [34], that
stabilises the model.
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Figure 5. Uncalibrated three-equation Galerkin model: values of Galerkin model’s mode
coefficients compared to their reference DNS values.

In the case of the three-equation model the purpose of calibration is to mini-
mize the model’s prediction error by adjusting the frequency of vortex shedding
(that is slightly smaller than reference one) and the value of Turbulent Kinetic
Energy (that has to be reduced). Multiple optimizations have been done with
various, experimentally chosen values of Genetic Algorithm’s parameters like
the size of population, probabilities of mutation and crossover and the num-
ber of modified genes. In Tab. 1 the parameters giving the best results in the
calibration of “eddy” viscosity (νT ), linear terms (l+ij) and both, linear and
quadratic terms are gathered.

NPop means the size of population, NGen is the number of performed it-
erations of genetic algorithm, Pcrossover and Pmutation represent the chosen
probabilities of genetic operations. Number of individual’s genes modified in
each generation and a total number of individual’s genes are given by Ngenes

and Xmutation describes the range of possible mutations of gene.
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Table 1. Parameters of three-equation model calibration.

calibration NPop NGen Pcrossover Pmutation Ngenes Xmutation

χ1: νT 30 2 0.7 0.5 1 / 1 500%

χ0: l
+

ij
70 5 0.7 0.35 5 / 12 100%

χ0: l
+

ij
and q

+

ijk
150 10 0.7 0.35 15 / 60 100%

The Poincaré calibration has been used in optimization of “eddy” viscosity.
The resulting model (Fig. 6), with νT = 0.207ν, has adjusted frequency and
phase of coefficients for both POD modes, but the amplitude is still overesti-
mated. The prediction errors χ0 and χ1 for this calibrated model are 200 times
smaller compared to the uncalibrated model.
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Figure 6. Three-equation Galerkin model with “eddy” viscosity calibration.

Even better results have been obtained using Floquet calibration to modify
linear and quadratic terms of the Galerkin system. In that case, the conver-
gence of genetic algorithm have been obtained in 10th generation (Fig. 7). The

 0.001

 0.01
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 1

 10

 1  2  3  4  5  6  7  8  9  10

generation

χ0

Figure 7. Prediction error χ0 for three-equation Galerkin model with Floquet calibration
of l+

ij
and q

+

ijk
terms in consecutive iterations of genetic algorithm.

resulting model (Fig. 8) has the error χ0 one thousand times smaller than in
the case of uncalibrated one. The prediction errors for uncalibrated and cal-
ibrated Reduced Order Galerkin Models of the flow around circular cylinder
are gathered in Tab. 2.

Math. Model. Anal., 16(2):233–247, 2011.
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Figure 8. Three-equation Galerkin model with l
+

ij
and q

+

ijk
terms calibrated.

Table 2. Three-equation ROM prediction errors.

Reduced Order Model χ0 χ1 χ2

uncalibrated 6.676285 8.415003 4.294739
νT calibration 0.034475 0.039484 0.075132

l
+

ij
calibration 0.013826 0.013340 0.028083

l
+

ij
and q

+

ijk
calibration 0.004008 0.000883 0.010219

6.3 Calibration of two-equation Galerkin model

The second Galerkin model, based on time-averaged solution and two POD
modes only (two-equation model), is structurally unstable Fig. 9. The calibra-
tion is used here to stabilize the model and to minimize the prediction error.
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Figure 9. Uncalibrated two-equation Galerkin model compared with Direct Numerical
Simulation.

The calibration of this model has been performed with a set of parameters
(Tab. 3) similar to the ones shown in previous section.

Once again, (Floquet) calibration of “eddy” viscosity (νT = 0.252ν, Fig. 10)
makes the prediction errors smaller. The model is stabilized, while the fre-
quency and phase of oscillation are kept unchanged. Poincaré calibration of
both linear and quadratic terms of two-equation Galerkin System required 12
iterations (generations) of genetic algorithm (see, Fig. 11a) to get the optimized
model (Fig. 12), that is almost indistinguishable from the reference data in the
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Table 3. Parameters of two-equation model calibration.

calibration NPop NGen Pcrossover Pmutation Ngenes Xmutation

χ0: νT 30 3 0.7 0.5 1 / 1 500%

χ0: l
+

ij
70 3 0.7 0.5 3 / 6 75%

χ1: l
+

ij
, q+

ijk
150 12 0.7 0.35 12 / 24 100%
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Figure 10. Two-equation Galerkin model with “eddy” viscosity calibration.

given time frame.
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Figure 11. Results of experiments: a) prediction error χ1 for two-equation Galerkin
model with Poincaré calibration of l+

ij
and q

+

ijk
terms in consecutive iterations of genetic

algorithm, b) amplitude of first mode coefficient for two-equation Galerkin models.

The prediction errors for uncalibrated and calibrated two-equation Reduced
Order Galerkin Models of the flow are gathered in Tab. 4.

The 2-equation Galerkin Models seem to be still unstable for longer sim-
ulation times. After one million of time steps (see, Fig. 11b) the amplitude
of oscillation is almost two times larger than expected from DNS in the case
of calibration of both linear and quadratic terms of Galerkin System and 1.4
times smaller in the case of “eddy” viscosity calibration. In both cases, this is
still a great improvement compared to the uncalibrated 2-equation model (see,

Math. Model. Anal., 16(2):233–247, 2011.



244 W. Stankiewicz, R. Roszak and M. Morzyński
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Figure 12. Two-equation Galerkin model with l
+

ij
and q

+

ijk
terms calibrated.

Table 4. Two-equation ROM prediction errors.

Reduced Order Model χ0 χ1 χ2

uncalibrated 2.122306 2.593450 16.011423
νT calibration 0.095617 0.113581 0.126317

l
+

ij
calibration 0.065176 0.076025 0.090756

l
+

ij
and q

+

ijk
calibration 0.002539 0.001282 0.005296

Fig. 9), where the amplitude is doubled after 120 seconds.

Summary

Reduced Order Models are crucial enablers of feedback flow control. The ne-
glect of higher modes (truncation of the model) is one of main reasons of non-
conformity of amplitudes, frequencies and phases of ROM and reference data
from high-fidelity numerical simulations.

The calibration allows to create accurate least-dimensional models of the
periodic flow around a bluff body, consisting of two or three degrees of freedom.

To find the optimal values of corrections: l+ij and q+ijk, in-house Genetic
Algorithm with real-number gene encoding and combined truncation - roulette
wheel selection is used. Fitness functions are related to the prediction errors of
the flow models. The initial population is obtained by Monte-Carlo procedure
(drawing the values of genes).

It has been shown, that presented calibration procedure leads to a great
improvement of the quality of Reduced Order Models. For three-dimensional
models, the agreement in phase and amplitude between ROM and DNS data
is achieved. Two-dimensional models are still unstable, but the change of
amplitude is much smaller than in the case of uncalibrated model. For a shorter
prediction times it is possible to design two-dimensional, calibrated Reduced
Order Model almost indistinguishable from high-fidelity reference data.

The number of generations required to converge the optimized solution de-
pends on the number of calibrated parameters (genes modified in each itera-
tion). For a small number of modified genes (e.g. νT calibration in Tab. 1 and
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Tab. 3, l+ij calibration in Tab. 3), even two-three generations of Genetic Algo-
rithm with population of 30 individuals lead to the noticeable improvement of
model’s quality. In that cases, Monte-Carlo search with large enough number
of attempts should give comparable results.

In the cases when the number of modified genes is larger, the optimized
results might be found when the analyzed population is of the size of hundreds
of individuals and enough number of iteration steps (generations) is performed.
The performed experiments have shown, that for q+ijk calibration of Reduced
Order Galerkin Models of a flow around a circular cylinder, the Genetic Algo-
rithm usually requires less than 15 iterations to converge.

For different values of Genetic Algorithm’s parameters and initial popula-
tions, various optimized solutions can be found (the best of them are presented
in previous section), although the finding of global optimum is not guaranteed.
Thus further improvements in the model quality might be still possible, using
different initial population or more iteration steps.

The methods presented in this paper will be used to calibrate Reduced
Order Models of a transition from fixed-point to limit-cycle dynamics and the
flows with deforming boundaries in aeroelastic applications.

Acknowledgements

This work was supported by the Polish Ministry of Science under grant no. N
N501 225437.

We thank Bernd R. Noack, Laurent Cordier (CNRS, Universitè de Poitiers)
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