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1 Introduction

Heat flow processes in media with memory are governed by parabolic integro-
differential equations [7]. A number of papers is devoted to inverse problems
to determine kernels of these equations in different formulations making use of
measurements over time (see e.g. [4, 6, 7, 8, 11, 13, 14]).

Recently some papers appeared that deal with the reconstruction of source
terms or coefficients of these equations making use of final or integral over-
determination [5, 12]. In particular, the authors’ paper [5] extends former
existence and uniqueness results of Isakov [3] to the integro-differential case.
The existence of the solutions to the inverse problems to determine unknown
source terms from final over-determination of the temperature requires suffi-
cient regularity and a certain monotonicity of a time-component of this term.

In the present paper we follow another approach. Instead of the conven-
tional solution, we deal with the quasi-solution of the inverse problem that uses
final data. Then we can build up a theory without any smoothness or mono-
tonicity restrictions on the source. Similar results in the case of the parabolic
differential equation without an integral term in the one-dimensional case were
obtained by Hasanov [2]. Quasi-solutions of other integro-differential inverse
problems were studied in [1, 9].
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2 Direct Problem

Let Ω be a n-dimensional domain with sufficiently smooth boundary Γ and
Γ = Γ1 ∪ Γ2 where measΓ1 ∩ Γ2 = 0. Assume that for any j ∈ {1; 2} it holds
either Γj = ∅ or measΓj > 0. Denote ΩT = Ω × (0, T ), Γ1,T = Γ1 × (0, T ),
Γ2,T = Γ2 × (0, T ). Consider the problem (direct problem) to find u(x, t) :
ΩT → R such that

ut = Au−m ∗Au+ f +∇φ in ΩT , (2.1)

u = u0 in Ω × {0}, (2.2)

u = g in Γ1,T , (2.3)

− νA · ∇u+m ∗ νA · ∇u = ϑu+ h in Γ2,T (2.4)

where

Av =
n
∑

i,j=1

∂

∂xi

(

aij
∂

∂xj
v

)

+ av,

νA =

n
∑

j=1

aijνj , ν = (ν1, . . . , νn) - outer normal of Γ2,

aij , a, u0 : Ω → R, f : ΩT → R, φ : ΩT → Rn, g : Γ1,T → R, ϑ : Γ2 → R,
h : Γ2,T → R, m : (0, T ) → R are given functions and

m ∗ w(t) =

∫ t

0

m(t− τ)w(τ) dτ

denotes the time convolution. In case Γ1 = ∅ (Γ2 = ∅), the boundary condition
(2.3) ((2.4)) is dropped.

The problem (2.1)–(2.4) describes the heat flow in a body Ω with the ther-
mal memory. Concerning the physical background we refer the reader to [7].
The solution u is the temperature of the body and m is the heat flux relaxation
(or memory) kernel. The boundary condition (2.4) is of the third kind where
the term −νA · ∇u +m ∗ νA · ∇u equals the heat flux in the direction of the
co-normal vector.

Let us introduce some additional notation. Let X be a Banach space. We
denote by C([0, T ];X) the space of abstract continuous functions from [0, T ] to
X endowed with the usual maximum norm ‖v‖C([0,T ];X) := maxt∈[0,T ] ‖v(x)‖.
Moreover, let

L2((0, T );X) :=
{

v : (0, T ) → X : ‖v‖L2((0,T );X) =
[

∫ T

0

‖v(t)‖2 dt
]1/2

<∞
}

.

In addition, we need spaces of fractional order and anisotropic spaces. To this
end, let us first introduce the following notation for difference quotients of x-
and (x, t)-dependent functions with powers:

〈v〉p(x1, x2) :=
v(x1)−v(x2)
|x1−x2|p

, 〈v〉p(x1, x2; t) :=
v(x1,t)−v(x2,t)

|x1−x2|p
,

〈v〉p(x; t1, t2) :=
v(x,t1)−v(x,t2)

|t1−t2|p
,



Reconstruction of Source Term 201

where |x| denotes the Euclidean norm of x in the space Rn. For any l ≥ 0 we
introduce the Sobolev–Slobodeckij spaces (cf. [10, 15])

W l
2(Ω) =

{

v: ‖v‖W l

2
(Ω) :=

∑

|α|≤[l]

[

∫

Ω

|Dα
xv(x)|

2 dx
]

1
2

+Θl

∑

|α|=[l]

[

∫

Ω

dx1

∫

Ω

∣

∣〈Dα
xv〉n

2
+l−[l](x1, x2)

∣

∣

2
dx2

]
1
2

<∞
}

,

W
l, l

2

2 (ΩT ) =
{

v: ‖v‖
W

l,
l

2
2

(ΩT )
:=

∑

2j+|α|≤[l]

[

∫ T

0

∫

Ω

|Dj
tD

α
xv(x, t)|

2 dx dt
]

1
2

+Θl

∑

2j+|α|=[l]

[

∫ T

0

dt

∫

Ω

dx1

∫

Ω

∣

∣〈Dj
tD

α
x v〉n

2
+l−[l](x1, x2; t)

∣

∣

2
dx2

]
1
2

+Θ l

2

∑

l−2j−|α|

∈(0,2)

[

∫

Ω

dx

∫ T

0

dt1

∫ T

0

∣

∣〈Dj
tD

α
xv〉 1

2
+ l−2j−|α|

2

(x; t1, t2)
∣

∣

2
dt2

]
1
2

<∞
}

.

Here α = (α1, . . . , αn) with αi ∈ {0, 1, 2, . . .} is the multi-index, |α| = α1 +

· · · + αn, D
α
xv = ∂|α|v

∂x
α1
1

···∂x
αn

n

and Dj
tv = ∂jv

∂tj
. Moreover, [l] is the greatest

integer ≤ l and Θl = 0 and Θl = 1 in the cases of integer l and non-integer l,

respectively. The definition ofW
l, l

2

2 is in a standard manner extended from ΩT

to the boundary components Γ1,T and Γ2,T (for details see [10]).

Now we return to the direct problem (2.1)–(2.4). Throughout the paper we
assume the following basic regularity conditions on the coefficients, the kernel
and the initial and boundary functions:

aij ∈ C1(Ω), aij = aji, a ∈ C(Ω), ϑ ∈ C(Γ 2), ϑ ≥ 0, (2.5)

m ∈ L1(0, T ), g ∈ W
1
2
, 1
4

2 (Γ1,T ), h ∈ L2(Γ2,T ), (2.6)

u0 ∈ L2(Ω), f ∈ L2(ΩT ), φ = (φ1, . . . , φn) ∈ (L2(ΩT ))
n (2.7)

and the ellipticity condition

n
∑

i,j=1

aijλiλi ≥ ε|λ|2, x ∈ Ω, λ ∈ Rn with some ε > 0. (2.8)

The first aim is to reformulate the problem (2.1)–(2.4) in a weak form. Let
us suppose that (2.1)–(2.4) has a classical solution u ∈W 2,1

2 (ΩT ) and the term
φ satisfies the following additional conditions: ∂

∂xi

φi ∈ (L2(ΩT ))
n, i = 1, . . . , n,

φ|Γ2,T
= 0. Then, we multiply (2.1) with a test function η from the space

T (ΩT ) =
{

η ∈ L2((0, T );W 1
2 (Ω)): ηt ∈ L2((0, T );L2(Ω)),

η|Γ1
= 0 in case Γ1 6= ∅

}

Math. Model. Anal., 16(2):199–219, 2011.
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and integrate by parts with respect to time and space variables. We obtain the
following relation:

0 =

∫

Ω

[u(x, T )η(x, T )− u0(x)η(x, 0)] dx−

∫ ∫

ΩT

uηt dx dt

+

∫ ∫

ΩT

[ n
∑

i,j=1

aij(uxj
−m ∗ uxj

)ηxi
− a(u−m ∗ u)η

]

dx dt

+

∫ ∫

Γ2,T

(ϑu + h)η dΓ dt−

∫ ∫

ΩT

(fη − φ · ∇η) dx dt. (2.9)

This relation makes sense also in a more general case when φ satisfies only (2.7)
and u doesn’t have regular first order time and second order spatial derivatives.
We call a weak solution of the problem (2.1)–(2.4) a function from the space

U(ΩT ) = C([0, T ];L2(Ω)) ∩ L2((0, T );W 1
2 (Ω))

that satisfies the relation (2.9) for any η ∈ T (ΩT ) and in case Γ1 6= ∅ fulfills
the boundary condition (2.3).

Theorem 1. The problem (2.1)–(2.4) has a unique weak solution. If, in ad-

dition, φ = 0, g ∈ W
3
2
, 3
4

2 (Γ1,T ), h ∈ W
1
2
, 1
4

2 (Γ2,T ), u0 ∈ H1(Ω) and u0 = g

on Γ1 × {0} then this solution belongs to the space W 2,1
2 (ΩT ) and satisfies

(2.1)–(2.4) in the classical sense.

Proof. It is well known (see e.g. [10]) that in the particular case m = 0
the solution exists, is unique and the operator H, that assigns to the data
vector u0, g, h, f , φ the weak solution is Lipschitz-continuous from the space

L2(Ω)×W
1
2
, 1
4

2 (Γ1,T )×L2(Γ2,T )×L2(ΩT )
n+1 to the space U(ΩT ). Let us denote

G(f, φ) = H(0, 0, 0, f, φ). Then, denoting by û the solution corresponding to
m = 0, the problem (2.1)–(2.4) for u is in U(ΩT ) equivalent to the following
operator equation for the function v = u− û:

v = F û+ Fv (2.10)

with the linear operator Fv = G(−m∗ (av),−m∗ (
∑n

j=1 aijvxj
)). We are going

to estimate F . To this end, we make use of the following inequality that
immediately follows from the estimate (19) in [5]:

‖m ∗ w‖L2(Ωt) ≤

∫ t

0

|m(t− τ)|‖w‖L2(Ωτ ) dτ, t ∈ (0, T ). (2.11)

Here Ωt = Ω × (0, t) for t ∈ (0, T ) and w is an arbitrary element of L2(ΩT ).
Moreover, we define the cutting operator Pt by the formula

Ptw =

{

w in Ωt,
0 in ΩT \Ωt.
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Note that it holds G(Ptf, Ptφ)(x, t) = G(f, φ)(x, t) for any (x, t) ∈ Ωt. There-
fore, observing the Lipschitz-continuity of G and (2.11) we can estimate as
follows:

‖Fv‖U(Ωt) =

∥

∥

∥

∥

G

(

−m ∗ (av),−m ∗

( n
∑

j=1

aijvxj

))
∥

∥

∥

∥

U(Ωt)

=

∥

∥

∥

∥

G

(

− Pt [m ∗ (av)] ,−Pt

[

m ∗

( n
∑

j=1

aijvxj

)])
∥

∥

∥

∥

U(Ωt)

≤

∥

∥

∥

∥

G

(

− Pt [m ∗ (av)] ,−Pt

[

m ∗

( n
∑

j=1

aijvxj

)])∥

∥

∥

∥

U(ΩT )

≤ C1

[

‖Pt [m ∗ (av)] ‖L2(ΩT ) +
n
∑

i=1

∥

∥

∥

∥

Pt

[

m ∗
n
∑

j=1

aijvxj

]∥

∥

∥

∥

L2(ΩT )

]

= C1

[

‖m ∗ (av)‖L2(Ωt) +

n
∑

i=1

∥

∥

∥

∥

m ∗
n
∑

j=1

aijvxj

∥

∥

∥

∥

L2(Ωt)

]

≤ C2

∫ t

0

|m(t− τ)|(‖v‖L2(Ωτ ) + ‖∇v‖L2(Ωτ )) dτ

≤ C2

∫ t

0

|m(t− τ)|‖v‖U(Ωτ ) dτ

for any t ∈ (0, T ) with some constants C1, C2. Now we introduce the weighted
norms in U(ΩT ): ‖v‖σ = sup0<t<T e

−σt‖v‖U(Ωt) where σ ≥ 0. Using the
deduced estimate for F we obtain

‖Fv‖σ ≤ C2 sup
0<t<T

e−σt

∫ t

0

|m(t− τ)|‖v‖U(Ωτ ) dτ

= C2 sup
0<t<T

∫ t

0

e−σ(t−τ)|m(t− τ)|e−στ‖v‖U(Ωτ) dτ

≤ C2

∫ T

0

e−σs|m(s)| ds ‖v‖σ.

Since
∫ T

0
e−σs|m(s)| ds → 0 as σ → ∞, the operator F is a contraction for

sufficiently large σ. Consequently, (2.10) has a unique solution in U(ΩT ). This
proves the existence of the unique weak solution of (2.1)–(2.4).

Secondly, let us prove the classical solvability assertion of the theorem.
Again, we use the results in case m = 0. It is known [15] that in case m = 0
the solution belongs to W 1

2 (ΩT ) and the operator H1 that assigns to the data
vector u0, g, h, f the classical solution is Lipschitz-continuous from the space

H1(Ω)×W
3
2
, 3
4

2 (Γ1,T )×W
1
2
, 1
4

2 (Γ2,T )× L2(ΩT ) to the space W 2,1
2 (ΩT ). Define

G1(h, f) = H1(0, 0, h, f). The problem for u is equivalent to the following
operator equation for v = u− û:

v = F1û+ F1v, (2.12)

Math. Model. Anal., 16(2):199–219, 2011.
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where F1v = G1(−m ∗ νA · ∇v|Γ2,T
,−m ∗Av). This time we have to introduce

a more complicated extension operator instead of Pt because the argument of
F1 has traces on slices Ω × {t}. Let us define

˜Ptw(x, s) =







w(x, s) for s < t,
w(x, 2t − s) for t < s < min{2t;T },
0 for s > 2t in case 2t < T.

Then, since the function v in the range of F1 satisfies v|t=0 = 0, it holds ˜Ptv ∈

W 2,1
2 (ΩT ) for t ∈ (0, T ). Moreover, G1( ˜Pt

˜h, ˜Pt
˜f)(x, t) = G1(˜h, ˜f)(x, t) for any

(x, t) ∈ Ωt and ‖ ˜Pt
˜h‖

W
1
2
,
1
4

2
(Γ2,T )

≤ 2‖˜h‖
W

1
2
,
1
4

2
(Γ2,t)

, ‖ ˜Pt
˜f‖L2(ΩT ) ≤ 2‖ ˜f‖L2(Ωt),

where ˜h = m ∗ νA · ∇v|Γ2,T
and ˜f = m ∗ Av. Consequently, in view of the

Lipschitz-continuity of G1 we deduce

‖F1v‖W 2,1

2
(Ωt)

=
∥

∥G1
(

−m ∗ νA · ∇v|Γ2,T
,−m ∗Av

)∥

∥

W
2,1

2
(Ωt)

=
∥

∥G1
(

−Pt

[

m ∗ νA · ∇v|Γ2,T

]

,−Pt [m ∗Av]
)∥

∥

W
2,1

2
(Ωt)

≤
∥

∥G1
(

−Pt

[

m ∗ νA · ∇v|Γ2,T

]

,−Pt [m ∗Av]
)∥

∥

W
2,1

2
(ΩT )

≤ C3

[

‖Pt [m ∗ νA · ∇v] ‖
W

1
2
,
1
4

2
(Γ2,T )

+ ‖Pt [m ∗Av]‖L2(ΩT )

]

≤ 2C3

[

‖m ∗ νA · ∇v‖
W

1
2
,
1
4

2
(Γ2,t)

+ ‖m ∗Av‖L2(Ωt)

]

(2.13)

for any t ∈ (0, T ) with some constant C3 and Γ2,t = Γ2× (0, t). Using the trace
theorem for Sobolev–Slobodeckij spaces [10] and the relation (m ∗ v)t = m ∗ vt,
that holds due to v|t=0 = 0, we compute

‖m ∗ νA · ∇v‖
W

1
2
,
1
4

2
(Γ2,t)

= ‖νA · ∇(m ∗ v)‖
W

1
2
,
1
4

2
(Γ2,t)

≤ C4‖m ∗ v‖W 2,1

2
(Ωt)

= C4

[

∑

|α|≤2

‖m ∗Dα
xv‖L2(Ωt) + ‖m ∗ vt‖L2(Ωt)

]

with some constant C4. Applying this estimate in (2.13) and using (2.11) we
deduce

‖F1v‖W 2,1

2
(Ωt)

≤ C5

∫ t

0

|m(t− τ)|‖v‖W 2,1

2
(Ωτ )

dτ, t ∈ (0, T )

with a constant C5. We define the weighted norms

‖v‖∗σ = sup
0<t<T

e−σt‖v‖W 2,1

2
(Ωt)

in the space W 2,1
2 (ΩT ) and, as in the first part of the proof, show that F1 is

a contraction in W 2,1
2 (ΩT ) if σ is sufficiently large. This proves the unique

solvability of (2.12) and in turn the classical solvability assertion of theorem.
ut
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3 Formulation of Inverse Problem. Existence of Quasi-

Solution

Let ̂F be a linear closed subspace of L2(ΩT ). Suppose that the source term f
is of the following form: f = f0 + F , where f0 ∈ L2(ΩT ) is known. We pose

an inverse problem to determine the function F ∈ ̂F making use of the final
measurement

u(x, T ) = uT (x), x ∈ Ω.

More precisely, we will search a quasi-solution of this problem. This is a solution
of the following minimization problem for the cost functional: find

F ∗ = arg min
F∈F

J(F ), J(F ) = ‖u(·, T ;F )− uT ‖
2
L2(Ω), (3.1)

where F ⊆ ̂F is a subset including constraints. Here u(x, t;F ) stands for the
solution of the direct problem corresponding to the given F .

Let us introduce some cases of ̂F .

Case 1. Define ̂F=
{

F : F (x, t)=κ(t)w(x), w ∈ L2(Ω)
}

, where κ ∈ L2(0, T ),
κ 6= 0 is a prescribed function.

Case 2. LetΩ be a cylinder: Ω = S×(0, l), where for any x = (x1, . . . , xn) ∈ Ω

we have x = (x1, . . . , xn−1) ∈ S, xn ∈ (0, l). Define ̂F =
{

F : F (x, t) =

κ(xn)w(x, t), w ∈ L2(ST )
}

, where κ ∈ L2(0, l), κ 6= 0 is a prescribed
function and ST = S × (0, T ).

Case 3. Define ̂F=
{

F : F (x, t) =
∑N

j=1 wjκj(x, t), w = (wj)j=1,...,N ∈ RN
}

,

where κ = (κj)j=1,...,N ∈ (L2(ΩT ))
N , κ 6= 0 is a prescribed vector-

function. In practice, the component κj may be the characteristic func-
tion of a subdomain Ωj ⊂ Ω.

Now let us consider the first variation of the cost functional

∆J(F ) = J(F +∆F )− J(F )

= 2

∫

Ω

[u(x, T ;F )− uT (x)]∆u(x, T ;F ) dx +

∫

Ω

[∆u(x, T ;F )]2 dx, (3.2)

where ∆u(x, t;F ) = u(x, t;F +∆F ) − u(x, t;F ). By Theorem 1, the function
∆u belongs toW 2,1

2 (ΩT ) and solves the following problem in the classical sense:

∆ut = A∆u−m ∗A∆u+∆F in ΩT , (3.3)

∆u = 0 in Ω × {0}, (3.4)

∆u = 0 in Γ1,T , (3.5)

− νA · ∇∆u+m ∗ νA · ∇∆u = ϑ∆u in Γ2,T . (3.6)

Moreover, let us introduce the following adjoint problem with the solution
ψ(x, t;F ):

ψt(x, t;F ) = −Aψ(x, t;F ) +

∫ T

t

m(τ − t)Aψ(x, τ ;F ) dτ in ΩT , (3.7)

ψ(x, T ;F ) = 2[u(x, T ;F )− uT (x)] in Ω, (3.8)

Math. Model. Anal., 16(2):199–219, 2011.



206 K. Kasemets and J. Janno

ψ(x, t;F ) = 0 in Γ1,T , (3.9)

− νA · ∇ψ(x, t;F ) +

∫ T

t

m(τ − t)νA · ∇ψ(x, τ ;F ) dτ = ϑψ(x, t;F ) in Γ2,T .

(3.10)

It is easy to see that the equivalent problem for ũ(x, t) = ψ(x, T − t;F ) is
of the form (2.1)–(2.4) with homogeneous differential equation and boundary
conditions and the initial condition ũ = 2[u(·, T ;F )− uT ] ∈ L2(Ω) in Ω ×{0}.
Therefore, applying Theorem 1 we conclude that problem (3.7)–(3.10) has a
unique weak solution. The weak problem for ψ(x, T − t;F ) reads

0 =

∫

Ω

[ψ(x, 0;F )η(x, T )− 2[u(x, T ;F )− uT (x)]η(x, 0)] dx

−

∫ ∫

ΩT

ψ(x, T − t;F )ηt(x, t) dx dt +

∫ ∫

ΩT

[

n
∑

i,j=1

aij(x)
(

ψxj
(x, T − t;F )

−

∫ t

0

m(t− τ)ψxj
(x, T − τ ;F ) dτ

)

ηxi
(x, t)

− a(x)
(

ψ(x, T − t;F )−

∫ t

0

m(t− τ)ψ(x, T − τ ;F ) dτ
)

η(x, t)
]

dx dt

+

∫ ∫

Γ2,T

ϑψ(x, T − t;F )η(x, t) dΓ dt ∀η ∈ T (ΩT ). (3.11)

Lemma 1. It holds the following formula:

2

∫

Ω

[u(x, T ;F )− uT (x)]∆u(x, T, F ) dx =

∫ ∫

ΩT

ψ(x, t;F )∆F (x, t) dx dt. (3.12)

Proof. Since ∆u ∈ W 2,1
2 (ΩT ) satisfies the homogeneous boundary condition

on Γ1, it holds ∆u(x, T − t, F ) ∈ T (ΩT ). Let us use the test function η(x, t) =
∆u(x, T − t, F ) in (3.11). This yields (changing the variable t by T − t under
the integrals and observing that η(x, T ) = 0 and omitting F in the arguments
for the sake of shortness)

0 = −2

∫

Ω

[u(x, T )− uT (x)]∆u(x, T )] dx +

∫ ∫

ΩT

ψ(x, t)∆ut(x, t) dx dt

+

∫ ∫

ΩT

[

n
∑

i,j=1

aij

(

ψxj
(x, t)−

∫ t

0

m(t− τ)ψxj
(x, τ) dτ

)

∆uxj
(x, t)

− a(x)
(

ψ(x, t) −

∫ t

0

m(t− τ)ψ(x, τ) dτ
)

∆u(x, t)
]

dx dt

+

∫ ∫

Γ2,T

ϑψ(x, t)∆u(x, t) dΓ dt. (3.13)
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On the other hand, the problem (3.3)–(3.6) in the weak form reads

0 =

∫

Ω

∆u(x, T )ζ(x, T ) dx−

∫ ∫

ΩT

∆uζt dx dt

+

∫ ∫

ΩT

[ n
∑

i,j=1

aij(∆uxj
−m ∗∆uxj

)ζxi
− a(∆u −m ∗∆u)ζ

]

dx dt

+

∫ ∫

Γ2,T

ϑ∆uζ dΓ dt−

∫ ∫

ΩT

∆Fζ dx dt ∀ζ ∈ T (ΩT ). (3.14)

Since ∆u ∈ W 2,1
2 (ΩT ) has the regular time derivative, we can integrate by

parts the integral
∫∫

ΩT

∆uζt dx dt in (3.14). This results in the relation

0 =

∫ ∫

ΩT

∆utζ dx dt+

∫ ∫

ΩT

[ n
∑

i,j=1

aij(∆uxj
−m ∗∆uxj

)ζxi

− a(∆u −m ∗∆u)ζ

]

dx dt+

∫ ∫

Γ2,T

ϑ∆uζ dΓ dt−

∫ ∫

ΩT

∆Fζ dx dt. (3.15)

It is important that this relation doesn’t contain the time derivative of the test
function ζ. Therefore, we can extend the set of test functions of (3.15) from
T (ΩT ) to U0(ΩT ) = {ζ ∈ U(ΩT ): ζ|Γ1,T

= 0 in case Γ2 6= ∅}. In particular, it
is possible to take the test function ζ = ψ ∈ U0(ΩT ). Then we obtain

0 =

∫ ∫

ΩT

∆utψ dxdt +

∫ ∫

ΩT

[ n
∑

i,j=1

aij(∆uxj
−m ∗∆uxj

)ψxi

− a(∆u −m ∗∆u)ψ

]

dx dt+

∫ ∫

Γ2,T

ϑ∆uψ dΓ dt−

∫ ∫

ΩT

∆Fψ dxdt. (3.16)

Subtracting (3.16) from (3.13) and changing the order of integration in convo-
lution terms we deduce the formula (3.12). Lemma is proved. ut

Theorem 2. Let F be a bounded, closed and convex subset of ̂F . Then the
problem (3.1) has a solution in F . Moreover, the set of all solutions F∗ form
a closed convex subset of F .

Proof. The assertion follows from Weierstrass existence theorem (see [16, Sec-
tion 2.5]) once we have proved that J(F ) is weakly sequentially lower semicon-
tinuous in F , i.e.

J(F ) ≤ lim inf
n→∞

J(Fn) as Fn ⇀ F in F (3.17)

and convex, i.e.

J(γF1 + (1 − γ)F2) ≤ γJ(F1) + (1 − γ)J(F2) ∀γ ∈ [0, 1], F1, F2 ∈ F .
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Let us compute:

J(F ) =

∫

Ω

[u(x, T ;F )− uT (x)]
2 dx =

∫

Ω

[u(x, T ;Fn)− uT (x)]
2 dx

−

∫

Ω

[u(x, T ;Fn)− u(x, T ;F )]2 dx

− 2

∫

Ω

[u(x, T ;F )− uT (x)][u(x, T ;Fn)− u(x, T ;F )] dx

= J(Fn)−

∫

Ω

[u(x, T ;Fn)− u(x, T ;F )]2 dx

− 2

∫

Ω

[u(x, T ;F )− uT (x)]∆un(x, T ;F ) dx

where ∆un(x, t;F ) = u(x, T ;Fn)− u(x, T ;F ) is the change of u corresponding
to the change of the free term ∆Fn = Fn −F . Thus, in view of (3.12) we have

J(F ) ≤ J(Fn)−

∫ ∫

ΩT

ψ(x, t;F )∆Fn(x, t) dx dt.

Since ψ ∈ L2(ΩT ), this implies the relation (3.17). To prove the convexity, we
firstly note that

u
(

x, t; γF1 + (1− γ)F2

)

= γu(x, t;F1) + (1− γ)u(x, t;F2), for γ ∈ [0, 1].

Therefore, in view of the convexity of the quadratic function we obtain

J(γF1 + (1− γ)F2) =

∫ T

0

[

u
(

x, T, γF1 + (1 − γ)F2

)

−uT (x)
]2
dx

=

∫ T

0

[

γ
{

u(x, T ;F1)− uT (x)
}

+(1− γ)
{

u(x, T ;F2)− uT (x)
}]2

dx

≤ γ

∫ T

0

[u(x, T, F1)− uT (x)]
2 dx+ (1 − γ)

∫ T

0

[u(x, T, F2)− uT (x)]
2 dx

= γJ(F1) + (1− γ)J(F2) for γ ∈ [0, 1].

This shows the convexity of J . Theorem is proved. ut

Remark 1. In order to prove the existence in an unbounded set F incl. ̂F , it
is sufficient to have the weak coercivity of J(F ). This is a difficult problem,
because monotonicity methods in general fail for problems in integro-differential
PDE. However, the boundedness assumption of F seems not very restrictive,
because in practice some bound for F may be available.

4 Regularized Problem

In [5] we proved that in a particular case the solution of the inverse problem
under consideration continuously depends on certain derivatives of the data.
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This shows the ill-posedness of the problem in case the data have noise in L2

space. We can easily incorporate Tikhonov regularization in quasi-solution. In
this case we minimize the stabilized cost functional: find

F ∗ = arg min
F∈F

Jα(F ), Jα(F ) = α‖F‖2L2(ΩT ) + ‖u(·, T ;F )− uT ‖
2
L2(Ω).

Here α > 0 is the regularization parameter that depends on the noise level of
the data uT . If we set here α = 0, we get the original problem (3.1).

Theorem 3. Let α > 0 and F be a closed and convex subset of ̂F (may be also

F = ̂F). Then the problem (4.1) has a unique solution in F .

Proof. Obviously the additional term I(F ) = α‖F‖L2(ΩT ) is strictly convex:

I(γF1 + (1− γ)F2) < γI(F1) + (1− γ)I(F2) ∀γ ∈ (0, 1), F1, F2 ∈ F

and weakly coercive, i.e., I(F ) → ∞ as ‖F‖L2(ΩT ) → ∞. This makes the
whole functional Jα strictly convex and weakly coercive. Moreover, it is easy
to check that I(F ) is weakly sequentially lower semi-continuous. Since J(F ) =
‖u(·, T ;F ) − uT‖2L2(Ω) is also weakly lower semi-continuous (this was shown

in the proof of Theorem 2), the whole functional Jα is weakly lower semi-
continuous. Now the assertion of the theorem follows from Weierstrass exis-
tence theorem [16, Section 2.5]. ut

5 Auxiliary Estimates

Lemma 2. The following estimate is valid with a constant C0:

‖∆u(·, T ;F )‖L2(Ω) ≤ C0‖∆F‖L2(ΩT ). (5.1)

Proof. For the sake of shortness, we omit F in the list of arguments of ∆u.
Firstly, we prove this assertion in case ‖m‖L1(0,T ) is small enough and the
equation for ∆u (3.3) contains an additional term, namely it has the form

∆ut = A∆u − σ∆u−m ∗A∆u+∆F in ΩT , (5.2)

where σ is a sufficiently large number such that σ−a(x) ≥ ε for any x ∈ Ω. By
Theorem 1, ∆u belongs to W 2,1

2 (ΩT ) and solves the problem (5.2), (3.4)–(3.6)
in the classical sense. Let us multiply the equation (5.2) by ∆u and integrate
by parts taking into account the definition of A and the homogeneous boundary
conditions (3.5), (3.6):

0 =

∫ ∫

ΩT

[

∆ut − (A− σ)∆u +m ∗A∆u−∆F
]

∆udxdt

=
1

2

∫ ∫

ΩT

[∆u2]t dx dt +

∫ ∫

ΩT

[ n
∑

i,j=1

aij∆uxj
∆uxi

+ (σ − a)∆u2
]

dx dt
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−

∫ ∫

ΩT

[ n
∑

i,j=1

aij(m ∗∆uxj
)∆uxi

− a(m ∗∆u)∆u

]

dx dt

+

∫ ∫

Γ2,T

ϑ∆u2 dΓ dt−

∫ ∫

ΩT

∆F∆udxdt.

In view of the homogeneous initial condition (3.4), this relation can be trans-
formed to the form

1

2

∫

Ω

[∆u(x, T )]2 dx+

∫ ∫

Γ2,T

ϑ∆u2 dΓ dt (5.3)

+

∫ ∫

ΩT

[ n
∑

i,j=1

aij∆uxj
∆uxi

+ (σ − a)∆u2
]

dx dt

=

∫ ∫

ΩT

[ n
∑

i,j=1

aij(m ∗∆uxj
)∆uxi

− a(m ∗∆u)∆u

]

dx dt+

∫ ∫

ΩT

∆F∆udxdt.

Due to the assumptions ϑ ≥ 0, (2.8) and σ − a ≥ ε, the left hand side of (5.3)
can be estimated from below:

1

2

∫

Ω

[∆u(x, T )]2 dx+

∫ ∫

Γ2,T

ϑ∆u2 dx dt

+

∫ ∫

ΩT

[ n
∑

i,j=1

aij∆uxj
∆uxi

+ (σ − a)∆u2
]

dx dt

≥
1

2

∫

Ω

[∆u(x, T )]2 dx + ε

∫ ∫

ΩT

[

|∇∆u|2 +∆u2
]

dx dt =: I2. (5.4)

The right-hand side of (5.3) is estimated from above by means of the Cauchy–
Schwarz inequality:

∫ ∫

ΩT

[ n
∑

i,j=1

aij(m ∗∆uxj
)∆uxi

− a(m ∗∆u)∆u

]

dx dt+

∫ ∫

ΩT

∆F∆udxdt

≤ C̄1

[ n
∑

i,j=1

∥

∥m ∗∆uxj

∥

∥

L2(ΩT )
‖∆uxi

‖L2(ΩT )

+ ‖m ∗∆u‖L2(ΩT )‖∆u‖L2(ΩT )

]

+‖∆F‖L2(ΩT )‖∆u‖L2(ΩT ) (5.5)

where C̄1 is a constant depending on the coefficients aij and a. For the
convolution terms we apply the Young’s inequality in the space L2(ΩT ) =
L2((0, T );L2(Ω)). This yields

‖m ∗∆uxj
‖L2(ΩT ) ≤ ‖m‖L1(0,T )‖∆uxj

‖L2(ΩT ), j = 1, . . . , n,

‖m ∗∆u‖L2(ΩT ) ≤ ‖m‖L1(0,T )‖∆u‖L2(ΩT ). (5.6)
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Using (5.4)–(5.6) in (5.3) we obtain

I2 ≤ C̄1‖m‖L1(0,T )

[ n
∑

i,j=1

‖∆uxj
‖L2(ΩT )‖∆uxi

‖L2(ΩT ) + ‖∆u‖2L2(ΩT )

]

+ ‖∆F‖L2(ΩT )‖∆u‖L2(ΩT ).

Further, we use the inequalities

‖∆uxi
‖L2(ΩT ) ≤ ‖|∇∆u|‖L2(ΩT ), i = 1, . . . , n,

and definition of I (see (5.4)). We have

I2 ≤ C̄1‖m‖L1(0,T )

[

n2‖|∇∆u|‖2L2(ΩT ) + ‖∆u‖2L2(ΩT )

]

+ ‖∆F‖L2(ΩT )‖∆u‖L2(ΩT ) ≤
C̄1n

2‖m‖L1(0,T )

ε
I2 +

1
√
ε
‖∆F‖L2(ΩT )I.

Therefore, in case m satisfies the smallness condition

‖m‖L1(0,T ) ≤
ε

2C̄1n2
, (5.7)

we obtain I2 ≤ 2√
ε
‖∆F‖L2(ΩT )I that yields I ≤ 2√

ε
‖∆F‖L2(ΩT ). Observing

that ‖∆u(·, T )‖L2(Ω) ≤
√
2I, from the latter inequality we deduce the estimate

(5.1) with the constant C0 = 2
√
2/ε.

Now let us return to the original problem (3.3)–(3.6) without the additional
σ-term and arbitrarily large m. Define the following function: ∆uσ(x, t) =
e−σt∆u(x, t) where σ ∈ R. It is easy to check that ∆uσ solves the following
problem:

∆uσ,t = A∆uσ − σ∆uσ −mσ ∗A∆uσ +∆Fσ in ΩT ,

∆uσ = 0 in Ω × {0},

∆uσ = 0 in Γ1,T ,

− νA · ∇∆uσ +mσ ∗ νA · ∇∆uσ = ϑ∆uσ in Γ2,T

where mσ(t) = e−σtm(t) and ∆Fσ(x, t) = e−σt∆F (x, t). Clearly, there exists a
sufficiently large σ such that mσ satisfies the condition (5.7) and the inequality
σ− a(x) ≥ ε is valid for x ∈ Ω. Therefore, the first part of the proof applies to
the function ∆uσ. This means that the estimate

‖∆uσ(·, T )‖L2(Ω) ≤
2
√
2

ε
‖∆Fσ‖L2(ΩT ) (5.8)

is valid. Finally, in view of ∆uσ(x, T ) = e−σT∆u(x, T ) and |∆Fσ(x, t)| ≤
|∆F (x, t)|, from (5.8) we obtain the desired estimate (5.1) with the constant
C0 = 2

√
2eσT /ε. Lemma 2 is proved. ut

Further, let us estimate the difference of solutions of the adjoint problems

∆ψ(x, t;F ) = ψ(x, t;F +∆F )− ψ(x, t;F ).
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Lemma 3. The following estimate is valid with a constant C1:

‖∆ψ(·, ·;F )‖L2(ΩT ) ≤ C1‖∆F‖L2(ΩT ). (5.9)

Proof. Proof is similar to the proof of the previous lemma. Observing (3.7)–
(3.10) we see that the problem for ∆ψ(x, t;F ) has the following form:

∆ψt(x, t;F ) = −A∆ψ(x, t;F ) +

∫ T

t

m(τ − t)A∆ψ(x, τ ;F ) dτ in ΩT , (5.10)

∆ψ(x, T ;F ) = 2∆u(x, T ;F ) in Ω, (5.11)

∆ψ(x, t;F ) = 0 in Γ1,T , (5.12)

− νA · ∇∆ψ(x, t;F ) +

∫ T

t

m(τ − t)νA · ∇∆ψ(x, τ ;F ) dτ

= ϑ∆ψ(x, t;F ) in Γ2,T . (5.13)

We start by proving the assertion in case ‖m‖L1(0,T ) is small enough and the
equation (3.3) contains an additional term, namely it has the form

∆ψt(x, t;F ) = −A∆ψ(x, t;F ) + σ∆ψ(x, t;F )

+

∫ T

t

m(τ − t)A∆ψ(x, τ ;F ) dτ in ΩT , (5.14)

where σ is again sufficiently large, i.e. σ − a(x) ≥ ε for any x ∈ Ω. Since
∆u ∈ W 2,1

2 (ΩT ), by the trace theorem it holds ∆u|t=T ∈ H1(Ω). Moreover,
one can immediately check that the time-inverted function ∆ψ(x, T − t;F ) sat-
isfies a problem of the form (2.1)–(2.4) with an homogeneous equation, homoge-
neous boundary conditions and the initial condition 2∆u(x, T ;F ). Therefore,
applying Theorem 1 we see that the function ∆ψ(x, t;F ) belongs to W 2,1

2 (ΩT )
and satisfies the problem (5.14), (5.11), (5.12), (5.13) in the classical sense. For
the sake of shortness we omit the argument F of ∆ψ and ∆u in forthcoming
computations. Multiplying (5.14) by ∆ψ and integrating by parts we obtain

0 =

∫ ∫

ΩT

[

∆ψt + (A− σ)∆ψ −

∫ T

t

m(τ − t)A∆ψ(x, τ) dτ
]

∆ψ dxdt

=
1

2

∫ ∫

ΩT

[∆ψ2]t dx dt−

∫ ∫

ΩT

[ n
∑

i,j=1

aij∆ψxj
∆ψxi

+ (σ − a)∆ψ2

]

dx dt

+

∫ ∫

ΩT

[

n
∑

i,j=1

aij(x)

∫ T

t

m(τ − t)∆ψxj
(x, τ) dτ∆ψxi

(x, t)

− a(x)

∫ T

t

m(τ − t)∆ψ(x, τ) dτ∆ψ(x, t)
]

dx dt−

∫ ∫

Γ2,T

ϑ∆ψ2 dΓ dt.

Observing the final condition (5.11) and rearranging the terms we get

1

2

∫

Ω

[∆ψ(x, 0)]2 dx+

∫ ∫

Γ2,T

ϑ∆ψ2 dΓ dt (5.15)
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+

∫ ∫

ΩT

[ n
∑

i,j=1

aij∆ψxj
∆ψxi

+ (σ − a)∆ψ2

]

dx dt

=

∫ ∫

ΩT

[

n
∑

i,j=1

aij(x)

∫ T

t

m(τ − t)∆ψxj
(x, τ) dτ∆ψxi

(x, t)

− a(x)

∫ T

t

m(τ−t)∆ψ(x, τ) dτ∆ψ(x, t)
]

dx dt+
1

2

∫

Ω

[∆u(x, T )]2 dx. (5.16)

The left-hand side of (5.15) is estimated from below:

1

2

∫

Ω

[∆ψ(x, 0)]2 dx+

∫ ∫

Γ2,T

ϑ∆ψ2 dΓ dt+

∫ ∫

ΩT

[ n
∑

i,j=1

aij∆ψxj
∆ψxi

+ (σ − a)∆ψ2

]

dx dt ≥ ε
[

‖|∇∆ψ|‖2L2(ΩT ) + ‖∆ψ‖2L2(ΩT )

]

=: S2. (5.17)

For the right-hand side of (5.15) we use the Cauchy–Schwarz inequality:

∫ ∫

ΩT

[

n
∑

i,j=1

aij(x)

∫ T

t

m(τ − t)∆ψxj
(x, τ) dτ∆ψxi

(x, t)

− a(x)

∫ T

t

m(τ − t)∆ψ(x, τ) dτ∆ψ(x, t)
]

dx dt+
1

2

∫

Ω

[∆u(x, T )]2 dx

≤ Ĉ1

[

n
∑

i,j=1

∥

∥

∥

∫ T

t

m(τ − t)∆ψxj
(x, τ) dτ

∥

∥

∥

L2(ΩT )
‖∆ψxi

‖L2(ΩT )

+
∥

∥

∥

∫ T

t

m(τ−t)∆ψ(x, τ) dτ
∥

∥

∥

L2(ΩT )
‖∆ψ‖L2(ΩT )

]

+
1

2
‖∆u(·, T )‖2L2(Ω) (5.18)

with some constant Ĉ1. It is easy to check by means of the change of variables
of integration that

∥

∥

∥

∫ T

t

m(τ − t)v(x, τ) dτ
∥

∥

∥

L2(ΩT )
= ‖m ∗ v‖L2(ΩT ) for any v.

Therefore, using the Young’s inequality we get

∥

∥

∥

∫ T

t

m(τ − t)∆ψxj
(x, τ) dτ

∥

∥

∥

L2(ΩT )
≤ ‖m‖L1(0,T )‖∆ψxj

‖L2(ΩT ),

∥

∥

∥

∫ T

t

m(τ − t)∆ψ(x, τ) dτ
∥

∥

∥

L2(ΩT )
≤ ‖m‖L1(0,T )‖∆ψ‖L2(ΩT ). (5.19)

By means of (5.17)–(5.19) from (5.17) we obtain the relation

S2 ≤ Ĉ1‖m‖L1(0,T )

[ n
∑

i,j=1

‖∆ψxj
‖L2(ΩT )‖∆ψxi

‖L2(ΩT ) + ‖∆ψ‖2L2(ΩT )

]

+
1

2
‖∆u(·, T )‖2L2(Ω).
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Like in the proof of Lemma 3 from this relation and the definition of S we
deduce the estimate ‖∆ψ‖L2(ΩT ) ≤ 1√

ε
‖∆u(·, T )‖L2(Ω) provided m satisfies

the inequality

‖m‖L1(0,T ) ≤
ε

2Ĉ1n2
. (5.20)

Further, applying Lemma 2 to the obtained estimate we get (5.9) with the
constant C1 = C0/

√
ε.

Finally, let us consider the original problem for ∆ψ without the additional
σ-term and arbitrarily large m. Define ∆ψσ(x, t) = e−σ(T−t)∆u(x, t) with
σ ∈ R. Then ∆ψσ solves the following problem:

∆ψσ,t(x, t) = −A∆ψσ(x, t) +

∫ T

t

mσ(τ − t)A∆ψσ(x, τ) dτ in ΩT ,

∆ψσ(x, T ) = 2∆u(x, T ) in Ω, ∆ψσ(x, t) = 0 in Γ1,T ,

− νA · ∇∆ψσ(x, t) +

∫ T

t

mσ(τ−t)νA · ∇∆ψσ(x, τ ; ) dτ = ϑ∆ψσ(x, t) in Γ2,T ,

where mσ(t) = e−σtm(t) again. There exists a sufficiently large σ such that
mσ satisfies the condition (5.20) and the inequality σ − a(x) ≥ ε is valid for
x ∈ Ω. Thus, applying the first part of the proof to ∆ψσ we have

‖∆ψσ‖L2(ΩT ) ≤
C0√
ε
‖∆F‖L2(ΩT ).

Since ‖∆ψσ‖L2(ΩT ) ≥ e−σT ‖∆ψ‖L2(ΩT ) we reach the estimate (5.9) with the
constant C1 = C0e

σT /
√
ε. Lemma 3 is proved. ut

6 Frechet Derivative and Gradient Method

It follows from Lemma 2 with (3.2) that the functional J is Frechet differentiable
in L2(ΩT ). Moreover, according to Lemma 1, J ′(F ) is identical to the element
ψ(F ) = ψ(x, t;F ) in L2(ΩT ), i.e. it holds

J ′(F )F̃ =
(

ψ(F ), F̃
)

L2(ΩT )
=

∫ ∫

ΩT

ψ(x, t;F )F̃ (x, t) dx dt ∀F̃ ∈ L2(ΩT ).

Similarly, Jα is Frechet differentiable in L2(ΩT ) and

J ′
α(F )F̃ =

(

2αF + ψ(F ), F̃
)

L2(ΩT )

=

∫ ∫

ΩT

(2αF (x, t) + ψ(x, t;F ))F̃ (x, t) dx dt ∀F̃ ∈ L2(ΩT ). (6.1)

Therefore, gradient-type methods can be used to solve the minimization prob-
lems (3.1) and (4.1). These methods must be combined by proper projection
techniques to get minimum in the subset F . However, it is possible to simplify
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the minimization procedure in case the structure of the subspace ̂F is simple.
In particular, global optimization can be used if F = ̂F . To this end, let us
consider the cases 1–3 introduced in Section 3.

Case 1. We introduce the functional Φ1,α(w) = Jα(κw) with α ≥ 0 and
the set W1 = {w ∈ L2(Ω): κw ∈ F}. Then the problem (4.1) (in case α = 0
the problem (3.1)) can be rewritten as follows:

find w∗ = arg min
w∈W1

Φ1,α(w). (6.2)

In particular, when F = ̂F , it holds W1 = L2(Ω) and we have a global min-
imization problem. Since Jα is Frechet differentiable, Φ1,α is also Frechet dif-
ferentiable. Moreover, from (6.1) we deduce

J ′
α(κw)κw̃ =

∫

Ω

[

∫ T

0

[2αw(x)κ(t) + ψ(x, t,κw)]κ(t) dt
]

w̃(x) dx.

This shows that Φ′
1,α(w) is identical to the element

∫ T

0
[2αw(x)κ(t) +

ψ(x, t,κw)]κ(t)dt of L2(Ω), that is

Φ′
1,α(w)w̃ =

(

∫ T

0

[2αwκ(t) + ψ(·, t,κw)]κ(t) dt, w̃
)

L2(Ω)
∀w̃ ∈ L2(Ω).

Using Cauchy–Schwarz inequality and Lemma 3 we estimate

‖Φ′
1,α(w +∆w) − Φ′

1,α(w)‖L2(Ω)

=
[

∫

Ω

{

∫ T

0

[2α∆w(x)κ(t)+ψ(x, t,κ(w+∆w))−ψ(x, t,κw)]κ(t)dt
}2

dx
]1/2

≤ ‖2α∆w(x)κ(t) + ψ(x, t,κ(w +∆w))− ψ(x, t,κw)‖L2(ΩT ) ‖κ‖L2(0,T )

≤ (2α+ C1)‖κ∆w‖L2(ΩT )‖κ‖L2(0,T ) = (2α+ C1)‖κ‖
2
L2(0,T )‖∆w‖L2(Ω).

This implies that Φ′
1,α is uniformly Lipschitz-continuous, i.e.

‖Φ′
1,α(w +∆w) − Φ′

1,α(w)‖L2(Ω) ≤ Lα‖∆w‖L2(Ω) (6.3)

where Lα = (2α+ C1)‖κ‖2L2(0,T ).
The cases 2 and 3 can be treated in a similar manner. Let us summarize

the results in these cases.
Case 2. Define Φ2,α(w) = Jα(κw) with α ≥ 0 and the set W2 = {w ∈

L2(ST ):κw ∈ F}. If F = ̂F then W2 = L2(ST ). The problem (4.1) can
be rewritten in the form: find w∗ = arg min

w∈W2

Φ2,α(w). The functional Φ2,α is

Frechet differentiable, Φ′
2,α(w) is identical to the element

∫ l

0
[2αw(x, t)κ(xn) +

ψ(x, t,κw)]κ(xn) dxn of L2(ST ) and the uniform Lipschitz-estimate

‖Φ′
2,α(w +∆w)− Φ′

2,α(w)‖L2(ST ) ≤ Lα‖∆w‖L2(ST ) (6.4)

is valid with Lα = (2α+ C1)‖κ‖2L2(0,l).
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Case 3. Let Φ3,α(w) = Jα(
∑N

j=1 wjκj) with α ≥ 0 and W3 = {w ∈ RN :
∑N

j=1 wjκj ∈ F}. If F = ̂F then W2 = RN . The problem (4.1) admits the

following form: find w∗ = argminw∈W3
Φ3,α(w). The functional Φ3,α is Frechet

differentiable, Φ′
3,α(w) is identical to the element (

∫∫

ΩT

[2α
∑N

l=1 wlκl(x, t) +

ψ(x, t,
∑N

l=1 wlκl)]κj(x, t) dx dt)j=1,...,N of RN and the estimate

‖Φ′
3,α(w +∆w) − Φ′

3,α(w)‖RN ≤ Lα‖∆w‖RN (6.5)

with Lα = (2α+ C1)
∑N

j=1 ‖κj‖2L2(ΩT ) is valid.
In the following, let Φα be one of the functionals Φj,α, j = 1, 2, 3, defined

above and W be the corresponding set of admissible solutions Wj . Then we
consider the problem

find w∗ = arg min
w∈W

Φα(w). (6.6)

For the sake of simplicity, we assume that F = ̂F . This means that we consider
the unconstrained minimization and W is L2(Ω), L2(ST ) and RN in the cases
1, 2 and 3, respectively. Let w0 ∈ W be an initial guess and compute the
successive approximations by means of the gradient method

wk+1 = wk − ckΦ
′
α(wk), k = 0, 1, 2, . . . (6.7)

with steps ck > 0. Let us perform a little analysis for this iteration process
following partially the example of [2].

Lemma 4. For any α ≥ 0 it holds

|Φα(wk+1)− Φα(wk)− Φ′
α(wk)(wk+1 − wk)| ≤

Lα

2
‖wk+1 − wk‖

2. (6.8)

Proof. Using the relation

Φα(wk+1)− Φα(wk) =

∫ 1

0

Φ′
α(wk + τ(wk+1 − wk))(wk+1 − wk) dτ

and the estimates (6.3)–(6.5) we deduce

|Φα(wk+1)− Φα(wk)− Φ′
α(wk)(wk+1 − wk)|

=

∣

∣

∣

∣

∫ 1

0

[Φ′
α(wk + τ(wk+1 − wk))− Φ′

α(wk)](wk+1 − wk) dτ

∣

∣

∣

∣

≤ Lα‖wk+1 − wk‖
2

∫ 1

0

τ dτ =
Lα

2
‖wk+1 − wk‖

2.

This proves (6.8). ut

Theorem 4. Let α ≥ 0 and δ ≤ ck ≤ 2/Lα − δ for any k = 0, 1, 2, . . . where
δ is some number in the half-interval (0, 1/Lα]. Then the sequence Φα(wk) is
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monotonically decreasing, has a limit and the following relations are valid with
qk = ck − Lαc

2
k/2 ≥ δ − Lαδ

2/2 > 0:

Φα(wk)− Φα(wk+1) ≥ qk‖Φ
′
α(wk)‖

2, k = 0, 1, 2, . . . , (6.9)

Φ′
α(wk) → 0 as k → ∞, (6.10)

‖wk+1 − wk‖
2 ≤

c2k
qk

[

Φα(wk)− Φα(wk+1)
]

, k = 0, 1, 2, . . . . (6.11)

Proof. Due to (6.7) it hold ‖wk+1 − wk‖2 ≤ c2k‖Φ
′
α(wk)‖2 and

Φ′
α(wk)(wk+1 − wk) =

(

Φ′
α(wk),−ckΦ

′
α(wk)

)

W
= −ck‖Φ

′
α(wk)‖

2.

Thus, by means of (6.8) we get

Φα(wk+1)− Φα(wk) + ck‖Φ
′
α(wk)‖

2

≤
∣

∣Φα(wk+1)− Φα(wk) + ck‖Φ
′
α(wk)‖

2
∣

∣ ≤
Lαc

2
k

2
‖Φ′

α(wk)‖
2.

This yields Φα(wk) − Φα(wk+1) ≥
(

ck − Lαc2
k

2

)

‖Φ′
α(wk)‖2, i.e. (6.9). Due to

qk > 0, the relation (6.9) implies that Φα(wk) is monotonically decreasing and
since Φα(w) has the lower bound 0, the sequence Φα(wk) converges. Further,

since the sequence qk has the positive lower bound δ − Lαδ2

2 and the left hand
side of (6.9) converges to zero, we obtain (6.10). Finally, estimating (6.7) we
have ‖wk+1−wk‖2 = c2k‖Φ

′
α(wk)‖2. Using here (6.9) we obtain (6.11). Theorem

is proved. ut

Clearly, the highest decrease rate of Φα(wk) is achieved in case ck = 1/Lα

when qk has the biggest value qk = 1/2Lα.

Theorem 5. Let α > 0 and ck be chosen as in Theorem 4. Then the sequence
wk strongly converges to the unique solution of the minimization problem (6.6).

Proof. The existence of the unique solution for the minimization problem
immediately follows from Theorem 3 and the definitions of Φα. Moreover, since
Jα is weakly sequentially lower semi-continuous, strictly convex and weakly
coercive (see the proof of Theorem 3), the same properties are valid also for
Φα. It is well-known that under such properties every minimizing sequence of
Φα weakly converges to the minimum point w∗. Thus, firstly, let us show that
wk is a minimizing sequence, i.e. Φα(wk) → Φα(w

∗).

Note that the sequence wk is bounded. Indeed, otherwise there exists a
subsequence wki

such that ‖wki
‖ → ∞ and by the weak coercitivity it holds

Φα(wki
) → ∞ which contradicts to the statement of Theorem 4 that Φα(wk)

is monotonically decreasing.

Since Φα is convex, its Frechet derivative is monotone, i.e.

[

Φ′
α(w̃)− Φ′

α(w)
]

(w̃ − w) ≥ 0 ∀w, w̃ ∈ W . (6.12)
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Let us choose some τ ∈ (0, 1). Observing that it holds Φ′
α(w

∗) = 0 in the global
minimum point w∗ and applying (6.12) with w = w∗ and w̃ = w∗+ τ(wk −w∗)
we have

lim inf
k→∞

Φ′
α(w

∗ + τ(wk − w∗))(wk − w∗) =
1

τ
lim inf
k→∞

[

Φ′
α(w

∗ + τ(wk − w∗))

− Φ′
α(w

∗)
]

(w∗ + τ(wk − w∗)− w∗) ≥ 0. (6.13)

On the other hand, it holds limk→∞ Φ′
α(wk)(wk − w∗) = 0 because of the

boundedness of wk and the relation (6.10). Thus, using (6.12) with w = wk

and w̃ = w∗ + τ(wk − w∗) we obtain

lim sup
k→∞

Φ′
α(w

∗ + τ(wk−w
∗))(wk−w

∗) =
1

1−τ
lim sup
k→∞

[

Φ′
α(w

∗ + τ(wk−w
∗))

− Φ′
α(wk)

]

(wk − w∗ − τ(wk − w∗)) ≤ 0. (6.14)

The estimates (6.13) and (6.14) imply lim supk→∞ vk ≤ 0 ≤ lim infk→∞ vk for
the sequence vk = Φ′

α(w
∗ + τ(wk − w∗))(wk − w∗). Hence,

lim
k→∞

Φ′
α(w

∗ + τ(wk − w∗))(wk − w∗) = 0. (6.15)

Further, writing

Φα(wk)− Φα(w
∗) =

∫ 1

0

Φ′
α(w

∗ + τ(wk − w∗))(wk − w∗) dτ

and using (6.15) we obtain Φα(wk) − Φα(w
∗) → 0. This shows that wk is a

minimizing sequence. Consequently, wk ⇀ w∗.
Now let us prove the assertion of the Theorem wk → w∗. In case 3 this

is evident, because W is of finite dimension. Thus, let us study the cases 1
and 2. Then it holds Φα(w) = αν‖w‖2 + Φ0(w) where ν is a positive constant

(ν =
∫ T

0 κ2(t) dt in case 1 and ν =
∫ l

0 κ
2(xn) dxn in case 2). Since the norm is

weakly lower sequentially semicontinuous, the relation wk ⇀ w∗ implies

‖w∗‖2 ≤ lim inf
k→∞

‖wk‖
2. (6.16)

On the other hand, since Φα(wk) converges to Φα(w
∗) and Φ0(w) is weakly

lower sequentially semicontinuous and we obtain

lim sup
k→∞

‖wk‖
2 =

1

αν
lim sup
k→∞

[

Φα(wk)− Φ0(wk)
]

=
1

αν

{

lim
k→∞

Φα(wk) + lim sup
k→∞

[−Φ0(wk)]
}

=
1

αν

{

Φα(w
∗)− lim inf

k→∞
Φ0(wk)

}

≤
1

αν

{

Φα(w
∗)− Φ0(w

∗)
}

= ‖w∗‖2. (6.17)

Putting together (6.16) and (6.17) we get lim supk→∞ ‖wk‖2 ≤ ‖w∗‖2

≤ lim infk→∞ ‖wk‖2. This gives limk→∞ ‖wk‖2 = ‖w∗‖2. Since in an Hilbert
space the weak convergence and the convergence of norms implies the strong
convergence, we prove wk → w∗. The proof is complete. ut
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