MATHEMATICAL MODELLING AND ANALYSIS Volume 16 Number 2, June 2011, 199–219 Doi:10.3846/13926292.2011.578282 © Vilnius Gediminas Technical University, 2011

Reconstruction of a Source Term in a Parabolic Integro-Differential Equation from Final Data^{*}

Kairi Kasemets and Jaan Janno

Tallinn University of Technology Ehitajate tee 5, 19086 Tallinn, Estonia E-mail: kairik@staff.ttu.ee E-mail(corresp.): janno@ioc.ee

Received November 30, 2010; revised March 31, 2011; published online May 1, 2011

Abstract. The identification of a source term in a parabolic integro-differential equation is considered. We study the existence of the quasi-solution to this problem, Tikhonov regularization and a related gradient method.

Keywords: Inverse problem, integro-differential equation, quasi-solution.

AMS Subject Classification: 35R30; 80A23.

1 Introduction

Heat flow processes in media with memory are governed by parabolic integrodifferential equations [7]. A number of papers is devoted to inverse problems to determine kernels of these equations in different formulations making use of measurements over time (see e.g. [4, 6, 7, 8, 11, 13, 14]).

Recently some papers appeared that deal with the reconstruction of source terms or coefficients of these equations making use of final or integral overdetermination [5, 12]. In particular, the authors' paper [5] extends former existence and uniqueness results of Isakov [3] to the integro-differential case. The existence of the solutions to the inverse problems to determine unknown source terms from final over-determination of the temperature requires sufficient regularity and a certain monotonicity of a time-component of this term.

In the present paper we follow another approach. Instead of the conventional solution, we deal with the quasi-solution of the inverse problem that uses final data. Then we can build up a theory without any smoothness or monotonicity restrictions on the source. Similar results in the case of the parabolic differential equation without an integral term in the one-dimensional case were obtained by Hasanov [2]. Quasi-solutions of other integro-differential inverse problems were studied in [1, 9].

^{*} Supported by Estonian Science Foundation grant 7728 and Estonian Ministry of Education and Science TF themes SF0140011s09, SF0140083s08.

2 Direct Problem

Let Ω be a *n*-dimensional domain with sufficiently smooth boundary Γ and $\Gamma = \Gamma_1 \cup \Gamma_2$ where meas $\Gamma_1 \cap \Gamma_2 = 0$. Assume that for any $j \in \{1, 2\}$ it holds either $\Gamma_j = \emptyset$ or meas $\Gamma_j > 0$. Denote $\Omega_T = \Omega \times (0,T)$, $\Gamma_{1,T} = \Gamma_1 \times (0,T)$, $\Gamma_{2,T} = \Gamma_2 \times (0,T)$. Consider the problem (direct problem) to find $u(x,t) : \Omega_T \to \mathbb{R}$ such that

$$u_t = Au - m * Au + f + \nabla \phi \quad \text{in } \Omega_T, \tag{2.1}$$

$$u = u_0 \quad \text{in } \Omega \times \{0\}, \tag{2.2}$$

$$u = g \quad \text{in } \Gamma_{1,T},\tag{2.3}$$

$$-\nu_A \cdot \nabla u + m * \nu_A \cdot \nabla u = \vartheta u + h \quad \text{in } \Gamma_{2,T}$$
(2.4)

where

$$Av = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial}{\partial x_j} v \right) + av,$$

$$\nu_A = \sum_{j=1}^{n} a_{ij} \nu_j, \quad \nu = (\nu_1, \dots, \nu_n) \text{ - outer normal of } \Gamma_2,$$

 $a_{ij}, a, u_0 : \Omega \to \mathbb{R}, f : \Omega_T \to \mathbb{R}, \phi : \Omega_T \to \mathbb{R}^n, g : \Gamma_{1,T} \to \mathbb{R}, \vartheta : \Gamma_2 \to \mathbb{R}, h : \Gamma_{2,T} \to \mathbb{R}, m : (0,T) \to \mathbb{R}$ are given functions and

$$m * w(t) = \int_0^t m(t - \tau) w(\tau) \, d\tau$$

denotes the time convolution. In case $\Gamma_1 = \emptyset$ ($\Gamma_2 = \emptyset$), the boundary condition (2.3) ((2.4)) is dropped.

The problem (2.1)–(2.4) describes the heat flow in a body Ω with the thermal memory. Concerning the physical background we refer the reader to [7]. The solution u is the temperature of the body and m is the heat flux relaxation (or memory) kernel. The boundary condition (2.4) is of the third kind where the term $-\nu_A \cdot \nabla u + m * \nu_A \cdot \nabla u$ equals the heat flux in the direction of the co-normal vector.

Let us introduce some additional notation. Let X be a Banach space. We denote by C([0,T];X) the space of abstract continuous functions from [0,T] to X endowed with the usual maximum norm $\|v\|_{C([0,T];X)} := \max_{t \in [0,T]} \|v(x)\|$. Moreover, let

$$L^{2}((0,T);X) := \Big\{ v : (0,T) \to X \colon \|v\|_{L^{2}((0,T);X)} = \Big[\int_{0}^{T} \|v(t)\|^{2} dt \Big]^{1/2} < \infty \Big\}.$$

In addition, we need spaces of fractional order and anisotropic spaces. To this end, let us first introduce the following notation for difference quotients of xand (x, t)-dependent functions with powers:

$$\begin{aligned} \langle v \rangle_p(x_1, x_2) &:= \frac{v(x_1) - v(x_2)}{|x_1 - x_2|^p}, \qquad \langle v \rangle_p(x_1, x_2; t) := \frac{v(x_1, t) - v(x_2, t)}{|x_1 - x_2|^p}, \\ &\qquad \langle v \rangle_p(x; t_1, t_2) := \frac{v(x, t_1) - v(x, t_2)}{|t_1 - t_2|^p}, \end{aligned}$$

where |x| denotes the Euclidean norm of x in the space \mathbb{R}^n . For any $l \ge 0$ we introduce the Sobolev–Slobodeckij spaces (cf. [10, 15])

$$\begin{split} W_{2}^{l}(\Omega) &= \Big\{ v \colon \|v\|_{W_{2}^{l}(\Omega)} \coloneqq \sum_{|\alpha| \leq [l]} \Big[\int_{\Omega} |D_{x}^{\alpha} v(x)|^{2} dx \Big]^{\frac{1}{2}} \\ &+ \Theta_{l} \sum_{|\alpha| = [l]} \Big[\int_{\Omega} dx_{1} \int_{\Omega} |\langle D_{x}^{\alpha} v\rangle_{\frac{n}{2} + l - [l]}(x_{1}, x_{2})|^{2} dx_{2} \Big]^{\frac{1}{2}} < \infty \Big\}, \\ W_{2}^{l, \frac{1}{2}}(\Omega_{T}) &= \Big\{ v \colon \|v\|_{W_{2}^{l, \frac{1}{2}}(\Omega_{T})} \coloneqq \sum_{2j + |\alpha| \leq [l]} \Big[\int_{0}^{T} \int_{\Omega} |D_{t}^{j} D_{x}^{\alpha} v(x, t)|^{2} dx dt \Big]^{\frac{1}{2}} \\ &+ \Theta_{l} \sum_{2j + |\alpha| = [l]} \Big[\int_{0}^{T} dt \int_{\Omega} dx_{1} \int_{\Omega} |\langle D_{t}^{j} D_{x}^{\alpha} v\rangle_{\frac{n}{2} + l - [l]}(x_{1}, x_{2}; t)|^{2} dx_{2} \Big]^{\frac{1}{2}} \\ &+ \Theta_{\frac{l}{2}} \sum_{l - 2j - |\alpha| \atop \in (0, 2)} \Big[\int_{\Omega} dx \int_{0}^{T} dt_{1} \int_{0}^{T} |\langle D_{t}^{j} D_{x}^{\alpha} v\rangle_{\frac{1}{2} + \frac{l - 2j - |\alpha|}{2}}(x; t_{1}, t_{2})|^{2} dt_{2} \Big]^{\frac{1}{2}} < \infty \Big\}. \end{split}$$

Here $\alpha = (\alpha_1, \ldots, \alpha_n)$ with $\alpha_i \in \{0, 1, 2, \ldots\}$ is the multi-index, $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $D_x^{\alpha}v = \frac{\partial^{|\alpha|}v}{\partial x_1^{\alpha_1}\cdots\partial x_n^{\alpha_n}}$ and $D_t^jv = \frac{\partial^j v}{\partial t^j}$. Moreover, [l] is the greatest integer $\leq l$ and $\Theta_l = 0$ and $\Theta_l = 1$ in the cases of integer l and non-integer l, respectively. The definition of $W_2^{l,\frac{1}{2}}$ is in a standard manner extended from Ω_T to the boundary components $\Gamma_{1,T}$ and $\Gamma_{2,T}$ (for details see [10]).

Now we return to the direct problem (2.1)-(2.4). Throughout the paper we assume the following basic regularity conditions on the coefficients, the kernel and the initial and boundary functions:

$$a_{ij} \in C^1(\overline{\Omega}), \quad a_{ij} = a_{ji}, \quad a \in C(\overline{\Omega}), \quad \vartheta \in C(\overline{\Gamma}_2), \quad \vartheta \ge 0,$$
 (2.5)

$$m \in L^1(0,T), \quad g \in W_2^{\frac{1}{2},\frac{1}{4}}(\Gamma_{1,T}), \quad h \in L^2(\Gamma_{2,T}),$$
(2.6)

$$u_0 \in L^2(\Omega), \quad f \in L^2(\Omega_T), \quad \phi = (\phi_1, \dots, \phi_n) \in (L^2(\Omega_T))^n$$
 (2.7)

and the ellipticity condition

$$\sum_{i,j=1}^{n} a_{ij} \lambda_i \lambda_i \ge \epsilon |\lambda|^2, \quad x \in \overline{\Omega}, \ \lambda \in \mathbb{R}^n \text{ with some } \epsilon > 0.$$
 (2.8)

The first aim is to reformulate the problem (2.1)-(2.4) in a weak form. Let us suppose that (2.1)-(2.4) has a classical solution $u \in W_2^{2,1}(\Omega_T)$ and the term ϕ satisfies the following additional conditions: $\frac{\partial}{\partial x_i}\phi_i \in (L^2(\Omega_T))^n$, $i = 1, \ldots, n$, $\phi|_{\Gamma_{2,T}} = 0$. Then, we multiply (2.1) with a test function η from the space

$$\mathcal{T}(\Omega_T) = \left\{ \eta \in L^2((0,T); W_2^1(\Omega)): \eta_t \in L^2((0,T); L^2(\Omega)), \\ \eta|_{\Gamma_1} = 0 \text{ in case } \Gamma_1 \neq \emptyset \right\}$$

and integrate by parts with respect to time and space variables. We obtain the following relation:

$$0 = \int_{\Omega} \left[u(x,T)\eta(x,T) - u_0(x)\eta(x,0) \right] dx - \iint_{\Omega_T} u\eta_t \, dx \, dt$$

+
$$\iint_{\Omega_T} \left[\sum_{i,j=1}^n a_{ij}(u_{x_j} - m * u_{x_j})\eta_{x_i} - a(u - m * u)\eta \right] dx \, dt$$

+
$$\iint_{\Gamma_{2,T}} (\vartheta u + h)\eta \, d\Gamma \, dt - \iint_{\Omega_T} (f\eta - \phi \cdot \nabla \eta) \, dx \, dt.$$
(2.9)

This relation makes sense also in a more general case when ϕ satisfies only (2.7) and u doesn't have regular first order time and second order spatial derivatives. We call a *weak solution* of the problem (2.1)–(2.4) a function from the space

$$\mathcal{U}(\Omega_T) = C([0,T]; L^2(\Omega)) \cap L^2((0,T); W_2^1(\Omega))$$

that satisfies the relation (2.9) for any $\eta \in \mathcal{T}(\Omega_T)$ and in case $\Gamma_1 \neq \emptyset$ fulfills the boundary condition (2.3).

Theorem 1. The problem (2.1)–(2.4) has a unique weak solution. If, in addition, $\phi = 0$, $g \in W_2^{\frac{3}{2},\frac{3}{4}}(\Gamma_{1,T})$, $h \in W_2^{\frac{1}{2},\frac{1}{4}}(\Gamma_{2,T})$, $u_0 \in H^1(\Omega)$ and $u_0 = g$ on $\Gamma_1 \times \{0\}$ then this solution belongs to the space $W_2^{2,1}(\Omega_T)$ and satisfies (2.1)–(2.4) in the classical sense.

Proof. It is well known (see e.g. [10]) that in the particular case m = 0the solution exists, is unique and the operator \mathcal{H} , that assigns to the data vector u_0, g, h, f, ϕ the weak solution is Lipschitz-continuous from the space $L^2(\Omega) \times W_2^{\frac{1}{2},\frac{1}{4}}(\Gamma_{1,T}) \times L^2(\Gamma_{2,T}) \times L^2(\Omega_T)^{n+1}$ to the space $\mathcal{U}(\Omega_T)$. Let us denote $\mathcal{G}(f,\phi) = \mathcal{H}(0,0,0,f,\phi)$. Then, denoting by \hat{u} the solution corresponding to m = 0, the problem (2.1)–(2.4) for u is in $\mathcal{U}(\Omega_T)$ equivalent to the following operator equation for the function $v = u - \hat{u}$:

$$v = \mathcal{F}\hat{u} + \mathcal{F}v \tag{2.10}$$

with the linear operator $\mathcal{F}v = \mathcal{G}(-m * (av), -m * (\sum_{j=1}^{n} a_{ij}v_{x_j}))$. We are going to estimate \mathcal{F} . To this end, we make use of the following inequality that immediately follows from the estimate (19) in [5]:

$$\|m * w\|_{L^{2}(\Omega_{t})} \leq \int_{0}^{t} |m(t-\tau)| \|w\|_{L^{2}(\Omega_{\tau})} d\tau, \quad t \in (0,T).$$
(2.11)

Here $\Omega_t = \Omega \times (0, t)$ for $t \in (0, T)$ and w is an arbitrary element of $L^2(\Omega_T)$. Moreover, we define the cutting operator P_t by the formula

$$P_t w = \begin{cases} w & \text{in } \Omega_t, \\ 0 & \text{in } \Omega_T \setminus \Omega_t. \end{cases}$$

Note that it holds $\mathcal{G}(P_t f, P_t \phi)(x, t) = \mathcal{G}(f, \phi)(x, t)$ for any $(x, t) \in \Omega_t$. Therefore, observing the Lipschitz-continuity of \mathcal{G} and (2.11) we can estimate as follows:

$$\begin{split} \|\mathcal{F}v\|_{\mathcal{U}(\Omega_{t})} &= \left\|\mathcal{G}\left(-m*(av), -m*\left(\sum_{j=1}^{n}a_{ij}v_{x_{j}}\right)\right)\right\|_{\mathcal{U}(\Omega_{t})} \\ &= \left\|\mathcal{G}\left(-P_{t}\left[m*(av)\right], -P_{t}\left[m*\left(\sum_{j=1}^{n}a_{ij}v_{x_{j}}\right)\right]\right)\right\|_{\mathcal{U}(\Omega_{t})} \\ &\leq \left\|\mathcal{G}\left(-P_{t}\left[m*(av)\right], -P_{t}\left[m*\left(\sum_{j=1}^{n}a_{ij}v_{x_{j}}\right)\right]\right)\right\|_{\mathcal{U}(\Omega_{T})} \\ &\leq C_{1}\left[\left\|P_{t}\left[m*(av)\right]\right\|_{L^{2}(\Omega_{T})} + \sum_{i=1}^{n}\left\|P_{t}\left[m*\sum_{j=1}^{n}a_{ij}v_{x_{j}}\right]\right\|_{L^{2}(\Omega_{T})}\right] \\ &= C_{1}\left[\left\|m*(av)\right\|_{L^{2}(\Omega_{t})} + \sum_{i=1}^{n}\left\|m*\sum_{j=1}^{n}a_{ij}v_{x_{j}}\right\|_{L^{2}(\Omega_{t})}\right] \\ &\leq C_{2}\int_{0}^{t}|m(t-\tau)|(\|v\|_{L^{2}(\Omega_{\tau})} + \|\nabla v\|_{L^{2}(\Omega_{\tau})})\,d\tau \\ &\leq C_{2}\int_{0}^{t}|m(t-\tau)|\|v\|_{\mathcal{U}(\Omega_{\tau})}\,d\tau \end{split}$$

for any $t \in (0,T)$ with some constants C_1, C_2 . Now we introduce the weighted norms in $\mathcal{U}(\Omega_T)$: $\|v\|_{\sigma} = \sup_{0 < t < T} e^{-\sigma t} \|v\|_{\mathcal{U}(\Omega_t)}$ where $\sigma \ge 0$. Using the deduced estimate for \mathcal{F} we obtain

$$\begin{aligned} \|\mathcal{F}v\|_{\sigma} &\leq C_{2} \sup_{0 < t < T} e^{-\sigma t} \int_{0}^{t} |m(t-\tau)| \|v\|_{\mathcal{U}(\Omega_{\tau})} \, d\tau \\ &= C_{2} \sup_{0 < t < T} \int_{0}^{t} e^{-\sigma(t-\tau)} |m(t-\tau)| e^{-\sigma\tau} \|v\|_{\mathcal{U}(\Omega_{\tau})} \, d\tau \\ &\leq C_{2} \int_{0}^{T} e^{-\sigma s} |m(s)| \, ds \, \|v\|_{\sigma}. \end{aligned}$$

Since $\int_0^T e^{-\sigma s} |m(s)| ds \to 0$ as $\sigma \to \infty$, the operator \mathcal{F} is a contraction for sufficiently large σ . Consequently, (2.10) has a unique solution in $\mathcal{U}(\Omega_T)$. This proves the existence of the unique weak solution of (2.1)–(2.4).

Secondly, let us prove the classical solvability assertion of the theorem. Again, we use the results in case m = 0. It is known [15] that in case m = 0 the solution belongs to $W_2^1(\Omega_T)$ and the operator \mathcal{H}^1 that assigns to the data vector u_0, g, h, f the classical solution is Lipschitz-continuous from the space $H^1(\Omega) \times W_2^{\frac{3}{2},\frac{3}{4}}(\Gamma_{1,T}) \times W_2^{\frac{1}{2},\frac{1}{4}}(\Gamma_{2,T}) \times L^2(\Omega_T)$ to the space $W_2^{2,1}(\Omega_T)$. Define $\mathcal{G}^1(h, f) = \mathcal{H}^1(0, 0, h, f)$. The problem for u is equivalent to the following operator equation for $v = u - \hat{u}$:

$$v = \mathcal{F}^1 \widehat{u} + \mathcal{F}^1 v, \qquad (2.12)$$

where $\mathcal{F}^1 v = \mathcal{G}^1(-m * \nu_A \cdot \nabla v|_{\Gamma_{2,T}}, -m * Av)$. This time we have to introduce a more complicated extension operator instead of P_t because the argument of \mathcal{F}^1 has traces on slices $\Omega \times \{t\}$. Let us define

$$\widetilde{P}_t w(x,s) = \begin{cases} w(x,s) & \text{for } s < t, \\ w(x,2t-s) & \text{for } t < s < \min\{2t;T\}, \\ 0 & \text{for } s > 2t \text{ in case } 2t < T. \end{cases}$$

Then, since the function v in the range of \mathcal{F}^1 satisfies $v|_{t=0} = 0$, it holds $\widetilde{P}_t v \in W_2^{2,1}(\Omega_T)$ for $t \in (0,T)$. Moreover, $\mathcal{G}^1(\widetilde{P}_t\widetilde{h}, \widetilde{P}_t\widetilde{f})(x,t) = \mathcal{G}^1(\widetilde{h}, \widetilde{f})(x,t)$ for any $(x,t) \in \Omega_t$ and $\|\widetilde{P}_t\widetilde{h}\|_{W_2^{\frac{1}{2},\frac{1}{4}}(\Gamma_{2,T})} \leq 2\|\widetilde{h}\|_{W_2^{\frac{1}{2},\frac{1}{4}}(\Gamma_{2,t})}$, $\|\widetilde{P}_t\widetilde{f}\|_{L^2(\Omega_T)} \leq 2\|\widetilde{f}\|_{L^2(\Omega_t)}$, where $\widetilde{h} = m * \nu_A \cdot \nabla v|_{\Gamma_{2,T}}$ and $\widetilde{f} = m * Av$. Consequently, in view of the Lipschitz-continuity of \mathcal{G}^1 we deduce

$$\begin{aligned} \|\mathcal{F}^{1}v\|_{W_{2}^{2,1}(\Omega_{t})} &= \left\|\mathcal{G}^{1}\left(-m*\nu_{A}\cdot\nabla v|_{\Gamma_{2,T}},-m*Av\right)\right\|_{W_{2}^{2,1}(\Omega_{t})} \\ &= \left\|\mathcal{G}^{1}\left(-P_{t}\left[m*\nu_{A}\cdot\nabla v|_{\Gamma_{2,T}}\right],-P_{t}\left[m*Av\right]\right)\right\|_{W_{2}^{2,1}(\Omega_{t})} \\ &\leq \left\|\mathcal{G}^{1}\left(-P_{t}\left[m*\nu_{A}\cdot\nabla v|_{\Gamma_{2,T}}\right],-P_{t}\left[m*Av\right]\right)\right\|_{W_{2}^{2,1}(\Omega_{T})} \\ &\leq C_{3}\left[\left\|P_{t}\left[m*\nu_{A}\cdot\nabla v\right]\right\|_{W_{2}^{\frac{1}{2},\frac{1}{4}}(\Gamma_{2,T})}+\left\|P_{t}\left[m*Av\right]\right\|_{L^{2}(\Omega_{T})}\right] \\ &\leq 2C_{3}\left[\left\|m*\nu_{A}\cdot\nabla v\right\|_{W_{2}^{\frac{1}{2},\frac{1}{4}}(\Gamma_{2,t})}+\left\|m*Av\right\|_{L^{2}(\Omega_{t})}\right] \end{aligned}$$
(2.13)

for any $t \in (0,T)$ with some constant C_3 and $\Gamma_{2,t} = \Gamma_2 \times (0,t)$. Using the trace theorem for Sobolev–Slobodeckij spaces [10] and the relation $(m * v)_t = m * v_t$, that holds due to $v|_{t=0} = 0$, we compute

$$\begin{split} \|m * \nu_A \cdot \nabla v\|_{W_2^{\frac{1}{2}, \frac{1}{4}}(\Gamma_{2, t})} &= \|\nu_A \cdot \nabla (m * v)\|_{W_2^{\frac{1}{2}, \frac{1}{4}}(\Gamma_{2, t})} \leq C_4 \|m * v\|_{W_2^{2, 1}(\Omega_t)} \\ &= C_4 \bigg[\sum_{|\alpha| \leq 2} \|m * D_x^{\alpha} v\|_{L^2(\Omega_t)} + \|m * v_t\|_{L^2(\Omega_t)} \bigg] \end{split}$$

with some constant C_4 . Applying this estimate in (2.13) and using (2.11) we deduce

$$\|\mathcal{F}^{1}v\|_{W_{2}^{2,1}(\Omega_{t})} \leq C_{5} \int_{0}^{t} |m(t-\tau)| \|v\|_{W_{2}^{2,1}(\Omega_{\tau})} d\tau, \quad t \in (0,T)$$

with a constant C_5 . We define the weighted norms

$$\|v\|_{\sigma}^{*} = \sup_{0 < t < T} e^{-\sigma t} \|v\|_{W_{2}^{2,1}(\Omega_{t})}$$

in the space $W_2^{2,1}(\Omega_T)$ and, as in the first part of the proof, show that \mathcal{F}^1 is a contraction in $W_2^{2,1}(\Omega_T)$ if σ is sufficiently large. This proves the unique solvability of (2.12) and in turn the classical solvability assertion of theorem. \Box

3 Formulation of Inverse Problem. Existence of Quasi-Solution

Let $\widehat{\mathcal{F}}$ be a linear closed subspace of $L^2(\Omega_T)$. Suppose that the source term f is of the following form: $f = f_0 + F$, where $f_0 \in L^2(\Omega_T)$ is known. We pose an inverse problem to determine the function $F \in \widehat{\mathcal{F}}$ making use of the final measurement

$$u(x,T) = u_T(x), \quad x \in \Omega.$$

More precisely, we will search a *quasi-solution* of this problem. This is a solution of the following minimization problem for the cost functional: find

$$F^* = \arg\min_{F \in \mathcal{F}} J(F), \quad J(F) = \|u(\cdot, T; F) - u_T\|_{L^2(\Omega)}^2, \tag{3.1}$$

where $\mathcal{F} \subseteq \widehat{\mathcal{F}}$ is a subset including constraints. Here u(x,t;F) stands for the solution of the direct problem corresponding to the given F.

Let us introduce some cases of $\overline{\mathcal{F}}$.

- Case 1. Define $\widehat{\mathcal{F}} = \{F: F(x,t) = \varkappa(t)w(x), w \in L^2(\Omega)\}$, where $\varkappa \in L^2(0,T)$, $\varkappa \neq 0$ is a prescribed function.
- Case 2. Let Ω be a cylinder: $\Omega = S \times (0, l)$, where for any $x = (x_1, \ldots, x_n) \in \Omega$ we have $\overline{x} = (x_1, \ldots, x_{n-1}) \in S$, $x_n \in (0, l)$. Define $\widehat{\mathcal{F}} = \{F: F(x, t) = \varkappa(x_n)w(\overline{x}, t), w \in L^2(S_T)\}$, where $\varkappa \in L^2(0, l), \varkappa \neq 0$ is a prescribed function and $S_T = S \times (0, T)$.
- Case 3. Define $\widehat{\mathcal{F}} = \{F: F(x,t) = \sum_{j=1}^{N} w_j \varkappa_j(x,t), w = (w_j)_{j=1,\dots,N} \in \mathbb{R}^N\},\$ where $\varkappa = (\varkappa_j)_{j=1,\dots,N} \in (L^2(\Omega_T))^N, \ \varkappa \neq 0$ is a prescribed vectorfunction. In practice, the component \varkappa_j may be the characteristic function of a subdomain $\Omega_j \subset \Omega$.

Now let us consider the first variation of the cost functional

$$\Delta J(F) = J(F + \Delta F) - J(F)$$

= $2 \int_{\Omega} [u(x, T; F) - u_T(x)] \Delta u(x, T; F) dx + \int_{\Omega} [\Delta u(x, T; F)]^2 dx, \quad (3.2)$

where $\Delta u(x,t;F) = u(x,t;F + \Delta F) - u(x,t;F)$. By Theorem 1, the function Δu belongs to $W_2^{2,1}(\Omega_T)$ and solves the following problem in the classical sense:

$$\Delta u_t = A \Delta u - m * A \Delta u + \Delta F \quad \text{in } \Omega_T, \tag{3.3}$$

$$\Delta u = 0 \quad \text{in } \Omega \times \{0\},\tag{3.4}$$

$$\Delta u = 0 \quad \text{in } \Gamma_{1,T},\tag{3.5}$$

$$-\nu_A \cdot \nabla \Delta u + m * \nu_A \cdot \nabla \Delta u = \vartheta \Delta u \quad \text{in } \Gamma_{2,T}.$$
(3.6)

Moreover, let us introduce the following adjoint problem with the solution $\psi(x,t;F)$:

$$\psi_t(x,t;F) = -A\psi(x,t;F) + \int_t^T m(\tau-t)A\psi(x,\tau;F)\,d\tau \quad \text{in } \Omega_T, \qquad (3.7)$$

$$\psi(x,T;F) = 2[u(x,T;F) - u_T(x)]$$
 in Ω , (3.8)

$$\psi(x,t;F) = 0 \quad \text{in } \Gamma_{1,T}, \tag{3.9}$$
$$-\nu_A \cdot \nabla \psi(x,t;F) + \int_t^T m(\tau-t)\nu_A \cdot \nabla \psi(x,\tau;F) \, d\tau = \vartheta \psi(x,t;F) \quad \text{in } \Gamma_{2,T}. \tag{3.10}$$

It is easy to see that the equivalent problem for $\tilde{u}(x,t) = \psi(x,T-t;F)$ is of the form (2.1)–(2.4) with homogeneous differential equation and boundary conditions and the initial condition $\tilde{u} = 2[u(\cdot,T;F) - u_T] \in L^2(\Omega)$ in $\Omega \times \{0\}$. Therefore, applying Theorem 1 we conclude that problem (3.7)–(3.10) has a unique weak solution. The weak problem for $\psi(x,T-t;F)$ reads

$$0 = \int_{\Omega} \left[\psi(x,0;F)\eta(x,T) - 2[u(x,T;F) - u_T(x)]\eta(x,0) \right] dx$$

$$- \int_{\Omega_T} \int_{\Omega_T} \psi(x,T-t;F)\eta_t(x,t) \, dx \, dt + \int_{\Omega_T} \left[\sum_{i,j=1}^n a_{ij}(x) \left(\psi_{x_j}(x,T-t;F) - \int_0^t m(t-\tau)\psi_{x_j}(x,T-\tau;F) \, d\tau \right) \eta_{x_i}(x,t) - a(x) \left(\psi(x,T-t;F) - \int_0^t m(t-\tau)\psi(x,T-\tau;F) \, d\tau \right) \eta(x,t) \right] dx \, dt$$

$$+ \int_{\Gamma_{2,T}} \vartheta \psi(x,T-t;F)\eta(x,t) \, d\Gamma \, dt \quad \forall \eta \in \mathcal{T}(\Omega_T).$$
(3.11)

Lemma 1. It holds the following formula:

$$2\int_{\Omega} [u(x,T;F) - u_T(x)] \Delta u(x,T,F) \, dx = \iint_{\Omega_T} \psi(x,t;F) \Delta F(x,t) \, dx \, dt. \quad (3.12)$$

Proof. Since $\Delta u \in W_2^{2,1}(\Omega_T)$ satisfies the homogeneous boundary condition on Γ_1 , it holds $\Delta u(x, T - t, F) \in \mathcal{T}(\Omega_T)$. Let us use the test function $\eta(x, t) = \Delta u(x, T - t, F)$ in (3.11). This yields (changing the variable t by T - t under the integrals and observing that $\eta(x, T) = 0$ and omitting F in the arguments for the sake of shortness)

$$0 = -2 \int_{\Omega} [u(x,T) - u_T(x)] \Delta u(x,T)] dx + \iint_{\Omega_T} \psi(x,t) \Delta u_t(x,t) dx dt$$

+
$$\iint_{\Omega_T} \Big[\sum_{i,j=1}^n a_{ij} \Big(\psi_{x_j}(x,t) - \int_0^t m(t-\tau) \psi_{x_j}(x,\tau) d\tau \Big) \Delta u_{x_j}(x,t)$$

-
$$a(x) \Big(\psi(x,t) - \int_0^t m(t-\tau) \psi(x,\tau) d\tau \Big) \Delta u(x,t) \Big] dx dt$$

+
$$\iint_{\Gamma_{2,T}} \vartheta \psi(x,t) \Delta u(x,t) d\Gamma dt.$$
(3.13)

On the other hand, the problem (3.3)–(3.6) in the weak form reads

$$0 = \int_{\Omega} \Delta u(x,T)\zeta(x,T) \, dx - \iint_{\Omega_T} \Delta u\zeta_t \, dx \, dt$$

+
$$\iint_{\Omega_T} \left[\sum_{i,j=1}^n a_{ij} (\Delta u_{x_j} - m * \Delta u_{x_j})\zeta_{x_i} - a(\Delta u - m * \Delta u)\zeta \right] dx \, dt$$

+
$$\iint_{\Gamma_{2,T}} \vartheta \Delta u\zeta \, d\Gamma \, dt - \iint_{\Omega_T} \Delta F\zeta \, dx \, dt \quad \forall \zeta \in \mathcal{T}(\Omega_T).$$
(3.14)

Since $\Delta u \in W_2^{2,1}(\Omega_T)$ has the regular time derivative, we can integrate by parts the integral $\iint_{\Omega_T} \Delta u \zeta_t \, dx \, dt$ in (3.14). This results in the relation

$$0 = \iint_{\Omega_T} \Delta u_t \zeta \, dx \, dt + \iint_{\Omega_T} \left[\sum_{i,j=1}^n a_{ij} (\Delta u_{x_j} - m * \Delta u_{x_j}) \zeta_{x_i} - a (\Delta u - m * \Delta u) \zeta \right] dx \, dt + \iint_{\Gamma_{2,T}} \vartheta \Delta u \zeta \, d\Gamma \, dt - \iint_{\Omega_T} \Delta F \zeta \, dx \, dt. \quad (3.15)$$

It is important that this relation doesn't contain the time derivative of the test function ζ . Therefore, we can extend the set of test functions of (3.15) from $\mathcal{T}(\Omega_T)$ to $\mathcal{U}_0(\Omega_T) = \{\zeta \in \mathcal{U}(\Omega_T): \zeta|_{\Gamma_{1,T}} = 0 \text{ in case } \Gamma_2 \neq \emptyset\}$. In particular, it is possible to take the test function $\zeta = \psi \in \mathcal{U}_0(\Omega_T)$. Then we obtain

$$0 = \iint_{\Omega_T} \Delta u_t \psi \, dx \, dt + \iint_{\Omega_T} \left[\sum_{i,j=1}^n a_{ij} (\Delta u_{x_j} - m * \Delta u_{x_j}) \psi_{x_i} - a (\Delta u - m * \Delta u) \psi \right] dx \, dt + \iint_{\Gamma_{2,T}} \vartheta \Delta u \psi \, d\Gamma \, dt - \iint_{\Omega_T} \Delta F \psi \, dx \, dt. \quad (3.16)$$

Subtracting (3.16) from (3.13) and changing the order of integration in convolution terms we deduce the formula (3.12). Lemma is proved. \Box

Theorem 2. Let \mathcal{F} be a bounded, closed and convex subset of $\widehat{\mathcal{F}}$. Then the problem (3.1) has a solution in \mathcal{F} . Moreover, the set of all solutions \mathcal{F}^* form a closed convex subset of \mathcal{F} .

Proof. The assertion follows from Weierstrass existence theorem (see [16, Section 2.5]) once we have proved that J(F) is weakly sequentially lower semicontinuous in \mathcal{F} , i.e.

$$J(F) \le \liminf_{n \to \infty} J(F_n) \quad \text{as } F_n \rightharpoonup F \text{ in } \mathcal{F}$$
 (3.17)

and convex, i.e.

$$J(\gamma F_1 + (1 - \gamma)F_2) \le \gamma J(F_1) + (1 - \gamma)J(F_2) \quad \forall \gamma \in [0, 1], \ F_1, F_2 \in \mathcal{F}.$$

Let us compute:

$$\begin{split} J(F) &= \int_{\Omega} [u(x,T;F) - u_T(x)]^2 \, dx = \int_{\Omega} [u(x,T;F_n) - u_T(x)]^2 \, dx \\ &- \int_{\Omega} [u(x,T;F_n) - u(x,T;F)]^2 \, dx \\ &- 2 \int_{\Omega} [u(x,T;F) - u_T(x)] [u(x,T;F_n) - u(x,T;F)] \, dx \\ &= J(F_n) - \int_{\Omega} [u(x,T;F_n) - u(x,T;F)]^2 \, dx \\ &- 2 \int_{\Omega} [u(x,T;F) - u_T(x)] \Delta u_n(x,T;F) \, dx \end{split}$$

where $\Delta u_n(x,t;F) = u(x,T;F_n) - u(x,T;F)$ is the change of *u* corresponding to the change of the free term $\Delta F_n = F_n - F$. Thus, in view of (3.12) we have

$$J(F) \le J(F_n) - \iint_{\Omega_T} \psi(x,t;F) \Delta F_n(x,t) \, dx \, dt.$$

Since $\psi \in L^2(\Omega_T)$, this implies the relation (3.17). To prove the convexity, we firstly note that

$$u(x,t;\gamma F_1 + (1-\gamma)F_2) = \gamma u(x,t;F_1) + (1-\gamma)u(x,t;F_2), \text{ for } \gamma \in [0,1].$$

Therefore, in view of the convexity of the quadratic function we obtain

$$J(\gamma F_1 + (1 - \gamma)F_2) = \int_0^T \left[u(x, T, \gamma F_1 + (1 - \gamma)F_2) - u_T(x) \right]^2 dx$$

= $\int_0^T \left[\gamma \left\{ u(x, T; F_1) - u_T(x) \right\} + (1 - \gamma) \left\{ u(x, T; F_2) - u_T(x) \right\} \right]^2 dx$
 $\leq \gamma \int_0^T \left[u(x, T, F_1) - u_T(x) \right]^2 dx + (1 - \gamma) \int_0^T \left[u(x, T, F_2) - u_T(x) \right]^2 dx$
= $\gamma J(F_1) + (1 - \gamma) J(F_2)$ for $\gamma \in [0, 1]$.

This shows the convexity of J. Theorem is proved. \Box

Remark 1. In order to prove the existence in an unbounded set \mathcal{F} incl. $\widehat{\mathcal{F}}$, it is sufficient to have the weak coercivity of J(F). This is a difficult problem, because monotonicity methods in general fail for problems in integro-differential PDE. However, the boundedness assumption of \mathcal{F} seems not very restrictive, because in practice some bound for F may be available.

4 Regularized Problem

In [5] we proved that in a particular case the solution of the inverse problem under consideration continuously depends on certain derivatives of the data. This shows the ill-posedness of the problem in case the data have noise in L^2 space. We can easily incorporate Tikhonov regularization in quasi-solution. In this case we minimize the stabilized cost functional: find

$$F^* = \arg\min_{F \in \mathcal{F}} J_{\alpha}(F), \quad J_{\alpha}(F) = \alpha \|F\|_{L^2(\Omega_T)}^2 + \|u(\cdot, T; F) - u_T\|_{L^2(\Omega)}^2$$

Here $\alpha > 0$ is the regularization parameter that depends on the noise level of the data u_T . If we set here $\alpha = 0$, we get the original problem (3.1).

Theorem 3. Let $\alpha > 0$ and \mathcal{F} be a closed and convex subset of $\widehat{\mathcal{F}}$ (may be also $\mathcal{F} = \widehat{\mathcal{F}}$). Then the problem (4.1) has a unique solution in \mathcal{F} .

Proof. Obviously the additional term $I(F) = \alpha ||F||_{L^2(\Omega_T)}$ is strictly convex:

$$I(\gamma F_1 + (1 - \gamma)F_2) < \gamma I(F_1) + (1 - \gamma)I(F_2) \quad \forall \gamma \in (0, 1), \ F_1, F_2 \in \mathcal{F}$$

and weakly coercive, i.e., $I(F) \to \infty$ as $||F||_{L^2(\Omega_T)} \to \infty$. This makes the whole functional J_{α} strictly convex and weakly coercive. Moreover, it is easy to check that I(F) is weakly sequentially lower semi-continuous. Since J(F) = $||u(\cdot,T;F) - u_T||_{L^2(\Omega)}^2$ is also weakly lower semi-continuous (this was shown in the proof of Theorem 2), the whole functional J_{α} is weakly lower semicontinuous. Now the assertion of the theorem follows from Weierstrass existence theorem [16, Section 2.5]. \Box

5 Auxiliary Estimates

Lemma 2. The following estimate is valid with a constant C_0 :

$$\|\Delta u(\cdot, T; F)\|_{L^2(\Omega)} \le C_0 \|\Delta F\|_{L^2(\Omega_T)}.$$
 (5.1)

Proof. For the sake of shortness, we omit F in the list of arguments of Δu . Firstly, we prove this assertion in case $||m||_{L^1(0,T)}$ is small enough and the equation for Δu (3.3) contains an additional term, namely it has the form

$$\Delta u_t = A \Delta u - \sigma \Delta u - m * A \Delta u + \Delta F \quad \text{in } \Omega_T, \tag{5.2}$$

where σ is a sufficiently large number such that $\sigma - a(x) \geq \epsilon$ for any $x \in \Omega$. By Theorem 1, Δu belongs to $W_2^{2,1}(\Omega_T)$ and solves the problem (5.2), (3.4)–(3.6) in the classical sense. Let us multiply the equation (5.2) by Δu and integrate by parts taking into account the definition of A and the homogeneous boundary conditions (3.5), (3.6):

$$0 = \iint_{\Omega_T} \left[\Delta u_t - (A - \sigma) \Delta u + m * A \Delta u - \Delta F \right] \Delta u \, dx \, dt$$
$$= \frac{1}{2} \iint_{\Omega_T} \left[\Delta u^2 \right]_t \, dx \, dt + \iint_{\Omega_T} \left[\sum_{i,j=1}^n a_{ij} \Delta u_{x_j} \Delta u_{x_i} + (\sigma - a) \Delta u^2 \right] dx \, dt$$

K. Kasemets and J. Janno

$$-\iint_{\Omega_T} \left[\sum_{i,j=1}^n a_{ij} (m * \Delta u_{x_j}) \Delta u_{x_i} - a(m * \Delta u) \Delta u \right] dx \, dt + \iint_{\Gamma_{2,T}} \vartheta \Delta u^2 \, d\Gamma \, dt - \iint_{\Omega_T} \Delta F \Delta u \, dx \, dt.$$

In view of the homogeneous initial condition (3.4), this relation can be transformed to the form

$$\frac{1}{2} \int_{\Omega} [\Delta u(x,T)]^2 dx + \iint_{\Gamma_{2,T}} \vartheta \Delta u^2 d\Gamma dt$$

$$+ \iint_{\Omega_T} \left[\sum_{i,j=1}^n a_{ij} \Delta u_{x_j} \Delta u_{x_i} + (\sigma - a) \Delta u^2 \right] dx dt$$

$$= \iint_{\Omega_T} \left[\sum_{i,j=1}^n a_{ij} (m * \Delta u_{x_j}) \Delta u_{x_i} - a(m * \Delta u) \Delta u \right] dx dt + \iint_{\Omega_T} \Delta F \Delta u dx dt.$$
(5.3)

Due to the assumptions $\vartheta \ge 0$, (2.8) and $\sigma - a \ge \epsilon$, the left hand side of (5.3) can be estimated from below:

$$\frac{1}{2} \int_{\Omega} [\Delta u(x,T)]^2 dx + \iint_{\Gamma_{2,T}} \vartheta \Delta u^2 dx dt
+ \iint_{\Omega_T} \left[\sum_{i,j=1}^n a_{ij} \Delta u_{x_j} \Delta u_{x_i} + (\sigma - a) \Delta u^2 \right] dx dt
\geq \frac{1}{2} \int_{\Omega} [\Delta u(x,T)]^2 dx + \epsilon \iint_{\Omega_T} \left[|\nabla \Delta u|^2 + \Delta u^2 \right] dx dt =: I^2.$$
(5.4)

The right-hand side of (5.3) is estimated from above by means of the Cauchy–Schwarz inequality:

$$\iint_{\Omega_{T}} \left[\sum_{i,j=1}^{n} a_{ij}(m * \Delta u_{x_{j}}) \Delta u_{x_{i}} - a(m * \Delta u) \Delta u \right] dx \, dt + \iint_{\Omega_{T}} \Delta F \Delta u \, dx \, dt$$

$$\leq \bar{C}_{1} \left[\sum_{i,j=1}^{n} \left\| m * \Delta u_{x_{j}} \right\|_{L^{2}(\Omega_{T})} \left\| \Delta u_{x_{i}} \right\|_{L^{2}(\Omega_{T})}$$

$$+ \left\| m * \Delta u \right\|_{L^{2}(\Omega_{T})} \left\| \Delta u \right\|_{L^{2}(\Omega_{T})} \left\| \Delta F \right\|_{L^{2}(\Omega_{T})} \left\| \Delta u \right\|_{L^{2}(\Omega_{T})} (5.5)$$

where \bar{C}_1 is a constant depending on the coefficients a_{ij} and a. For the convolution terms we apply the Young's inequality in the space $L^2(\Omega_T) = L^2((0,T); L^2(\Omega))$. This yields

$$\|m * \Delta u_{x_j}\|_{L^2(\Omega_T)} \le \|m\|_{L^1(0,T)} \|\Delta u_{x_j}\|_{L^2(\Omega_T)}, \quad j = 1, \dots, n, \|m * \Delta u\|_{L^2(\Omega_T)} \le \|m\|_{L^1(0,T)} \|\Delta u\|_{L^2(\Omega_T)}.$$
(5.6)

Using (5.4)-(5.6) in (5.3) we obtain

$$I^{2} \leq \bar{C}_{1} \|m\|_{L^{1}(0,T)} \bigg[\sum_{i,j=1}^{n} \|\Delta u_{x_{j}}\|_{L^{2}(\Omega_{T})} \|\Delta u_{x_{i}}\|_{L^{2}(\Omega_{T})} + \|\Delta u\|_{L^{2}(\Omega_{T})}^{2} \bigg] \\ + \|\Delta F\|_{L^{2}(\Omega_{T})} \|\Delta u\|_{L^{2}(\Omega_{T})}.$$

Further, we use the inequalities

$$\|\Delta u_{x_i}\|_{L^2(\Omega_T)} \le \||\nabla \Delta u|\|_{L^2(\Omega_T)}, \quad i = 1, \dots, n,$$

and definition of I (see (5.4)). We have

$$I^{2} \leq \bar{C}_{1} \|m\|_{L^{1}(0,T)} \Big[n^{2} \||\nabla \Delta u\|_{L^{2}(\Omega_{T})}^{2} + \|\Delta u\|_{L^{2}(\Omega_{T})}^{2} \Big] \\ + \|\Delta F\|_{L^{2}(\Omega_{T})} \|\Delta u\|_{L^{2}(\Omega_{T})} \leq \frac{\bar{C}_{1} n^{2} \|m\|_{L^{1}(0,T)}}{\epsilon} I^{2} + \frac{1}{\sqrt{\epsilon}} \|\Delta F\|_{L^{2}(\Omega_{T})} I.$$

Therefore, in case m satisfies the smallness condition

$$\|m\|_{L^1(0,T)} \le \frac{\epsilon}{2\bar{C}_1 n^2},\tag{5.7}$$

we obtain $I^2 \leq \frac{2}{\sqrt{\epsilon}} \|\Delta F\|_{L^2(\Omega_T)} I$ that yields $I \leq \frac{2}{\sqrt{\epsilon}} \|\Delta F\|_{L^2(\Omega_T)}$. Observing that $\|\Delta u(\cdot, T)\|_{L^2(\Omega)} \leq \sqrt{2}I$, from the latter inequality we deduce the estimate (5.1) with the constant $C_0 = 2\sqrt{2}/\epsilon$.

Now let us return to the original problem (3.3)–(3.6) without the additional σ -term and arbitrarily large m. Define the following function: $\Delta u_{\sigma}(x,t) = e^{-\sigma t} \Delta u(x,t)$ where $\sigma \in \mathbb{R}$. It is easy to check that Δu_{σ} solves the following problem:

$$\begin{aligned} \Delta u_{\sigma,t} &= A \Delta u_{\sigma} - \sigma \Delta u_{\sigma} - m_{\sigma} * A \Delta u_{\sigma} + \Delta F_{\sigma} & \text{in } \Omega_{T}, \\ \Delta u_{\sigma} &= 0 & \text{in } \Omega \times \{0\}, \\ \Delta u_{\sigma} &= 0 & \text{in } \Gamma_{1,T}, \\ &- \nu_{A} \cdot \nabla \Delta u_{\sigma} + m_{\sigma} * \nu_{A} \cdot \nabla \Delta u_{\sigma} = \vartheta \Delta u_{\sigma} & \text{in } \Gamma_{2,T} \end{aligned}$$

where $m_{\sigma}(t) = e^{-\sigma t}m(t)$ and $\Delta F_{\sigma}(x,t) = e^{-\sigma t}\Delta F(x,t)$. Clearly, there exists a sufficiently large σ such that m_{σ} satisfies the condition (5.7) and the inequality $\sigma - a(x) \geq \epsilon$ is valid for $x \in \Omega$. Therefore, the first part of the proof applies to the function Δu_{σ} . This means that the estimate

$$\|\Delta u_{\sigma}(\cdot,T)\|_{L^{2}(\Omega)} \leq \frac{2\sqrt{2}}{\epsilon} \|\Delta F_{\sigma}\|_{L^{2}(\Omega_{T})}$$
(5.8)

is valid. Finally, in view of $\Delta u_{\sigma}(x,T) = e^{-\sigma T} \Delta u(x,T)$ and $|\Delta F_{\sigma}(x,t)| \leq |\Delta F(x,t)|$, from (5.8) we obtain the desired estimate (5.1) with the constant $C_0 = 2\sqrt{2}e^{\sigma T}/\epsilon$. Lemma 2 is proved. \Box

Further, let us estimate the difference of solutions of the adjoint problems

$$\Delta \psi(x,t;F) = \psi(x,t;F + \Delta F) - \psi(x,t;F).$$

Lemma 3. The following estimate is valid with a constant C_1 :

$$\|\Delta\psi(\cdot,\cdot;F)\|_{L^2(\Omega_T)} \le C_1 \|\Delta F\|_{L^2(\Omega_T)}.$$
(5.9)

Proof. Proof is similar to the proof of the previous lemma. Observing (3.7)–(3.10) we see that the problem for $\Delta \psi(x,t;F)$ has the following form:

$$\Delta \psi_t(x,t;F) = -A\Delta \psi(x,t;F) + \int_t^T m(\tau-t)A\Delta \psi(x,\tau;F) \, d\tau \quad \text{in } \Omega_T, \quad (5.10)$$

$$\Delta \psi(x,T;F) = 2\Delta u(x,T;F) \quad \text{in } \Omega, \tag{5.11}$$

$$\Delta \psi(x,t;F) = 0 \quad \text{in } \Gamma_{1,T}, \tag{5.12}$$

$$-\nu_A \cdot \nabla \Delta \psi(x,t;F) + \int_t^T m(\tau-t)\nu_A \cdot \nabla \Delta \psi(x,\tau;F) d\tau$$

= $\vartheta \Delta \psi(x,t;F)$ in $\Gamma_{2,T}$. (5.13)

We start by proving the assertion in case $||m||_{L^1(0,T)}$ is small enough and the equation (3.3) contains an additional term, namely it has the form

$$\Delta \psi_t(x,t;F) = -A\Delta \psi(x,t;F) + \sigma \Delta \psi(x,t;F) + \int_t^T m(\tau - t) A\Delta \psi(x,\tau;F) d\tau \quad \text{in } \Omega_T,$$
(5.14)

where σ is again sufficiently large, i.e. $\sigma - a(x) \geq \epsilon$ for any $x \in \Omega$. Since $\Delta u \in W_2^{2,1}(\Omega_T)$, by the trace theorem it holds $\Delta u|_{t=T} \in H^1(\Omega)$. Moreover, one can immediately check that the time-inverted function $\Delta \psi(x, T-t; F)$ satisfies a problem of the form (2.1)–(2.4) with an homogeneous equation, homogeneous boundary conditions and the initial condition $2\Delta u(x, T; F)$. Therefore, applying Theorem 1 we see that the function $\Delta \psi(x, t; F)$ belongs to $W_2^{2,1}(\Omega_T)$ and satisfies the problem (5.14), (5.11), (5.12), (5.13) in the classical sense. For the sake of shortness we omit the argument F of $\Delta \psi$ and Δu in forthcoming computations. Multiplying (5.14) by $\Delta \psi$ and integrating by parts we obtain

$$\begin{split} 0 &= \iint_{\Omega_T} \left[\Delta \psi_t + (A - \sigma) \Delta \psi - \int_t^T m(\tau - t) A \Delta \psi(x, \tau) \, d\tau \right] \Delta \psi \, dx \, dt \\ &= \frac{1}{2} \iint_{\Omega_T} \left[\Delta \psi^2 \right]_t dx \, dt - \iint_{\Omega_T} \left[\sum_{i,j=1}^n a_{ij} \Delta \psi_{x_j} \Delta \psi_{x_i} + (\sigma - a) \Delta \psi^2 \right] dx \, dt \\ &+ \iint_{\Omega_T} \left[\sum_{i,j=1}^n a_{ij}(x) \int_t^T m(\tau - t) \Delta \psi_{x_j}(x, \tau) \, d\tau \Delta \psi_{x_i}(x, t) \right. \\ &- a(x) \int_t^T m(\tau - t) \Delta \psi(x, \tau) \, d\tau \Delta \psi(x, t) \right] dx \, dt - \iint_{\Gamma_{2,T}} \vartheta \Delta \psi^2 \, d\Gamma \, dt. \end{split}$$

Observing the final condition (5.11) and rearranging the terms we get

$$\frac{1}{2} \int_{\Omega} [\Delta \psi(x,0)]^2 \, dx + \iint_{\Gamma_{2,T}} \vartheta \Delta \psi^2 \, d\Gamma \, dt \tag{5.15}$$

$$+ \iint_{\Omega_{T}} \left[\sum_{i,j=1}^{n} a_{ij} \Delta \psi_{x_{j}} \Delta \psi_{x_{i}} + (\sigma - a) \Delta \psi^{2} \right] dx dt$$
$$= \iint_{\Omega_{T}} \left[\sum_{i,j=1}^{n} a_{ij}(x) \int_{t}^{T} m(\tau - t) \Delta \psi_{x_{j}}(x,\tau) d\tau \Delta \psi_{x_{i}}(x,t) - a(x) \int_{t}^{T} m(\tau - t) \Delta \psi(x,\tau) d\tau \Delta \psi(x,t) \right] dx dt + \frac{1}{2} \int_{\Omega} [\Delta u(x,T)]^{2} dx. \quad (5.16)$$

The left-hand side of (5.15) is estimated from below:

$$\frac{1}{2} \int_{\Omega} [\Delta \psi(x,0)]^2 dx + \iint_{\Gamma_{2,T}} \vartheta \Delta \psi^2 d\Gamma dt + \iint_{\Omega_T} \left[\sum_{i,j=1}^n a_{ij} \Delta \psi_{x_j} \Delta \psi_{x_i} + (\sigma - a) \Delta \psi^2 \right] dx dt \ge \epsilon \left[\||\nabla \Delta \psi|\|_{L^2(\Omega_T)}^2 + \|\Delta \psi\|_{L^2(\Omega_T)}^2 \right] =: S^2.$$
(5.17)

For the right-hand side of (5.15) we use the Cauchy–Schwarz inequality:

$$\iint_{\Omega_{T}} \left[\sum_{i,j=1}^{n} a_{ij}(x) \int_{t}^{T} m(\tau-t) \Delta \psi_{x_{j}}(x,\tau) d\tau \Delta \psi_{x_{i}}(x,t) - a(x) \int_{t}^{T} m(\tau-t) \Delta \psi(x,\tau) d\tau \Delta \psi(x,t) \right] dx dt + \frac{1}{2} \int_{\Omega} [\Delta u(x,T)]^{2} dx \\
\leq \hat{C}_{1} \left[\sum_{i,j=1}^{n} \left\| \int_{t}^{T} m(\tau-t) \Delta \psi_{x_{j}}(x,\tau) d\tau \right\|_{L^{2}(\Omega_{T})} \| \Delta \psi_{x_{i}} \|_{L^{2}(\Omega_{T})} \\
+ \left\| \int_{t}^{T} m(\tau-t) \Delta \psi(x,\tau) d\tau \right\|_{L^{2}(\Omega_{T})} \| \Delta \psi \|_{L^{2}(\Omega_{T})} \right] + \frac{1}{2} \| \Delta u(\cdot,T) \|_{L^{2}(\Omega)}^{2} (5.18)$$

with some constant $\hat{C}_1.$ It is easy to check by means of the change of variables of integration that

$$\left\|\int_{t}^{T} m(\tau - t)v(x, \tau) \, d\tau\right\|_{L^{2}(\Omega_{T})} = \|m * v\|_{L^{2}(\Omega_{T})} \text{ for any } v.$$

Therefore, using the Young's inequality we get

$$\left\|\int_{t}^{T} m(\tau-t)\Delta\psi_{x_{j}}(x,\tau) \,d\tau\right\|_{L^{2}(\Omega_{T})} \leq \|m\|_{L^{1}(0,T)} \|\Delta\psi_{x_{j}}\|_{L^{2}(\Omega_{T})},\\ \left\|\int_{t}^{T} m(\tau-t)\Delta\psi(x,\tau) \,d\tau\right\|_{L^{2}(\Omega_{T})} \leq \|m\|_{L^{1}(0,T)} \|\Delta\psi\|_{L^{2}(\Omega_{T})}.$$
(5.19)

By means of (5.17)–(5.19) from (5.17) we obtain the relation

$$S^{2} \leq \hat{C}_{1} \|m\|_{L^{1}(0,T)} \bigg[\sum_{i,j=1}^{n} \|\Delta\psi_{x_{j}}\|_{L^{2}(\Omega_{T})} \|\Delta\psi_{x_{i}}\|_{L^{2}(\Omega_{T})} + \|\Delta\psi\|_{L^{2}(\Omega_{T})}^{2} \bigg] \\ + \frac{1}{2} \|\Delta u(\cdot,T)\|_{L^{2}(\Omega)}^{2}.$$

Like in the proof of Lemma 3 from this relation and the definition of S we deduce the estimate $\|\Delta\psi\|_{L^2(\Omega_T)} \leq \frac{1}{\sqrt{\epsilon}} \|\Delta u(\cdot,T)\|_{L^2(\Omega)}$ provided m satisfies the inequality

$$\|m\|_{L^1(0,T)} \le \frac{\epsilon}{2\hat{C}_1 n^2}.$$
(5.20)

Further, applying Lemma 2 to the obtained estimate we get (5.9) with the constant $C_1 = C_0/\sqrt{\epsilon}$.

Finally, let us consider the original problem for $\Delta \psi$ without the additional σ -term and arbitrarily large m. Define $\Delta \psi_{\sigma}(x,t) = e^{-\sigma(T-t)}\Delta u(x,t)$ with $\sigma \in \mathbb{R}$. Then $\Delta \psi_{\sigma}$ solves the following problem:

$$\begin{aligned} \Delta\psi_{\sigma,t}(x,t) &= -A\Delta\psi_{\sigma}(x,t) + \int_{t}^{T} m_{\sigma}(\tau-t)A\Delta\psi_{\sigma}(x,\tau) \,d\tau \quad \text{in } \Omega_{T}, \\ \Delta\psi_{\sigma}(x,T) &= 2\Delta u(x,T) \quad \text{in } \Omega, \quad \Delta\psi_{\sigma}(x,t) = 0 \quad \text{in } \Gamma_{1,T}, \\ &-\nu_{A} \cdot \nabla\Delta\psi_{\sigma}(x,t) + \int_{t}^{T} m_{\sigma}(\tau-t)\nu_{A} \cdot \nabla\Delta\psi_{\sigma}(x,\tau;) \,d\tau = \vartheta\Delta\psi_{\sigma}(x,t) \quad \text{in } \Gamma_{2,T}, \end{aligned}$$

where $m_{\sigma}(t) = e^{-\sigma t}m(t)$ again. There exists a sufficiently large σ such that m_{σ} satisfies the condition (5.20) and the inequality $\sigma - a(x) \geq \epsilon$ is valid for $x \in \Omega$. Thus, applying the first part of the proof to $\Delta \psi_{\sigma}$ we have

$$\|\Delta \psi_{\sigma}\|_{L^{2}(\Omega_{T})} \leq \frac{C_{0}}{\sqrt{\epsilon}} \|\Delta F\|_{L^{2}(\Omega_{T})}.$$

Since $\|\Delta\psi_{\sigma}\|_{L^{2}(\Omega_{T})} \geq e^{-\sigma T} \|\Delta\psi\|_{L^{2}(\Omega_{T})}$ we reach the estimate (5.9) with the constant $C_{1} = C_{0}e^{\sigma T}/\sqrt{\epsilon}$. Lemma 3 is proved. \Box

6 Frechet Derivative and Gradient Method

It follows from Lemma 2 with (3.2) that the functional J is Frechet differentiable in $L^2(\Omega_T)$. Moreover, according to Lemma 1, J'(F) is identical to the element $\psi(F) = \psi(x, t; F)$ in $L^2(\Omega_T)$, i.e. it holds

$$J'(F)\tilde{F} = \left(\psi(F), \tilde{F}\right)_{L^2(\Omega_T)} = \iint_{\Omega_T} \psi(x, t; F)\tilde{F}(x, t) \, dx \, dt \quad \forall \tilde{F} \in L^2(\Omega_T).$$

Similarly, J_{α} is Frechet differentiable in $L^2(\Omega_T)$ and

$$J'_{\alpha}(F)\tilde{F} = \left(2\alpha F + \psi(F), \tilde{F}\right)_{L^{2}(\Omega_{T})}$$
$$= \iint_{\Omega_{T}} (2\alpha F(x,t) + \psi(x,t;F))\tilde{F}(x,t) \, dx \, dt \quad \forall \tilde{F} \in L^{2}(\Omega_{T}).$$
(6.1)

Therefore, gradient-type methods can be used to solve the minimization problems (3.1) and (4.1). These methods must be combined by proper projection techniques to get minimum in the subset \mathcal{F} . However, it is possible to simplify the minimization procedure in case the structure of the subspace $\widehat{\mathcal{F}}$ is simple. In particular, global optimization can be used if $\mathcal{F} = \widehat{\mathcal{F}}$. To this end, let us consider the cases 1–3 introduced in Section 3.

Case 1. We introduce the functional $\Phi_{1,\alpha}(w) = J_{\alpha}(\varkappa w)$ with $\alpha \geq 0$ and the set $\mathcal{W}_1 = \{w \in L^2(\Omega) : \varkappa w \in \mathcal{F}\}$. Then the problem (4.1) (in case $\alpha = 0$ the problem (3.1)) can be rewritten as follows:

find
$$w^* = \arg\min_{w \in \mathcal{W}_1} \Phi_{1,\alpha}(w).$$
 (6.2)

In particular, when $\mathcal{F} = \widehat{\mathcal{F}}$, it holds $\mathcal{W}_1 = L^2(\Omega)$ and we have a global minimization problem. Since J_α is Frechet differentiable, $\Phi_{1,\alpha}$ is also Frechet differentiable. Moreover, from (6.1) we deduce

$$J'_{\alpha}(\varkappa w)\varkappa \tilde{w} = \int_{\Omega} \left[\int_{0}^{T} [2\alpha w(x)\varkappa(t) + \psi(x,t,\varkappa w)]\varkappa(t) \, dt \right] \tilde{w}(x) \, dx.$$

This shows that $\Phi'_{1,\alpha}(w)$ is identical to the element $\int_0^T [2\alpha w(x)\varkappa(t) + \psi(x,t,\varkappa w)]\varkappa(t)dt$ of $L^2(\Omega)$, that is

$$\varPhi_{1,\alpha}'(w)\tilde{w} = \left(\int_0^T [2\alpha w\varkappa(t) + \psi(\cdot, t, \varkappa w)]\varkappa(t) \, dt, \tilde{w}\right)_{L^2(\Omega)} \quad \forall \tilde{w} \in L^2(\Omega).$$

Using Cauchy–Schwarz inequality and Lemma 3 we estimate

$$\begin{split} \| \varPhi_{1,\alpha}'(w + \Delta w) - \varPhi_{1,\alpha}'(w) \|_{L^{2}(\Omega)} \\ &= \Big[\int_{\Omega} \Big\{ \int_{0}^{T} [2\alpha \Delta w(x) \varkappa(t) + \psi(x,t,\varkappa(w + \Delta w)) - \psi(x,t,\varkappa w)] \varkappa(t) dt \Big\}^{2} dx \Big]^{1/2} \\ &\leq \| 2\alpha \Delta w(x) \varkappa(t) + \psi(x,t,\varkappa(w + \Delta w)) - \psi(x,t,\varkappa w) \|_{L^{2}(\Omega_{T})} \| \varkappa \|_{L^{2}(0,T)} \\ &\leq (2\alpha + C_{1}) \| \varkappa \Delta w \|_{L^{2}(\Omega_{T})} \| \varkappa \|_{L^{2}(0,T)} = (2\alpha + C_{1}) \| \varkappa \|_{L^{2}(0,T)}^{2} \| \Delta w \|_{L^{2}(\Omega)}. \end{split}$$

This implies that $\Phi'_{1,\alpha}$ is uniformly Lipschitz-continuous, i.e.

$$\|\Phi_{1,\alpha}'(w + \Delta w) - \Phi_{1,\alpha}'(w)\|_{L^{2}(\Omega)} \le L_{\alpha} \|\Delta w\|_{L^{2}(\Omega)}$$
(6.3)

where $L_{\alpha} = (2\alpha + C_1) \| \varkappa \|_{L^2(0,T)}^2$.

The cases 2 and 3 can be treated in a similar manner. Let us summarize the results in these cases.

Case 2. Define $\Phi_{2,\alpha}(w) = J_{\alpha}(\varkappa w)$ with $\alpha \geq 0$ and the set $\mathcal{W}_2 = \{w \in L^2(S_T) : \varkappa w \in \mathcal{F}\}$. If $\mathcal{F} = \widehat{\mathcal{F}}$ then $\mathcal{W}_2 = L^2(S_T)$. The problem (4.1) can be rewritten in the form: find $w^* = \arg \min_{w \in \mathcal{W}_2} \Phi_{2,\alpha}(w)$. The functional $\Phi_{2,\alpha}$ is Frechet differentiable, $\Phi'_{2,\alpha}(w)$ is identical to the element $\int_0^l [2\alpha w(\overline{x}, t)\varkappa(x_n) + \psi(x, t, \varkappa w)]\varkappa(x_n) dx_n$ of $L^2(S_T)$ and the uniform Lipschitz-estimate

$$\|\Phi'_{2,\alpha}(w + \Delta w) - \Phi'_{2,\alpha}(w)\|_{L^2(S_T)} \le L_{\alpha} \|\Delta w\|_{L^2(S_T)}$$
(6.4)

is valid with $L_{\alpha} = (2\alpha + C_1) \| \varkappa \|_{L^2(0,l)}^2$.

Case 3. Let $\Phi_{3,\alpha}(w) = J_{\alpha}(\sum_{j=1}^{N} w_j \varkappa_j)$ with $\alpha \ge 0$ and $\mathcal{W}_3 = \{w \in \mathbb{R}^N : \sum_{j=1}^{N} w_j \varkappa_j \in \mathcal{F}\}$. If $\mathcal{F} = \hat{\mathcal{F}}$ then $\mathcal{W}_2 = \mathbb{R}^N$. The problem (4.1) admits the following form: find $w^* = \arg\min_{w \in \mathcal{W}_3} \Phi_{3,\alpha}(w)$. The functional $\Phi_{3,\alpha}$ is Frechet differentiable, $\Phi'_{3,\alpha}(w)$ is identical to the element $(\iint_{\Omega_T} [2\alpha \sum_{l=1}^{N} w_l \varkappa_l(x, t) + \psi(x, t, \sum_{l=1}^{N} w_l \varkappa_l)] \varkappa_j(x, t) \, dx \, dt)_{j=1,\dots,N}$ of \mathbb{R}^N and the estimate

$$\|\Phi_{3,\alpha}'(w+\Delta w) - \Phi_{3,\alpha}'(w)\|_{\mathbb{R}^N} \le L_{\alpha} \|\Delta w\|_{\mathbb{R}^N}$$
(6.5)

with $L_{\alpha} = (2\alpha + C_1) \sum_{j=1}^{N} \|\varkappa_j\|_{L^2(\Omega_T)}^2$ is valid.

In the following, let Φ_{α} be one of the functionals $\Phi_{j,\alpha}$, j = 1, 2, 3, defined above and \mathcal{W} be the corresponding set of admissible solutions \mathcal{W}_j . Then we consider the problem

find
$$w^* = \arg\min_{w \in \mathcal{W}} \Phi_{\alpha}(w).$$
 (6.6)

For the sake of simplicity, we assume that $\mathcal{F} = \widehat{\mathcal{F}}$. This means that we consider the unconstrained minimization and \mathcal{W} is $L^2(\Omega)$, $L^2(S_T)$ and \mathbb{R}^N in the cases 1, 2 and 3, respectively. Let $w_0 \in \mathcal{W}$ be an initial guess and compute the successive approximations by means of the gradient method

$$w_{k+1} = w_k - c_k \Phi'_{\alpha}(w_k), \quad k = 0, 1, 2, \dots$$
(6.7)

with steps $c_k > 0$. Let us perform a little analysis for this iteration process following partially the example of [2].

Lemma 4. For any $\alpha \geq 0$ it holds

$$|\Phi_{\alpha}(w_{k+1}) - \Phi_{\alpha}(w_k) - \Phi_{\alpha}'(w_k)(w_{k+1} - w_k)| \le \frac{L_{\alpha}}{2} ||w_{k+1} - w_k||^2.$$
(6.8)

Proof. Using the relation

$$\Phi_{\alpha}(w_{k+1}) - \Phi_{\alpha}(w_k) = \int_0^1 \Phi_{\alpha}'(w_k + \tau(w_{k+1} - w_k))(w_{k+1} - w_k) d\tau$$

and the estimates (6.3)-(6.5) we deduce

$$\begin{aligned} |\Phi_{\alpha}(w_{k+1}) - \Phi_{\alpha}(w_{k}) - \Phi_{\alpha}'(w_{k})(w_{k+1} - w_{k})| \\ &= \left| \int_{0}^{1} [\Phi_{\alpha}'(w_{k} + \tau(w_{k+1} - w_{k})) - \Phi_{\alpha}'(w_{k})](w_{k+1} - w_{k}) d\tau \right| \\ &\leq L_{\alpha} \|w_{k+1} - w_{k}\|^{2} \int_{0}^{1} \tau \, d\tau = \frac{L_{\alpha}}{2} \|w_{k+1} - w_{k}\|^{2}. \end{aligned}$$

This proves (6.8). \Box

Theorem 4. Let $\alpha \geq 0$ and $\delta \leq c_k \leq 2/L_\alpha - \delta$ for any k = 0, 1, 2, ... where δ is some number in the half-interval $(0, 1/L_\alpha]$. Then the sequence $\Phi_\alpha(w_k)$ is

monotonically decreasing, has a limit and the following relations are valid with $q_k = c_k - L_{\alpha}c_k^2/2 \ge \delta - L_{\alpha}\delta^2/2 > 0$:

$$\Phi_{\alpha}(w_k) - \Phi_{\alpha}(w_{k+1}) \ge q_k \|\Phi_{\alpha}'(w_k)\|^2, \quad k = 0, 1, 2, \dots,$$
(6.9)

$$\Phi'_{\alpha}(w_k) \to 0 \quad as \ k \to \infty, \tag{6.10}$$

$$\|w_{k+1} - w_k\|^2 \le \frac{c_k^2}{q_k} \left[\Phi_\alpha(w_k) - \Phi_\alpha(w_{k+1}) \right], \quad k = 0, 1, 2, \dots$$
 (6.11)

Proof. Due to (6.7) it hold $||w_{k+1} - w_k||^2 \le c_k^2 ||\Phi'_{\alpha}(w_k)||^2$ and

$$\Phi'_{\alpha}(w_k)(w_{k+1} - w_k) = \left(\Phi'_{\alpha}(w_k), -c_k \Phi'_{\alpha}(w_k)\right)_{\mathcal{W}} = -c_k \|\Phi'_{\alpha}(w_k)\|^2.$$

Thus, by means of (6.8) we get

$$\begin{split} \Phi_{\alpha}(w_{k+1}) - \Phi_{\alpha}(w_{k}) + c_{k} \| \Phi_{\alpha}'(w_{k}) \|^{2} \\ &\leq \left| \Phi_{\alpha}(w_{k+1}) - \Phi_{\alpha}(w_{k}) + c_{k} \| \Phi_{\alpha}'(w_{k}) \|^{2} \right| \leq \frac{L_{\alpha} c_{k}^{2}}{2} \| \Phi_{\alpha}'(w_{k}) \|^{2}. \end{split}$$

This yields $\Phi_{\alpha}(w_k) - \Phi_{\alpha}(w_{k+1}) \geq \left(c_k - \frac{L_{\alpha}c_k^2}{2}\right) \|\Phi'_{\alpha}(w_k)\|^2$, i.e. (6.9). Due to $q_k > 0$, the relation (6.9) implies that $\Phi_{\alpha}(w_k)$ is monotonically decreasing and since $\Phi_{\alpha}(w)$ has the lower bound 0, the sequence $\Phi_{\alpha}(w_k)$ converges. Further, since the sequence q_k has the positive lower bound $\delta - \frac{L_{\alpha}\delta^2}{2}$ and the left hand side of (6.9) converges to zero, we obtain (6.10). Finally, estimating (6.7) we have $\|w_{k+1} - w_k\|^2 = c_k^2 \|\Phi'_{\alpha}(w_k)\|^2$. Using here (6.9) we obtain (6.11). Theorem is proved. \Box

Clearly, the highest decrease rate of $\Phi_{\alpha}(w_k)$ is achieved in case $c_k = 1/L_{\alpha}$ when q_k has the biggest value $q_k = 1/2L_{\alpha}$.

Theorem 5. Let $\alpha > 0$ and c_k be chosen as in Theorem 4. Then the sequence w_k strongly converges to the unique solution of the minimization problem (6.6).

Proof. The existence of the unique solution for the minimization problem immediately follows from Theorem 3 and the definitions of Φ_{α} . Moreover, since J_{α} is weakly sequentially lower semi-continuous, strictly convex and weakly coercive (see the proof of Theorem 3), the same properties are valid also for Φ_{α} . It is well-known that under such properties every minimizing sequence of Φ_{α} weakly converges to the minimum point w^* . Thus, firstly, let us show that w_k is a minimizing sequence, i.e. $\Phi_{\alpha}(w_k) \to \Phi_{\alpha}(w^*)$.

Note that the sequence w_k is bounded. Indeed, otherwise there exists a subsequence w_{k_i} such that $||w_{k_i}|| \to \infty$ and by the weak coercitivity it holds $\Phi_{\alpha}(w_{k_i}) \to \infty$ which contradicts to the statement of Theorem 4 that $\Phi_{\alpha}(w_k)$ is monotonically decreasing.

Since Φ_{α} is convex, its Frechet derivative is monotone, i.e.

$$\left[\Phi_{\alpha}'(\widetilde{w}) - \Phi_{\alpha}'(w) \right] (\widetilde{w} - w) \ge 0 \quad \forall w, \widetilde{w} \in \mathcal{W}.$$
(6.12)

Let us choose some $\tau \in (0, 1)$. Observing that it holds $\Phi'_{\alpha}(w^*) = 0$ in the global minimum point w^* and applying (6.12) with $w = w^*$ and $\tilde{w} = w^* + \tau(w_k - w^*)$ we have

$$\liminf_{k \to \infty} \Phi'_{\alpha}(w^* + \tau(w_k - w^*))(w_k - w^*) = \frac{1}{\tau} \liminf_{k \to \infty} \left[\Phi'_{\alpha}(w^* + \tau(w_k - w^*)) - \Phi'_{\alpha}(w^*) \right] (w^* + \tau(w_k - w^*) - w^*) \ge 0.$$
(6.13)

On the other hand, it holds $\lim_{k\to\infty} \Phi'_{\alpha}(w_k)(w_k - w^*) = 0$ because of the boundedness of w_k and the relation (6.10). Thus, using (6.12) with $w = w_k$ and $\tilde{w} = w^* + \tau(w_k - w^*)$ we obtain

$$\limsup_{k \to \infty} \Phi'_{\alpha}(w^* + \tau(w_k - w^*))(w_k - w^*) = \frac{1}{1 - \tau} \limsup_{k \to \infty} \left[\Phi'_{\alpha}(w^* + \tau(w_k - w^*)) - \Phi'_{\alpha}(w_k) \right] (w_k - w^* - \tau(w_k - w^*)) \le 0.$$
(6.14)

The estimates (6.13) and (6.14) imply $\limsup_{k\to\infty} v_k \leq 0 \leq \liminf_{k\to\infty} v_k$ for the sequence $v_k = \Phi'_{\alpha}(w^* + \tau(w_k - w^*))(w_k - w^*)$. Hence,

$$\lim_{k \to \infty} \Phi'_{\alpha}(w^* + \tau(w_k - w^*))(w_k - w^*) = 0.$$
(6.15)

Further, writing

$$\Phi_{\alpha}(w_k) - \Phi_{\alpha}(w^*) = \int_0^1 \Phi_{\alpha}'(w^* + \tau(w_k - w^*))(w_k - w^*) d\tau$$

and using (6.15) we obtain $\Phi_{\alpha}(w_k) - \Phi_{\alpha}(w^*) \to 0$. This shows that w_k is a minimizing sequence. Consequently, $w_k \rightharpoonup w^*$.

Now let us prove the assertion of the Theorem $w_k \to w^*$. In case 3 this is evident, because \mathcal{W} is of finite dimension. Thus, let us study the cases 1 and 2. Then it holds $\Phi_{\alpha}(w) = \alpha \nu ||w||^2 + \Phi_0(w)$ where ν is a positive constant $(\nu = \int_0^T \varkappa^2(t) dt$ in case 1 and $\nu = \int_0^l \varkappa^2(x_n) dx_n$ in case 2). Since the norm is weakly lower sequentially semicontinuous, the relation $w_k \to w^*$ implies

$$\|w^*\|^2 \le \liminf_{k \to \infty} \|w_k\|^2.$$
(6.16)

On the other hand, since $\Phi_{\alpha}(w_k)$ converges to $\Phi_{\alpha}(w^*)$ and $\Phi_0(w)$ is weakly lower sequentially semicontinuous and we obtain

$$\begin{split} \limsup_{k \to \infty} \|w_k\|^2 &= \frac{1}{\alpha \nu} \limsup_{k \to \infty} \left[\Phi_\alpha(w_k) - \Phi_0(w_k) \right] \\ &= \frac{1}{\alpha \nu} \left\{ \lim_{k \to \infty} \Phi_\alpha(w_k) + \limsup_{k \to \infty} \left[-\Phi_0(w_k) \right] \right\} \\ &= \frac{1}{\alpha \nu} \left\{ \Phi_\alpha(w^*) - \liminf_{k \to \infty} \Phi_0(w_k) \right\} \\ &\leq \frac{1}{\alpha \nu} \left\{ \Phi_\alpha(w^*) - \Phi_0(w^*) \right\} = \|w^*\|^2. \end{split}$$
(6.17)

Putting together (6.16) and (6.17) we get $\limsup_{k\to\infty} \|w_k\|^2 \leq \|w^*\|^2 \leq \lim_{k\to\infty} \|w_k\|^2$. Since in an Hilbert space the weak convergence and the convergence of norms implies the strong convergence, we prove $w_k \to w^*$. The proof is complete. \Box

References

- A.T. Ayapbergenova, S.I. Kabanikhin and A. Lorenzi. Justification of optimization methods for inverse integro-differential hyperbolic problems. J. Inverse Ill-Posed Probl., 12(5):457–479, 2004. Doi:10.1515/1569394042531341.
- [2] A. Hasanov. Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solution approach. J. Math. Anal. Appl., 330(2):766–779, 2007. Doi:10.1016/j.jmaa.2006.08.018.
- [3] V. Isakov. Inverse parabolic problems with the final overdetermination. Comm. Pure Appl. Math., 44(2):185–209, 1991. Doi:10.1002/cpa.3160440203.
- [4] J. Janno. Determination of a time- and space-dependent heat flux relaxation function by means of a restricted Dirichlet-to-Neumann operator. *Math. Meth. Appl. Sci.*, 27(11):1241–1260, 2004. Doi:10.1002/mma.490.
- [5] J. Janno and K. Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. *Inverse Probl. Imaging*, 3(1):17–41, 2009. Doi:10.3934/ipi.2009.3.17.
- [6] J. Janno and A. Lorenzi. Recovering memory kernels in parabolic transmission problems. J. Inverse Ill-Posed Probl., 16(3):239–266, 2008. Doi:10.1515/JIIP.2008.015.
- [7] J. Janno and L.v. Wolfersdorf. Inverse problems for memory kernels by laplace transform methods. Z. Anal. Anwend., 19(2):489–510, 2000.
- [8] J. Janno and L.v. Wolfersdorf. Identification of memory kernels in onedimensional heat flow with boundary conditions of the third kind. *Inverse Probl. Eng.*, 9(2):179–198, 2001. Doi:10.1080/174159701088027760.
- [9] S.I. Kabanikhin and A. Lorenzi. Identification Problems of Wave Phenomena. Theory and Numerics. VSP, Utrecht, 1999.
- [10] O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Ural'tseva. *Linear and Quasi-linear Equations of Parabolic Type*. American Mathematical Society, Providence, RI, 1968.
- [11] A. Lorenzi. An identification problem for a conserved phase-field model with memory. *Math. Meth. Appl. Sci.*, 28(11):1315–1339, 2005. Doi:10.1002/mma.614.
- [12] A. Lorenzi and G. Mola. Identification of unknown terms in convolution integrodifferential equations in a Banach space. J. Inverse Ill-Posed Probl., 18(3):321– 355, 2010. Doi:10.1515/JIIP.2010.013.
- [13] E. Pais. Identification of memory kernels in heat flow measuring heat flux at the ends of the bar. *Math. Model. Anal.*, **15**(4):473–490, 2010. Doi:10.3846/1392-6292.2010.15.473-490.
- [14] E. Pais and J. Janno. Inverse problem to determine degenerate memory kernels in heat flux with third kind boundary conditions. *Math. Model. Anal.*, 11(4):427– 450, 2006. Doi:10.1080/13926292.2006.9637329.
- [15] V.A. Solonnikov. On Boundary Value Problems for General Parabolic Systems of Differential Equations. Proc. Steklov Inst. Math., 83, Moscow, 1968. (in Russian)
- [16] E. Zeidler. Applied Functional Analysis. Main Principles and Their Applications. Springer, New York, 1995.