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Abstract. The main aim of this paper is to discuss the basic ideas and concepts of
the so called “Fuzzy Mathematics” and to give a brief survey of the history and of
some trends in recent development of mathematics and its applications in the context
of fuzzy sets. As a potential reader we imagine a mathematician, who is not working
in the field of “fuzzy mathematics”, but wishes to have some idea about this vast
field in modern science.
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1 Introduction and Motivation

Since the inception of the concept of an abstract set by Georg Cantor at the end
of the nineteenth century, the sets have firmly occupied one of the central places
in mathematics, and they make the foundation for many branches of theoretical
as well as of applied mathematics. However, being a perfect mathematical
concept, in practice people usually have to deal not with usual, or crisp, sets,
that is with the sets as they are understood in mathematics, but with set-
like conglomerates having vague, non-sharp or imprecise borders. Just a few
examples to illustrate this assertion.

Consider the set of all citizens of some state, say Lithuania. It is a real
set, a subset with sharp borders of the set of all people in the world. Every
person either belongs to this set or not. On the other hand consider “the
set” of young Lithuanian people. Obviously, this is not a set in the precise
mathematical sense: there is no natural age border after which a man or a
woman stops to be young and becomes non-young. Moreover, if for some
purposes, e.g. in case a competition of applicants for research grants among
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young scientists is announced and according to regulations a person is called
young if he/she is younger than 30 years, this division into young and non-young
people is artificial and even may cause problems for a committee awarding
such grants. Say if today is the applicant’s 30th birthday and just today he
has submitted the project – whether the committee, working formally, consider
this application as valid? Anyway the set of young people is a not a set but a
“set-like conglomerate”, or “a fuzzy set” and this conglomerate has non-sharp,
vague, imprecise borders.

Another example. In mathematics and its applications one has often to deal
with such sets as, say, the set of all real numbers larger than 10. Obviously it
is an example of a typical usual set. On the other hand quite often we have to
deal with such set-like conglomerates as “the set” of all real numbers which are
approximately equal to 10, or “the set” of all numbers which are much larger
than 10. Clearly, the borders of such conglomerates are not sharp and they
make examples of fuzzy sets.

Since ancient times most reasonings in mathematics are grounded on biva-
lent, or binary, logic. According to this logic every statement in mathematics
should be either true or false. However, in practice dealing with different prob-
lems one often encounters statements which are more or less true, or true to
a large extent, or are unlikely, etc. Such statements cannot be classified and
studied in the frames of the classical, or bivalent, logic, but just belong to the
subject of what is called fuzzy logic. Again we present a couple of examples.

Consider the statements “If a and b are real negative numbers, then the
product a · b is positive” and “If a is larger than b and n ≥ 10, a, b, n being
natural numbers, then an is much larger than bn”. Obviously, the first one is
a precise mathematical statement which is true, while the second statement
could be viewed as a fuzzy statement which, is more or less true.

Another example. Consider two statements “If it is raining there are clouds
in the sky” and “If there are clouds in the sky, then possibly it will rain”. The
first one is formulated according to the laws of bivalent logic, while the second
one can be viewed as a statement in fuzzy logic.

Since the introduction of the concept of a fuzzy set and laying down the
foundations of fuzzy logic in 1965 by L.A. Zadeh [94], the interests of many
researchers in theoretical mathematics as well as in applications of mathemat-
ics in other sciences were directed to applying fuzzy sets and rules of fuzzy
logics in their work. Many research papers on this subject were published,
several regular conferences devoted to the problems of “Fuzzy Mathematics”
were organized. For example, every 4 years the International Congress of Fuzzy
Association (IFSA) takes place. Since 1979 in Linz, Austria an annual “Linz
Seminar on Fuzzy Sets” is organized, every time its programme is devoted to
a particular topic of research. Since 1992 in Slovakia a biannual conference
“Fuzzy Sets: Theory and Applications (FSTA)” is held. At present there are
several journals specializing in publishing works in “Fuzzy Mathematics” and
its applications, in particular International Journal of Fuzzy Sets and Systems
(launched in 1978 and included in the ISI list) and Iranian Journal of Fuzzy
Systems (launched in 2004 and included in the extended ISI list). Also other
journals which have a sufficiently broad spectrum of acceptable research pa-
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pers, and the Journal of Mathematical Modelling and Analysis among them,
publishes manuscripts where mathematical structures on the basis of fuzzy sets
are studied or applied. This was one of the reasons why the organizing commit-
tee of the annual 15th conference Mathematical Modelling and Analysis, which
was held in Druskininkai, Lithuania in May 26–30, 2010, has invited the au-
thor of this paper to give a key-note talk. In this talk, the basic ideas and
concepts of the theory of fuzzy sets were presented and examples illustrating
the interplay of fuzzy sets in the branches of classical mathematics were given.

The present work is an essentially extended version of the talk given at
MMA2010 conference, its main aim is to give a very brief introduction into
what we call “Mathematics in the context of fuzzy sets” for mathematicians
who are not professionals in this field but who want to have some idea of this
area of modern mathematics.

2 History

2.1 Fuzzy sets and fuzzy reasonings: prehistory 1900–1965

The comprehension that in real situations discourses do not always lead either
to true or to false statements and that there are many statements between true
and false, that is statements of gradual truth was, obviously, not a new idea in
science. As well as not a new was the idea, that not all objects of the real world
in respect of some property can be classified as “white” or “black”. There can
be many objects of different “shadows of grey colors”, that is objects having a
given property within a certain degree. In particular, such idea was discussed
already in Aristotle’s works, see e.g. [4]. However, in the modern times scien-
tists started to express serious interest in the problem of gradual truth and the
related problem of having a property within a certain degree only since the end
of the 19th century. It is also worth to note, that first people to be mentioned
in this respect are scientists of broad scientific interests, scientists known both
as philosophers and researchers in exact sciences. Charles Peirce (1839–1914
USA), known as chemists, philosopher and mathematician, wrote “Logicians
have too much neglected the study of vagueness, not suspecting the important
part it plays in mathematical thought” [60]. Bertrand Arthur William Rus-
sel (1872–1970 Great Britain), an outstanding mathematician, logician, writer
and philosopher, discussed these problems in his treatise “An introduction to
Mathematical Philosophy” [70]. In 1937 there was published the monograph
“Vagueness: an exercise in logical analysis” by Max Black (1909 Azerbaijan –
1970 USA), a philosopher and a researcher in the field of quantum mechanics
[10]. In this monograph the author considered “consistency profiles” in order
to characterize quantities without clear borders which he called “vague sym-
bols” and discussed the importance of vague symbols for philosophical prob-
lems. Black’s vague symbols are closely related to interval-type fuzzy numbers
described in this paper in Section 4.1.

Probably the first scientist who tried to study the problem of uncertainty
from the point of view of mathematical logic was Jan  Lukasiewicz (Poland 1878
– Ireland 1956). He developed a new logical system, in which statements can
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be not only false or true, but can be also true/false to a certain degree. In
his lecture on March 7, 1918 at the Warsaw University he announced that his
logical system “is as coherent and self-contained as Aristotle’s logic but which
is much richer in laws and formulae.” This logical system is actually a three-
valued case of what is understood by  Lukasiewicz logic now, see Section 5.2,
see also  Lukasiewicz’s paper [47]. Independently of  Lukasiewicz and starting
from different premises, another system of many-valued logics was discovered
by Emil Post (Russia 1897 – USA 1954) [61].

One more mathematician whose contribution to the “prehistory” of Fuzzy
Mathematics, should be mentioned, was Karl Menger (Austria 1902 – USA
1985). K. Menger suggested to develop a theory in which the relation ∈ “ele-
ment belongs to a set” (which is in the basis of the Cantor set theory) is replaced
by the probability of an element belonging to a set. In his paper Probabilistic
geometry, [49] he used objects which can be considered as precursors of fuzzy
points (see Section 3.3) and which he called hazy sets.

2.2 Fuzzy sets and fuzzy logics: early history 1965–1975

As we tried to show in the previous section, the ideas to find a mathemati-
cal concept appropriate to describe objects which are not precisely defined as
well as to deal with statements for the validity of which one cannot give a
monosemantic answer “yes” or “no”, has emerged in the works of many scien-
tists during the first half of the 20th century. However the credits of founding
the theory of fuzzy sets (and “inventing” the term “fuzzy set” itself) are given
to the professor of the Berkley University L.A. Zadeh. L.A. Zadeh was born
in 1921, in Baku, at that time the capital of the Soviet Azerbaijan. Later he
moved with his parents to Iran (they were the Iranian citizens) where they lived
till 1944. In 1944 Zadeh went for studies to the USA. In 1951 he has received
doctor degree in electrical engineering, and in 1963 was appointed as the head
of the department of electrical engineering at the University of Berkeley. In
1956 he met S. Kleene (1909–1994), an outstanding logician, the author of the
famous “Introduction to metamathematics” [34]. Friendship with Kleene had
a great influence on Zadeh. In particular, this influence showed itself in his
idea to use many-valued logics in order to describe the behaviour of complex
electrical systems. Later this idea has developed into the concept of a fuzzy set.
The foundations of the theory of fuzzy sets were first developed [94]. This work
was followed by many subsequent Zadeh’s papers in which different aspects of
the theory of fuzzy sets and fuzzy logic and related problems were considered.1

The inception of fuzzy sets by Zadeh did not remain unnoticed: in the next
decade there were published several important papers considering fuzzy sets
in theoretical mathematics (Topology: C.L. Chang [12], B. Hutton [29], J.A.
Goguen [23]; Algebra: A. Rosenfeld [69], D.N. Mordenson and D.S. Malik [51];
Measure and integral theory: L.A. Zadeh [95], M. Sugeno [86]) and in applied
sciences (Decision making: R. Bellman and L. Zadeh [8], System analysis:

1 A reader interested in the biography of this outstanding scientist and person can refer to
the book written by Zadeh’s wife [93] or to the book of Zadeh’s student and a popularizer
of the ideas of fuzzy sets and fuzzy logic B. Kosko [39].
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C.R. Negoita and D.A. Ralescu [53], etc.) A notable contribution to the field
of “Fuzzy Mathematics” was done by J.A. Goguen [22], who introduced an
important and natural generalization of a fuzzy set, the so called an L-fuzzy set
(where L could be any complete lattice or even a cl-monoid, [9]) thus essentially
enlarging the scope of possible applications of the original concept of a fuzzy
set and enriching the mathematical theories in the context of fuzzy sets. In
this period also some works criticizing the whole concept of a fuzzy set were
published, see e.g. [3]. We refer to [14] for the discussion around this criticism.

2.3 Fuzzy sets and fuzzy logics: development after 1975

In the last quarter of the 20th century and at the beginning of the 21th century
the number of works where fuzzy sets have been used increased in an avalanche
way. There are thousands of works in traditional branches of theoretical math-
ematics in the context of fuzzy sets: Topology, Algebra, Measure and Integral
Theory, Differential Equations, Probability theory and Mathematical Statis-
tics, Mathematical Modeling, etc.; works considering applications of fuzzy sets,
fuzzy logics and related mathematical theories in other sciences: Medicine, Bi-
ology, Geology, Chemistry, etc.; works devoted to applications of fuzzy sets and
rules of fuzzy logics in engineering and industry. These works differ very much
not only in the subject of research, but also in their competence and quality:
unfortunately along with deep, substantial research papers, there are also shal-
low, superficial papers, which, discredit the whole area among non-specialists
in the Mathematics of fuzzy sets. It is impossible to give even a very brief ob-
jective survey on the most important works in the context of fuzzy sets which
appeared in this period. In the next sections we shall discuss some of the works
considering basic concepts as well as some aspects of the recent development of
mathematics and other sciences appealing to fuzzy sets. The reader should be
forewarned that this exposition in no case can be considered as representative
and is dictated by the competence and the taste of the author.

3 Fuzzy Sets

3.1 Fuzzy sets: basic concepts. L-fuzzy sets

To grasp the idea of a fuzzy set note that a subset A of a set X can be described
by its membership function χA : X → {0, 1}:

{

χA(x) = 1 if x ∈ A
χA(x) = 0 if x /∈ A.

Thus χA characterizes the degree to which an element x belongs to a set A.
This degree is either 0 or 1. Now, allowing this degree to be also between 0
and 1 we come to Zadeh’s concept of a fuzzy subset A of a set X , denoted
A⊂̃X and characterized by its membership function µA : X → [0, 1]. The
value µA(x) is interpreted as the degree of belongness of a point x ∈ X to a
fuzzy set A.

Taking into account that fuzzy sets are “invented” it order to be a more
satisfactory apparatus for the purposes of practice, and to reflect better the
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way of human reasonings, one can easily note that in some situations the unit
interval [0, 1] as the codomain for membership functions is too restricted. We
give an example of such situations. It concerns the fuzzy set B of birds in the
set of all living beings. Clearly a swallow and a nightingale belong to B with
degree 1, while a hippopotamus and a lion belong to it with degree 0. But
what about such “birds” as ostrich, penguin and kiwi? Ornithologists agree
that all of them have some essential, but not all typical characteristics of birds.
So we can interpret that a “bird” can belong to the “fuzzy set” B of birds
to a certain degree, between 0 and 1. However characteristic bird traits of an
ostrich, a penguin and a kiwi are different. Therefore one can hardly decide
which of them belongs to B to a larger extent. Hence we come to the idea
that a membership function of a fuzzy set should be allowed to accept also
incomparable values, (in this example incomparable values characterizing the
belongness degree of an ostrich, a penguin and a kiwi to the fuzzy set B of
birds) between 0 (the bottom degree of belongness) and 1 (the maximal degree
of belongness). This leads to the idea to consider fuzzy sets whose membership
functions can accept incomparable values. This idea was developed by J.A.
Goguen [22] and resulted in the concept of an L-fuzzy set. Namely, let L be a
complete lattice whose bottom and top elements are 0 and 1 respectively, see
e.g. [9]. Further let X be a set. Then an L-fuzzy subset A⊂̃X is characterized
by its membership function µA : X → L. In case L = [0, 1] an L-fuzzy set
is just a fuzzy set A⊂̃X as defined by L.A. Zadeh, and in case L = {0, 1} we
actually redefine a usual subset A of X .

At this point we note that generally L-fuzzy sets are not only more satisfac-
tory for various applications, but also they are theoretically more interesting
and promising for applications than its special kind, fuzzy sets as they were
defined above. On the other hand the work in the context of general L-fuzzy
sets is essentially more complicated than in the context of ‘ordinary” Zadeh’s
fuzzy sets, that is L-fuzzy sets in the special case when L = [0, 1]. Therefore
in the sequel we shall consider only the case of “ordinary” fuzzy sets.

When working with fuzzy sets a helpful tool is the so called level decompo-
sition of a fuzzy set. Namely, the subsets Aα := {x ∈ X | µA(x) ≥ α }, α ∈ L,
of the set X are called levels of a fuzzy set A⊂̃X and the family {Aα | α ∈ L}
is called the level decomposition of the fuzzy set A. One can easily see that
A0 = X and that

⋂

β<αAβ = Aα ∀α ∈ ]0, 1]. Conversely, starting with a
system of sets with such properties a corresponding fuzzy set A can be recon-
structed by setting µA(x) = sup{α ∈ [0, 1] | x ∈ Aα}, having Aα as its level
sets.

3.2 Operations with fuzzy sets

One of the first problems to be discussed when dealing with fuzzy sets is how the
basic operations: intersection, union and complement with fuzzy sets should
be defined. Although one can suggest several “natural” ways how to do this, 2

the most often accepted is the following.

2 Note that they must be mutually interrelated in the “natural way” and extend operations
with ordinary sets!
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The intersection A ∩̃ B of fuzzy sets A⊆̃X and B⊆̃X is defined by the
membership function µ ˜A∩B = min{µA, µB} (:= µA ∧ µB) (cf. with the crisp
case χA∩B = min{χA, χB}).

The union A∪̃B of these fuzzy sets is defined by the membership func-
tion µA∪̃B = max{µA, µB} (:= µA ∨ µB) (cf. with the crisp case χA∪B =
max{χA, χB}.) The complement Ac of a fuzzy set A⊆̃X is defined by the
membership function µAc = 1 − µA (cf. with χAc = 1 − χA).

Given a mapping f : X → Y , the membership function µf(A) : Y → [0, 1]

of the image f(A)⊆̃Y of a fuzzy subset A⊆̃X is defined by the equality

µf(A)(y) = sup{A(x) | f(x) = y} where sup ∅ := 0

and the membership function µf−1(B) : X → [0, 1] of the preimage f−1(B) of

a fuzzy set B⊆̃Y is defined by the equality

µf−1(B)(x) = (µB ◦ f)(x) (= µB(f(x))).

These definitions are also well coordinated with the definitions of images and
preimages of usual sets when the last ones are rewritten in the form of the
corresponding characteristic functions.

So thus defined operations with fuzzy sets are “natural” extensions of the
corresponding operations with ordinary sets. Besides these definitions are well-
grounded from the theoretical (in particular, the categorical) as well as from
the practical point of view. An interested reader can find much additional
information in this concern, e.g. in [67] or in [14]. Most of the properties of
these operations are natural analogues of the corresponding properties of their
classical analogous. In particular, the operation of union and intersection are
mutually distributive; the images and preimages of unions, intersections and
complements behave themselves in the same way as in the case of usual sets.

An essential difference one first encounters when dealing with complemen-
tation of fuzzy sets: membership function µAc∩̃A of the intersection A∩̃Ac need
not be µ∅ and membership function µAc∪̃A of the union A∪̃Ac need not be µX .

Since fuzzy sets are defined by their membership functions, there arises a
temptation to identify a fuzzy set A⊆̃X with the function µA : X → [0, 1], that
is to write just A : X → [0, 1]. This is really convenient and such identification
is done by many authors, especially by those working in the fields of pure
mathematics. Also such perception of fuzzy sets is often accepted in this paper.

3.3 Fuzzy points

A special kind of fuzzy subsets of a set is chosen which can be interpreted as
a fuzzy analogue of points. Namely, a fuzzy point in a set X is a fuzzy set
xα⊆̃X , where x ∈ X and α ∈ (0, 1] which is determined by the membership
function pαx : X → L:

pαx(y) :=

{

α if y = x,
0, if y 6= x.

Two relations of a fuzzy point xα to a fuzzy set A are used (see e.g. [62]):
belongness relation xα∈̃A if α ≤ µA(x) (analogue of crisp x ∈ A) and qua-
sicoincidence relation xαq̃A if α + µA(x) > 1 (analogue of the crisp relation
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x /∈ X \ A). Obviously in the crisp case both relations coincide, while in the
fuzzy case one has to choose which one of the two relations should be used in
each particular situation.

Although fuzzy points in some situations can be used as right fuzzy substi-
tutes for crisp (that is usual) points, their “nature” is essentially different from
the “nature” of crisp points. In particular, while a crisp point is a minimal ob-
ject (nothing can belong to a point!), this is not the case in the fuzzy situation:
xα ∈ xβ whenever α ≤ β. Also the behaviour of belongness and quasicoinci-
dence relations of fuzzy points with respect to union and intersection of fuzzy
sets essentially differs from the behavior of their crisp counterparts.

4 Fuzzy Numbers

One of the first problems which is encountered by everyone working with fuzzy
sets, is what the fuzzy analogue of a real number should be and how the arith-
metic operations with fuzzy numbers must be defined. In the literature one can
find two essentially different approaches to the problem of a fuzzy real number.
Both of them agree that a fuzzy real number should be a certain fuzzy subset
of the real line R. However they differ on specifying which fuzzy subsets of R
should be considered as fuzzy numbers. While the first approach is based on
understanding a fuzzy real number as a generalized interval in R, the second
one views a fuzzy number as a certain distribution-type function z : R → [0, 1].
Concerning the definition of arithmetic operations with fuzzy real numbers the
adherents of the both approaches agree that they should be defined on the
basis of the Zadeh’s extension principle: we shall illustrate this principle on
the example of interval-type fuzzy numbers. Before giving a brief sketch of
these approaches we note that the interval-type approach is supported mainly
by application-oriented scientists, while the second is more justified from the
theoretical point of view. It is also worth mentioning that although starting
from essentially different ideas they are not completely unrelated (see e.g. [16]).

4.1 Interval-type fuzzy numbers and Zadeh’s extension principle

The adherents of what we call “the interval-type approach”, view fuzzy numbers
as intervals with blurred borders. The idea of this approach stems from the early
works of Zadeh, and later elaborated by different authors, in particular by M.
Mizumoto and K. Tanaka [50]. According to the interval-valued approach a
fuzzy number is a fuzzy set A⊂̃R which is defined by a convex membership
function µA : R → I where the convexity means

min{µA(x1), µA(x3)} ≤ µA(x2) whenever x1 ≤ x2 ≤ x3,

and hence the levels Aα of a fuzzy set A⊂̃X are intervals, probably unbounded,
in R. Often it is additionally required that µα should be upper-semicontinuous
[17, 33] and that the closure of the support {x | µA(x) > 0} should be compact.
Let E denote the set of all such fuzzy numbers. A nice property of A ∈ E is
that for all α > 0 α-levels Aα are closed intervals in R and therefore a metric
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D can be introduced on E by setting D(A,B) = supα>0 d(Aα, Bα), where d is
the Hausdorff metric [17, 33] on the set of all compact subsets of R.

There are several special classes of fuzzy numbers of which we mention the
triangular fuzzy numbers A := (a, b, c). These fuzzy numbers are characterized
by membership functions defined by the equation

µA(x) =



















0 if x ≤ a,
x−a
b−a

if a < x ≤ b,
x−c
b−c

if b ≤ x < c,

0 if c ≤ x.

In order to consider the case when some of the equalities a = b = c hold we
have to make specification that also in this case b−a

b−a
= 1, b−c

b−c
= 1. Thus, if

a = b = c, then the fuzzy number (a, a, a) can be identified with a real number
a ∈ R. Having fuzzy numbers in mind, one starts to wonder how to operate
with them. In other words what is the arithmetics of fuzzy numbers? And here
the appropriate way is to use the s.c. extension principle [94]. In its simplest
way it looks as follows: Given an operation ϕ : R × R → R one extends it to
the operation on the set E of all fuzzy numbers by setting

ϕ̃(µA(x), µB(x)) = sup{µA(s) ∧ µB(t): ϕ(s, t) = x}.

In particular (µA+B)(x) = sup{µA(s) ∧ µB(t) | s + t = x} and (µA·B)(x) =
sup{µA(s) ∧ µB(t) | s · t = x}.

Note that when restricted to (ordinary) real numbers these operations re-
duce to the usual arithmetic operations. However the arithmetics of fuzzy
numbers is much more complicated than ordinary arithmetics, in particular
what concerns inverse operations like subtraction and division.

Recently some papers were published where sequence spaces of fuzzy num-
bers where studied and used. In particular the authors of [18, 19, 52, 87]
under additional assumptions investigate the statistical-type convergences in
difference sequence spaces of fuzzy numbers.

4.2 Fuzzy numbers as distribution-type functions and the fuzzy real
line

Along with interval-type fuzzy numbers, the idea to interpret fuzzy numbers
as certain distribution-type functions is very popular in “fuzzy mathematics”.
Probably the first works where this idea is traced are [29] and [20]. Slightly
modifying the definitions introduced in [20, 29] we define a fuzzy number as a
non-increasing upper-semicontinuous (see e.g. [17, 33]) function z : R → [0, 1]
such that sup z(x) = 1 and inf z(x) = 0. An ordinary number a ∈ R in this
approach is identified with the fuzzy number

za(x) =

{

1 if x ≤ a,

0, if x > a.

The set of all fuzzy numbers is called the fuzzy real line and is denoted R([0, 1]).
The arithmetics of such fuzzy numbers is also defined by the extension principle.

Math. Model. Anal., 16(2):173–198, 2011.
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This arithmetic, as well as the topological structure of R([0, 1]) was thoroughly
studied by S.E. Rodabaugh [66]. Fuzzy real numbers defined in this way are
useful, in particular, in fuzzy topology see e.g. [29, 30, 66, 83], etc., theory of
fuzzy measures see e.g. [38, 72, 73], approximation theory under imprecise
information, see [6, 7], etc. In the sequel we will refer also to the subset
R+([0, 1]) of R([0, 1]) consisting of all of all non-negative fuzzy numbers that is
fuzzy numbers z : R → [0, 1] such that z(0) = 1.

A deep theoretical justification of viewing fuzzy numbers as distribution-
type functions was given by U. Höhle [27], who showed that such fuzzy real
numbers can be obtained from the set of rational numbers Q by means of
Dedekind completion in the same way as (ordinary) real numbers R are ob-
tained from Q if one applies the  Lukasiewicz logic (see 5.2), instead of the
binary logic which stands behind the Dedekind completion in the classic case.

5 Fuzzy Logics

5.1 Connectives in classical logic

To give a reader insight into fuzzy logics we start by analyzing basic connec-
tives of the classical logic – conjunction, disjunction, implication, and negation.
Usually they are given in the form of so called tables of truth values:

& 0 1
0 0 0
1 0 1

Conjunction &

∨

0 1
0 0 1
1 1 1

Disjunction
∨

7→ 0 1
0 1 1
1 0 1

Implication 7→

¬ 0 1
1 0

Negation ¬

Thus connectives in classical logic can be interpreted as mappings describing
how truth values of original propositional statements are reflected in the truth
value of the resulting propositional statement:

&,
∨

, 7→: {0, 1} × {0, 1} → {0, 1}, ¬ : {0, 1} → {0, 1}.

5.2 Connectives in fuzzy logics

In fuzzy logics propositions P can be not only true or false but also true and
false to a certain degree: t(P ) ∈ [0, 1]. Thus connectives of fuzzy logics must be
also functions describing how truth values of original propositional statements
are reflected in the truth value of the resulting propositional statement:

&,
∨

, 7→: [0, 1] × [0, 1] → [0, 1], ¬ : [0, 1] → [0, 1].

There are various “natural” ways how these connectives could be defined. 3

However one has to care that the following two principles should be satisfied.
First, when restricted to the range {0, 1} ⊂ [0, 1] of the connectives, the truth
value tables of classical logic should be received, and second, the connectives

3 Just for this reason we use the word fuzzy logics in plural.
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of fuzzy logics should me mutually interrelated in the way, analogous to the
mutual interrelations of connectives of classical logic. The fuzzy negation ¬
most often is given by the usual subtraction in the unit interval: ¬α = 1 − α,
∀α ∈ [0, 1]. On the other hand conjunction can be defined in different “natural”
ways what in its turn reflects in the definitions of the corresponding disjunction
and implication, and, in the long run, results in different logics. We consider the
three most popular ones. Note that the three important t-norms (see e.g. [36])
make the background for these logics.

• Fuzzy conjunction & : [0, 1]×[0, 1] → [0, 1] based on the minimum t-norm:

&(α, β) = α ∧ β;

the corresponding disjunction and implication are given, respectively, by
∨

(α, β) = α ∨ β and

7→ (α, β) =

{

1 if α ≤ β

β, if α < β.

• Fuzzy conjunction & : [0, 1] × [0, 1] → [0, 1] based on the  Lukasiewicz
t-norm:

&(α, β) = max{α + β − 1, 0};

the corresponding disjunction and implication are given, respectively, by
∨

(α, β) = min{α + β, 1} and 7→ {α, β} = max{1 − α + β, 0}.

• Fuzzy conjunction & : [0, 1]× [0, 1] → [0, 1] based on the product t-norm:

&(α, β) = α · β;

the corresponding disjunction and implication are given respectively by
∨

(α, β) = α + β − α · β and

7→ (α, β) =

{

β/α if β ≤ α and α 6= 0,

1 if β > α or α = 0.

5.3 Remark

It is important to make some remarks concerning the term “Fuzzy Logic”.
Different authors interpret this term in a different way. In the literature inter-
pretations of the term “Fuzzy Logic” are usually divided into two large groups:
Fuzzy Logic in the broad sense (more in the spirit of applied mathematics) and
Fuzzy Logic in the narrow sense (more in the spirit of theoretical mathematics).
These groups are “fuzzy” in the sense that there are many “overlapping” cases.
According to this division, the fuzzy logics considered in Section 5.2 belong to
the group of Fuzzy Logic in the narrow sense. An interested reader can find
detailed information about different interpretations of the concept of a Fuzzy
Logic in monographs [24, 54, 55, 56].

Math. Model. Anal., 16(2):173–198, 2011.
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6 Mathematical Structures on the Basis of Fuzzy Sets

As it has been already mentioned, since the middle seventies of the 19th century
counterparts of various areas of traditional mathematics are being developed
in the context of fuzzy sets. In this paper we shall discuss four of these areas:
topology (which is the author’s main subject of research), differential calculus,
differential equations, and theory of measure and integral. As the reader will
see from these examples, there are several different natural ways how to develop
counterparts of traditional mathematical areas in the context of fuzzy sets. To
make our exposition more clear and visual in the sequel we identify a fuzzy
set A⊂̃X with its membership function µA : X → [0, 1] see Section 3.2; in
particular an ordinary subset A ⊂ X is identified with its membership function
χA : X → {0, 1}, and hence the empty set ∅ and the universe set X are
identified with constant functions χ∅ = 0X and χX = 1X respectively. The
union and the intersection of fuzzy sets A,B : X → [0, 1] in this case are
identified with the supremum and infimum of the corresponding membership
functions A ∨B : X → [0, 1] and A ∧B : X → [0, 1] respectively.

6.1 Topological structures on the basis of fuzzy sets

6.1.1 Topological structures on families of fuzzy sets

The first approach to topology in fuzzy setting (and probably also the first
attempt to consider any mathematical structure in the context of fuzzy sets)
was proposed in 1968 by C.L. Chang, [12], a student of L.A. Zadeh. According
to Chang, a fuzzy topology on a set X is a family of its fuzzy subsets, i.e.
τ ⊆ [0, 1]X , such that

1. 0X , 1X ∈ τ (cf. the topological axiom ∅ ∈ τ , X ∈ τ);

2. U, V ∈ τ ⇒ U ∧V ∈ τ (cf. the topological axiom U, V ∈ τ ⇒ U ∩V ∈ τ);

3. Ui ∈ τ∀i ∈ I ⇒
∨

i Ui (cf. the topological axiom Ui ∈ τ∀i ∈ I ⇒
⋃

i Ui ∈ τ).

Given two fuzzy topological spaces (X, τX), (Y, τY ), a mapping f : (X, τX) →
(Y, τY ) is called continuous if V ∈ τY ⇒ f−1(V ) ∈ τX . Soon this definition was
extended by J.L. Goguen [23] to the case of L-fuzzy topological spaces where
L is a complete infinitely distributive lattice by replacing the family of fuzzy
sets [0, 1]X with the family of L-fuzzy sets LX .

Chang–Goguen’s definition could seem to be the only “natural” one exten-
sion of topology to the fuzzy case. However the properties of fuzzy topologies
defined in this way have several essential differences from the properties of
ordinary topologies. One of the most important distinctions is that constant
mappings of fuzzy topological spaces need not be continuous.4 As consequences
of this fact follow that the projections in the products of fuzzy topological
spaces need not be open, a product of fuzzy topological spaces need not have

4 We do not argue whether it is a strong or a weak point of the theory - the opinion of
different authors vary in this respect.
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subspaces homeomorphic to its factors, etc. In order to “remedy” this “defi-
ciency” R. Lowen [46] suggested to redefine the first axiom by requesting that
all constant functions αX and not only 0X and 1X should belong to τ :

1′. αX ∈ τ ∀α ∈ [0, 1].

Now fuzzy topologies satisfying axiom 1′ are called stratified.

6.1.2 Fuzzy topological structures on families of fuzzy sets

In the previous approaches to the concept of a topology in the context of fuzzy
sets only “sets” were fuzzy, but the “topology” was actually crisp, non fuzzy:
it was a usual subset τ of the family of fuzzy sets [0, 1]X . Viewing this as a
certain inconsistency of interpretation of topology in the context of fuzzy sets,
the author of this paper [82] and T. Kubiak [40] (independently) developed a
more general concept of a fuzzy topology. Namely according to [40, 82] a fuzzy
topology on a set X is a fuzzy family T : [0, 1]X → [0, 1] such that

1. T (0X) = T (1X) = 1;

2. T (U ∧ V ) ≥ T (U) ∧ T (V ) ∀U, V ∈ F (X);

3. T (
∨

i Ui) ≥
∧

i T (Ui) for every family {Ui | i ∈ I} ⊆ F (X).

Given two fuzzy topological spaces (X, TX), (Y, TY ) a mapping f : (X, TX) →
(Y, TY ) is called continuous if V ≤ f−1(V ) ∀V ∈ [0, 1]X .

6.1.3 Fuzzy topologies as subsets of lattices and variable-basis fuzzy
topologies

A principally different and quite interesting, view on the subject of Fuzzy Topol-
ogy was proposed by B. Hutton [30] who interpreted fuzzy topologies as certain
subsets of completely distributive lattices. Hutton’s idea was later developed
into the so called variable-basis fuzzy topology by S. Rodabaugh, see [65], etc.

An interested reader can find a detailed survey of these and some other
approaches to the interpretation of topological structures in the context of
fuzzy sets in our works [28, 83, 84].

6.2 Differential calculus in the context of fuzzy sets

There are many works where problems of differentiation in the context of fuzzy
sets are studied. However the specification of what should be the subject
of the study, that is “what” and “in what sense” should be fuzzy, vary in
different works. To give a reader insight of what could be the subject of “fuzzy
differentiation” we briefly describe two approaches to this problem.

6.2.1 Derivative of a fuzzy set

One of the first attempts to study the problem of differentiation in the context
of fuzzy sets was undertaken by D. Dubois and H. Prade in [15]. Following
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these works we illustrate how derivative of a function at a fuzzy set could be
defined.

Let f : [a, b] → R where [a, b] ⊂ R be a differentiable mapping and let f ′ be
its derivative. Further, let A⊂̃[a, b] be a fuzzy subset of R whose membership
function µA is convex (see Section 4.1). The derivative of f at the fuzzy set
A is defined as the fuzzy set f ′(A)(y) = sup{A(x) | x ∈ f ′−1(y)}, that is as
the image of the fuzzy set A under mapping f ′. The value f ′(A) is interpreted
as the fuzzy set of the possible values of the derivative f ′ at a point x ∈ R

whose possible positions are regulated by the fuzzy set A. One can see that
f ′(A) is also determined by a convex membership function µf ′(A). D. Dubois
and H. Prade interpret this definition of a derivative at a fuzzy set by saying
“the uncertainty about the precise location of the point whose position is only
roughly specified by A induces an uncertainty about the value of the derivative
of f at this point.” Note that if f ′(x) is constant on the support {x | A(x) > 0}
of A, then f ′(P ) is a crisp set. In particular, f ′(A) = f ′(x) in case A is a crisp
point, that is A = (x, x, x) in notations of Section 4.1 Concerning linearity of
differentiation it is shown that f ′(A) + g′(A) ≥ (f ′ + g′)(A) and, in case the
derivatives f ′ and g′ are continuous and both nondecreasing or nonincreasing
f ′(A) + g′(A) = (f ′ + g′)(A). Also an analogue of the rule of differentiation of
the product holds:

(f · g)′(A) ≤ f ′(A) · g(A) + f(A) · g′(A);

the equality is fulfilled, in particular, in case when f and g are positive and f ′

and g′ are both nondecreasing.

6.2.2 Differentiation of fuzzy-valued mappings

An alternative viewpoint on the problem of differentiation in the context of
fuzzy sets was developed by M.L. Puri an d D.A. Ralescu [63], it generalizes
Hukahara’s differentiability of set-valued mappings. A mapping F : [a, b] → E

(see 4.1 for the definition of E) is called differentiable at a point t0 ∈ [a, b] if
there exists a F ′(t0) ∈ E such that the limits

lim
h→0+

F (t0 + h) − F (t0)

h
and lim

h→0+

F (t0) − F (t0 − h)

h

exist and are equal. These limits are taken in the metric space (E, D) 4.1, and
the difference x− y in E is defined as an element z ∈ E such that x = y + z.

Basic properties of such derivatives are considered in [63] and in [31]. In
particular, it is shown that a differentiable function is continuous. If F : [a, b] →
E is differentiable and t1 ≤ t2 ∈ [a, b], then there exists C ∈ E such that
F (t2) = F (t1) + C, and hence for each α ∈ [0, 1] the function t → diam[F (t)]α
is nondecreasing on [a, b]. The operation of differentiation behaves “in the
natural way”: If functions F,G : [a, b] → E are differentiable and λ ∈ R, then
(F + G)′(t) = F ′(t) + G′(t) and (λF )′(t) = λF ′(t).

Applying the construction of an integral of a fuzzy-valued function defined
by Puri and Ralescu [63], O. Kaleva [31] shows that if F : [a, b] → E is contin-

uous, then for all t ∈ [a, b] the integral G(t) =
∫ t

a
F (t) dt is differentiable and
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G′(t) = F (t). A fuzzy version of Newton–Leibniz’s formula is also established:

F (s) = F (a) +

∫ s

a

F ′(t) dt.

6.3 Fuzzy differential equations

Different versions of differential equations, in particular, of the initial value
problem, in the fuzzy context were studied in several papers. For example O.
Kaleva [31] studies the problem

x′(t) = f(t, x(t)), x(a) = x0,

where f : [0, 1] × E → E is a continuous function and shows that if f satisfies
an analogue of the Lipshiz condition D(f(t, x), f(t, y)) ≤ kD(x, y) for some
constant k > 0 and for all t ∈ [a, b], x, y ∈ E, then this problem has a unique
solution on [a, b]. O. Kaleva studies the “Fuzzy” Cauchy problem also in [32]

Discussing the actuality of the study of the initial value problem in the con-
text of fuzzy sets Seikalla [74] writes: “When a physical problem is transformed
into a deterministic initial value problem we usually cannot be sure that the
modeling is perfect. The initial value may not be known exactly and the func-
tion f may contain unknown parameters. Especially, if they are known through
some measurements they necessarily are subjected to errors. . . If the nature
of errors is random, then instead of deterministic problem we get a random
differential equation. . . But if the underlying structure is not probabilistic, e.g.
because of subjective choices then it may be appropriate to use fuzzy numbers
instead of random variables.”

6.4 Measure and integral

The author has found it especially difficult to make a brief unbiased survey of
the works where measure and integral in the context of fuzzy sets are consid-
ered. The main problem here is a very large number of works dealing with these
concepts and the principal diversity of interpretations of what should or could
be the subject of the research. Probably the main reason why so much interest
in this subject was expressed is that measures and integrals in the context of
fuzzy sets have found applications in several applied sciences, in particular in
mathematical economics, in optimization problems and control theory. So the
permitted extend of this paper allowed the author just to point out only some
of the approaches to this problem. Much more information and a vast list of
references on this topic one can find in [11, 38] and in [45].

1. Probability measures of fuzzy events and fuzzy probability mea-
sures. Let (Ω,A, P ) be a probability space and let F := {ϕ : Ω →
[0, 1] | ϕ is A-measurable} be interpreted as the collection of fuzzy events.
L.Zadeh [95] defined probability measure of fuzzy events as the mapping
m : F → [0, 1] determined by m(ϕ) =

∫

Ω
ϕdP where on the right-hand

side is the Lebesgue integral. In [37] the construction of a probabil-
ity measure of fuzzy events is generalized to the construction of a fuzzy
probability measure m : F → [0, 1] where F is a σ-algebra of fuzzy sets.
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2. Monotone fuzzy measure and Sugeno fuzzy integral. M. Sugeno
[86] defines the notion of a fuzzy measure by replacing the requirement
of σ-additivity in the definition of an (ordinary) measure by a weaker
requirement of monotonicity (m(A) ≤ m(B) whenever A ⊆ B) and con-
tinuity from below ((An)n∈N ↗ A =⇒ limn→∞ = m(A)) and from above
((An)n∈N ↘ A =⇒ limn→∞ = m(A)). 5 In the same work Sugeno
uses this fuzzy measure to define integral called now by his name. Later
Sugeno fuzzy measures and integrals as well as their “fuzzified” versions
were studied and applied by many authors, see e.g. [64].

3. (Fuzzy) possibility measures. A (fuzzy) possibility measure, see
e.g. [96] is a mapping m : F → [0, 1] where F is a σ-algebra of either
crisp or fuzzy sets, which is continuous from below and m(A ∧ B) =
max(m(A),m(B)) for any A,B ∈ F .

4. Triangular norm-based measures. Efforts of some researchers, were
directed to the study of triangular norm-based measures in the definition
of which instead of intersection and union a t-norm and the corresponding
t-co-norm are used. In particular, (fuzzy) possibility measures can be
described as ∧-normed measures where ∧ is the minimum t-norm.

5. Fuzzy-valued measures and fuzzy-valued fuzzy measures: Mea-
sures with values in the collection D∞. E.P. Klement [35] considers
measures m : F → D∞ where F is a sigma-algebra of fuzzy sets and D∞

is the collection of all probability distribution functions on [0,∞).

6. Fuzzy-valued measures and fuzzy-valued fuzzy measures: Mea-
sures with values in the set interval-type fuzzy numbers E. Mea-
sures with values in the set E of of interval-type fuzzy numbers were con-
sidered in a series of papers by Hsien-Chang Wu. In particular, in [92] the
foundations of the theory of fuzzy-valued integrals of fuzzy-valued mea-
surable functions with respect to E-valued measures is being developed.

7 Applications of Fuzzy Sets and Fuzzy Logics in Other

Sciences and in Industry

7.1 Mathematical modelling

A vast research work was done in the field of mathematical modelling on the
basis of fuzzy sets and fuzzy logics. An interested reader can get a good concep-
tion about problems studied in the frames of fuzzy modeling from the mono-
graph “Fuzzy modeling: paradigms and practice” edited by one of the founders
and actively working in this field American scientist of Polish descent Wytold
Pedricz [59]. Here we give two quotations from [59] which, in our opinion, give

5 Actually the idea to consider monotone non-additive measures was first suggested by
G. Choquet in his theory of capacities. Besides we pay the readers’ attention that the
term fuzzy measure in this case is somewhat misleading since actually there are no fuzzy
sets involved in its definition. However for historical reasons many researchers continue
to call it a fuzzy measure.
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a concise but precise idea about this field:
“The essence of fuzzy modeling is concerned with constructing models that flex-
ibly core heterogeneous data including those of linguistic and numerical char-
acters”, “Briefly speaking, fuzzy models are modeling constructs flattering two
main properties: they operate at the level of linguistic terms (fuzzy sets); simi-
larly all system dependences can be portrayed in the same linguistic format and
they represent the process uncertainty.”

7.2 Fuzzy sets and fuzzy logics in other sciences

The number of works where fuzzy sets and reasonings on the basis of fuzzy
logics are applied grow in the last decades in the avalanche way. Although it is
impossible to give a representative survey of these works, here we shall mention
only some of them, which reflect the author’s interests.

In 2004 a monograph “Fuzzy Logic in Geology” [13] was published. This
book consists of 10 Chapters written by different authors, among them “Fuzzy
logic and Earth Sciences”, “Fuzzy logic in Geological Sciences” by R.V.De-
micco, “Formal concept analysis in Geology” by Belohlavek, “Fuzzy logic and
Earthquake research” by C. Huang, “Fuzzy transform: application to the reef
growth problem” by I. Perfilieva and “Ancient sea level estimation” by V. No-
vak.

Much work has been done in the field of applications of fuzzy sets and rules
of fuzzy logic in life sciences - biology and medicine. The information available
to the physician about his patient and about medical relationships in general
is inherently uncertain. Nevertheless, the physician is still capable to make
approximate conclusions from this information. Fuzzy set theory makes it pos-
sible to interpret inexact medical considerations as fuzzy sets, thus creating a
method of “translating” intuitive, to a certain extent, reasonings of a physician
into formal mathematically grounded conclusions.

To justify the appropriateness of methods based on fuzzy sets in medical
sciences K.P. Adlassing [1] mentions some properties of fuzzy set theory al-
lowing to formalize uncertain information upon which medical diagnosis and
treatment is usually based. In particular, he notes that inexact medical enti-
ties could be formalized as fuzzy sets and that fuzzy sets provide a linguistic
approach with “an excellent approximation to texts”. Besides he notes that
fuzzy logic “offers reasoning methods capable of drawing approximate infer-
ences.” Thus fuzzy set theory provides “a suitable basis for the development
of a computerized diagnosis system.” K.P. Adlassing has substantiated these
considerations by tests performed with the medical expert system CADIAG-2
which uses fuzzy set theory to formalize medical relationships and fuzzy logic
to model the diagnostic process.

An interested reader can find much information about the use of fuzzy sets
in biology and medicine from the survey paper [2]. This work contains also an
extended list of references to related papers.
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7.3 Fuzzy sets and fuzzy logics in industry

Starting with the end of eighties of the 20th century and especially in the last
decade fuzzy sets, or more precisely, rules based on the laws of Fuzzy Logic are
successfully used in industry. In the initial period Japanese and South Korean
companies started to use them when designing the industrial process, while
western companies remained restrained and started to realize the importance
of the fuzzy rules much later. Some experts even affirm that one of the main
reasons of the so called South Korean miracle (an extremely fast industrial
development in the last decade) is the reconstruction of many branches of its
economy on the basis of fuzzy rules. Here we shall present a small number of
examples where fuzzy rules are used in industry.6

Mitsubishi produces air-conditioners using fuzzy rules in order to prevent
overshoot-undershoot temperature oscillation and consume less on–off power.
Nissan produces anti-lock brakes where fuzzy rules are used to control brakes
in hazardous cases based on car and wheel speed and acceleration. In the
washing machines produced by Daewoo and Samsung fuzzy rules are used to
adjust washing strategy based on sensed dirt level, fabric type, load size and
water level. Rice cooker (remember how important is rice in Asian cousine!)
produced by Matsushita regulates by fuzzy rules cooking time and method
based on steam, temperature and rice volume. Vacuum cleaners produced by
Hitachi and Toshiba apply fuzzy rules in order to set motor-suction strategy
based on dust quantity and floor type. Basing on fuzzy rules video cameras
produced by companies Canon and Sanyo adjust autofocus and lighting as well
as cancel hand trembling. LG and Samsung developed television systems using
fuzzy rules to adjust screen colour and texture and to stabilize volume based
on viewer’s room location. Shower systems produced by Panasonic use fuzzy
rules in order to suppress variation in water temperature.

Especially we would like to mention the work of professor of Tokyo Institute
of Technology M. Sugeno, whose PhD Thesis [86] was one of the first important
works in the field of pure mathematics in the context of fuzzy sets and who,
on the other hand, is well-known as a specialist in applications of fuzzy sets in
industry. M. Sugeno has built a system that can stabilize a helicopter in flight
when it looses a rotor blade; this system uses about 100 fuzzy rules.

8 Mathematics of Fuzzy Sets in Latvia

Introductory remark. In this section we give a brief survey of the work in
the field of “fuzzy mathematics” carried out in Latvia. The diversity of the
directions in which this work was carried out as well as the desire to outline
a representative part of this paper did not allow us to be as systematic as we
tried to be in the previous parts of the work. In particular, many concepts used
here remain undefined - an interested reader can find them in the corresponding
references. Besides, here we often use a prefix L when speaking about different
types of fuzziness. Although it is quite important in many cases, to get just

6 The material presented in this section is taken mainly from the book [39] and updated
from the Internet resources.
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an idea of what we are speaking about, a reader can omit this prefix and read
just fuzzy set instead of L-fuzzy set, etc.

The starting point of interest in mathematical structures in the context of
fuzzy sets in Latvia was in the middle of 1980’s when the first works in fuzzy
topology were published by the author of this paper, see e.g. [82, 83], etc.
Among other in these works the concept of an L-fuzzy topology on a family
of L-fuzzy sets 6.1.2 was introduced and the foundations of the theory of such
spaces were laid. Later this theory was developed in many publications both
in case when the base L is fixed and in case when the base is changing, see
e.g. [84]. Also the uniform and proximity counterparts of L-fuzzy topological
structures on L-fuzzy sets were considered in the papers of the author of this
work and coauthors, see e.g [21, 48, 84].

More than ten years have passed before a group of young Latvian re-
searchers – A. Grasmanis, Z. Diskin, I. Uļjane, I. Zvina, L. Drava et. al. showed
interest in the problems of fuzzy topology. I. Uļane in a series of papers see e.g.
[90, 91] and especially in her PhD Thesis [88] developed foundations of the the-
ory of L-fuzzy topologies on many-valued sets. I. Zvina started to study L-fuzzy
type generalization of the concept of a topological space via ideal [97, 98]. Later
the idea of this concept was developed into a very fruitful theory discovering
important relations between topology, lattices and locales [99, 100].

Since the end of nineties the scientific interests of our group was drawn also
to the categorical aspects of mathematics in the context of fuzzy sets. Speaking
about this area we have to separate two essentially different, although mutually
related trends. One trend follows the concept of a fuzzy category, the ideas of
which originate in my paper [82] and which much later were developed into
a theory of L-valued categories. In this category either objects or morphisms
or both are allowed to be such (that is objects and morphisms) only to a
certain degree, see e.g. [80, 81]. Just this is the subject of O. Grigorenko’s
work [26], where the author constructs and studies an L-valued category whose
objects are fuzzy ordered L-valued sets and morphisms are potential order-
preserving mappings (in a fuzzy sense). Also in I. Uļjanes work [89] a fuzzy
category of many valued sets and topological spaces is introduced and studied.
On the other hand a large work done by S.Solovjov in his PhD Thesis (2007)
[79] and in more than a dozen works published in the last 5 years see e.g.
[75, 76, 77, 78]. He deals with usual categories whose objects are L-fuzzy sets,
L-fuzzy topological spaces, L-fuzzy algebraic structures and other systems of
L-fuzzy objects. Also in the works by I. Uļjane [90, 91] and her PhD Thesis
[88] properties of a classical category of L-fuzzy subsets on many valued sets
are studied.

Starting with the beginning of the last century the spectrum of interests
of Latvian mathematicians in the field of fuzzy sets included also the theory
of Measure and Integral and now important work is done in this field by S.
Asmuss and V.Ruža, see e.g. [71, 72, 73]. We already mentioned the work
done in the field of fuzzy measure and integral in 6.2. However, as different
from the approaches considered in 6.2 the main interest of S.Asmuss’ group is
in developing a theory of measure and integral where not only sets are fuzzy,
but also measure and integral take fuzzy real values. To reach these purposes
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they use L-fuzzy real numbers in Hutton’s sense that is as they are defined
in Section 4.2. The works of this group present a construction of an L-fuzzy
valued T -measure by extending a measure defined on a σ-algebra of crisp sets
to an L-fuzzy valued measure defined on a T -tribe of L-fuzzy sets in case when
operations for L-fuzzy sets and L-fuzzy real numbers are based on a t-norm T
and L is a completely distributive lattice. An L-fuzzy valued T -integral over
an L-fuzzy set with respect to an L-fuzzy valued T -measure is constructed, its
basic properties are investigated and a method for calculation is given.

After participating at the conference FSTA (Fuzzy Sets – Theory and Ap-
plications) in Slovakia in 2008, the interest of several younger members of
the Latvian group was drawn to the theory of fuzzy aggregation operators.
The most active among them are J. Lebedinska, O. Grigorenko and P. Orlovs.
J. Lebedinska [41, 42, 44] introduces and studies the operation of generalized ag-
gregation. The term “generalized” refers to the generalized input and output of
aggregation operators (agops), that is aggregation operators which aggregate
fuzzy sets. J.Lebedinska develops two construction methods of generalized
agops, namely a pointwise extension and a T -extension. When studying the
properties of generalized aggregation, the crucial information is contained in
two transitive order relations introduced by the author: vertical and horizontal
order relations. J. Lebedinska studies how properties of an agop A are reflected
in the properties of its pointwise extension and its T -extension. O. Grigorenko
[25, 26] introduces and studies the notion of degree of monotonicity for aggre-
gation function. Namely, a fuzzy order relation is introduced in the definition
of monotonicity for aggregation function. This relation allows to measure the
degree to which a function is monotone: in its turn a fuzzy order relation allows
to generalize the notion of monotonicity for aggregation processes. Properties
of aggregation functions having a certain degree of monotonicity are studied.

The work of one of our youngest participants P. Orlovs in collaboration
with S.Asmuss deals with arithmetic of L-fuzzy numbers (see Section 4.2) [57].
This arithmetic is based on a general aggregation operator introduced by J.
Lebedinska and is defined by using a t-norm T as a T -extension of an ordinary
aggregation operator and acts on L-fuzzy real numbers when L is a completely
distributive lattice. The main aim of this research is to analyze properties of
this general aggregation operator depending on the properties of the ordinary
aggregation operator and the underlying t-norm. By using aggregation ap-
proach some t-norm based operations with L-fuzzy real numbers are described
and their properties are investigated.

In [43] and in her PhD Thesis [41] J. Lebedinska introduces the concept
of a fuzzy matrix and investigates some properties of fuzzy matrices. At this
point we have to note that Lebedinska’s concept of a fuzzy matrix is different
from other concepts of fuzzy matrices known to us and is a certain extension of
Rhon’s interval matrix, see [68]. In particular, she is interested in the problem
of the inverse fuzzy matrix. Methods of calculation of fuzzy inverse matrices in
some special cases are developed. The interest in the problem of fuzzy inverse
is mainly provoked by the necessity of applications of fuzzy matrices for the
study of equations with fuzzy variables [43].

Another direction of research in “fuzzy mathematics” in our group is the
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problem of approximation under imprecisely given information, that is certain
kinds of fuzzy approximation problems. The principal aim of our work in this
direction is to lay the basis for a fuzzy approach to extremal problem of ap-
proximation theory. We consider problems of approximation by an information
in case when this information is fuzzy, and develop for this case the idea of an
optimal error method of approximation (the method whose error is the min-
imum of the errors of all methods for a given problem) and the concept of a
central algorithm (which is always an optimal error algorithm and in the crisp
case is useful in practice as well as in the general theory). The first papers in
this direction include [5, 6, 7]. Lately some new work was done in this area.

Recently the field of our interest included an alternative concept of fuzzy
sets – so called rough sets introduced in 1983 by Z. Pawlak [58] and provoked
interest both among “pure” mathematicians and “applied scientists”, as well
as the syntheses of the both concepts - fuzzy rough sets and rough fuzzy sets.
In our work [85] the foundations of a general theory incorporating fuzzy sets,
categories related to topology (both fuzzy and crisp) and rough sets (also both
fuzzy and crisp) are being developed. In the same paper the introduced con-
cepts where illustrated by many examples of different nature. The properties
of rough sets their lattice-type structure and and their applications in different
practical problems were studied in Msc. Theses by A. Eļkins and M. Bērziņš
(2009) and presented at several conferences.
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its chairman professor R. Čiegis for inviting him to give a plenary talk at the
conference. The contents of this talk became the basis for the present work.

References

[1] K.P. Adlassing. Fuzzy set theory in medical diagnosis. IEEE Trans-

actions on Systems, Man and Cybernetics SMS, 16(2):260–265, 1996.
Doi:10.1109/TSMC.1986.4308946.

[2] M. Akay, M. Cohen and D. Hudson. Fuzzy sets in life sciences. Fuzzy Sets and

Systems, 90(2):219–224, 1997. Doi:10.1016/S0165-0114(97)00089-4.

[3] Arbib. Review article on fuzzy set theory. Bull. Amer. Math. Soc., 83:946–951,
1977.

Math. Model. Anal., 16(2):173–198, 2011.

http://dx.doi.org/10.1109/TSMC.1986.4308946
http://dx.doi.org/10.1016/S0165-0114(97)00089-4


194 A. Šostaks
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[84] A. Šostak. Basic structures of fuzzy topology. J. Math. Sci., 78(6):662–701,
1996. Doi:10.1007/BF02363065.
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