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Abstract. We derive sufficient conditions which guarantee that the stability poly-
nomial of Nordsieck method for ordinary differential equations has only two nonzero
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1 Introduction

We consider the class of Nordsieck methods for ordinary differential equations
(ODEs) 




y′(t) = f
(
y(t)

)
, t ∈ [t0, T ],

y(t0) = y0 ∈ R
m,

(1.1)

where f : Rm → R
m is sufficiently smooth. These methods are defined by





Y
[n]
i = h

s∑

j=1

aijf(Y
[n]
j ) +

r∑

j=1

uijz
[n−1]
j , i = 1, 2, . . . , s,

z
[n]
i = h

s∑

j=1

bijf(Y
[n]
j ) +

r∑

j=1

vijz
[n−1]
j , i = 1, 2, . . . , r.

(1.2)

Here Y
[n]
i are approximations of stage order q to y(tn + cih), i = 1, 2, . . . , s,

and z
[n]
i are approximations of order p to the scaled derivatives hi−1y(i−1)(tn),
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i = 1, 2, . . . , r. These methods form a subclass of general linear methods (GLM)
[3, 4, 18] for ODEs. They are represented by the vector c = [c1, . . . , cs]

T , and
four coefficient matrices A ∈ Rs×s, U ∈ Rs×r, B ∈ Rr×s, V ∈ Rr×r.

In this paper we assume that ci 6= cj and that r = s + 1, where r is the
number of external approximations and s is the number of stages or internal
approximations. We are interested in methods of order p = s and stage order
q = p. Order and stage order conditions will be discussed in Section 2.

To facilitate efficient implementation we will always assume that the coef-
ficient matrix A has the form

A =




λ

a21 λ
...

...
. . .

as−1,1 as−1,2 · · · λ

as,1 as,2 · · · as,s−1 λ




.

To ensure that the method (1.2) is zero-stable we will also assume that the
coefficient matrix V has the form

V =




1 v12 v13 · · · v1,s+1

0 0 v23 · · · v2,s+1

...
...

...
. . .

...

0 0 0 · · · vs,s+1

0 0 0 · · · 0




.

Applying (1.2) to the linear test equation

y′ = ξy, t ≥ 0,

ξ ∈ C, we obtain the recurrence equation

z[n] = M(z)z[n−1], n = 0, 1, . . . ,

z = hξ, with the stability matrix M(z) defined by

M(z) = V + zB(I− zA)−1U.

We also define the stability function of the method (1.2) as the characteristic
polynomial of M(z), i.e.,

p(w, z) = det
(
wI−M(z)

)
. (1.3)

This function is a polynomial of degree s+ 1 with respect to w and coefficients
are rational functions with respect to z. To investigate stability properties of
methods corresponding to this function it is usually more convenient to work
with the polynomial obtained by multiplying (1.3) by its denominator. Then
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the coefficients of the resulting polynomial with respect to w, which will be
denoted by the same symbol p(w, z), are polynomials with respect to z.

Nordsieck form of general linear methods are often used in variable step-
size and variable order implementations and for error estimations (see [9]).
Nordsieck form of two-step Runge-Kutta methods [20] was introduced by Bar-
toszewski and Jackiewicz [1]. Nordsieck representation of DIMSIMs was studied
in [5]. Some implementation details and results of experiments can be found
in [6, 7, 17]. DIMSIMs methods make a subclass of Nordsieck methods in-
vestigated in this paper (see, also [8]). Nordsieck methods are useful to solve
differential systems resulting from semi discretization of PDE modelling vari-
ous phenomena in science and engineering. Examples of such systems can be
found in [19, 11].

Recent research is also concerned with algebraic stability of Nordsieck meth-
ods [2, 15]. Criteria for algebraic stability of general linear methods given by
Hill [16] was used to construct algebraically stable Nordsieck methods up to
order 4. For the two-step Runge-Kutta methods with algebraic stability see
[13].

The organization of this paper is as follows. In Section 2 we derive order
and stage order conditions and representation formulas for coefficient matrices
of the method (1.2). In Section 3 we present some conditions which guarantee
that stability function has only two nonzero roots. These results are based
on work of D’Ambrosio, Izzo and Jackiewicz [12] for two-step Runge-Kutta
methods. In Sections 4, 5 and 6 we use these criteria to construct methods
up to order 4. Results of numerical experiments are given in Section 7. In
Section 8 some concluding remarks are presented.

2 Order and Stage Order Conditions

In this section we present order and stage order conditions for Nordsieck meth-
ods. Define the vector Z = [1, z, . . . , zp]T , z ∈ C and assume that r = s + 1.
Then it follows from the theory of order conditions for GLM (see, for example,
[3, 4, 18, 22]) that the method (1.2) has order p = s, i.e.,

z
[n−1]
i = hi−1y(i−1)(tn−1) + O(hs+1)

implies

z
[n]
i = hi−1y(i−1)(tn) + O(hs+1),

i = 1, 2, . . . , r, and stage order q = p, i.e.,

Y
[n]
i = y(tn−1 + cih) + O(hs+1), i = 1, 2, . . . , s,

if and only if

ecz = zAecz + UZ + O(zp+1), (2.1)

ezZ = zBecz + VZ + O(zp+1), (2.2)
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where ecz = [ec1z, ec2z, . . . , ecsz]T . These conditions can be used to express the
coefficient matrices U and B in terms of A, V and c. Define the matrices
Kp ∈ R(p+1)×(p+1) and Ep ∈ R(p+1)×(p+1) by

Kp =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0




, Ep = exp(Kp) =




1 1 1
2! · · · 1

p!

0 1 1 · · · 1
(p−1)!

0 0 1 · · · 1
(p−2)!

...
...

...
. . .

...

0 0 0 · · · 1




,

and the matrix Cp =

[
e, c,

c2

2!
, · · · ,

cp

p!

]
∈ Rp×(p+1), where ci stands for com-

ponentwise exponentiation. We have the following result.

Theorem 1 [see [10, 18, 22]]. Assume that p = q = s and r = s + 1. Then

U = Cp −ACpKp, (2.3)

V = Ep −BCpKp. (2.4)

Proof. Expanding ecz into Taylor series we obtain that:

ecz =




ec1z

...

ecpz


 =




p∑

j=0

cj1z
j

j!

...
p∑

j=0

cjpz
j

j!




+ O(zp+1) = CpZ + O(zp+1). (2.5)

Since z · Z = KpZ + O(zp+1), it follows from (2.5) that

zecz = CpKpZ + O(zp+1). (2.6)

Substituting (2.5) and (2.6) into (2.1) we obtain relation that is equivalent to
(2.3). Similarly, taking into account that ezZ = EpZ +O(zp+1) from condition
(2.2) we obtain (2.4). This completes the proof. 2

We are interested in expressing the coefficient matrix B in terms of c and
V instead of (2.4). We partition the matrices B, V, Ep and Cp as follows

B =

[
bT

B̃

]
,V =

[
1 v

0 Ṽ

]
,Ep =

[
1 eTp−1

0 Ep−1

]
,Cp =

[
Cp−1

cp

p!

]
,

where bT stands for first row of B and 0 stands for vector or matrix of appro-
priate dimension. We have the following theorem.

Theorem 2 [see [18]]. Assume that p = q = s, r = s + 1 and that the compo-

nents of abscissa vector c are distinct. Then

bT = (eTp−1 − v)C−1
p−1, (2.7)

B̃ = (Ep−1 − Ṽ)C−1
p−1. (2.8)

Math. Model. Anal., 16(1):82–96, 2011.
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Proof. From (2.4) and the relation CpKp = [0|Cp−1] it follows that

[
1 v

0 Ṽ

]
=

[
1 eTp−1

0 Ep−1

]
−

[
0 bTCp−1

0 B̃Cp−1

]
.

Comparing the corresponding elements on both sides of this matrix equation
and from assumptions of the theorem that the matrix Cp−1 is invertible we
obtain (2.7) and (2.8). 2

3 Criteria for Quadratic Stability

The stability function (1.3) multiplied by its denominator is the polynomial of
the form

p(w, z) = (1 − λz)sws+1 − ps(z)ws + · · ·+ (−1)sp1(z)w + (−1)s+1p0(z), (3.1)

where

ps(z) = 1 + ps1z + · · · + pssz
s,

ps−1(z) = ps−1,1z + · · · + ps−1,sz
s,

...

p0(z) = p01z + · · · + p0sz
s.

In the case p = q = s the coefficients pij of the polynomials pi(z) depend on
A, V and c.

A direct idea to obtain methods whose stability function has only two
nonzero roots is to compute stability function (3.1) and to solve system of
nonlinear equations pij = 0, i = 0, . . . , s − 2, j = 1, . . . , s. Formulating and
solving this system is a very difficult task, so it is interesting to search for some
other conditions which will guarantee this property.

Results in this section are based on those obtained by Conte, D’Ambrosio
and Jackiewicz [12]. To investigate the Nordsieck methods with so called
quadratic stability function, i.e stability function with two nonzero roots, we
introduce equivalence relation between matrices of the same dimensions. We
say that two matrices D and E are equivalent, denoted by D ≡ E, if they are
equal except for the first two rows [12, 18].

For matrix F ∈ R(s+1)×n, n ∈ N we have that D ≡ E ⇒ DF ≡ EF.

Definition 1 [see [12, 18]]. The Nordsieck method with coefficients matrices
A, U, B, V has inherent quadratic stability (IQS) if there exists a matrix
X ∈ R(s+1)×(s+1) such that

BA ≡ XB, (3.2)

BU ≡ XV −VX. (3.3)

Similarly as in [18] and [12] we have the following result.
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Theorem 3. Assume that the Nordsieck method has IQS. Then its stability

function p(w, z) assumes the form

p(w, z) = ws−1(w2 − p1(z)w + p0(z)), (3.4)

where p1(z) and p0(z) are rational functions with respect to z.

Proof. The proof is similar to that in [18] and [12]. We observe that (3.2) is
equivalent to

B(I− zA) ≡ (I− zX)B.

Assuming that I− zA in nonsingular it follows that

B ≡ (I− zX)B(I− zA)−1. (3.5)

Instead of stability matrix M(z) we consider similar matrix M̃(z) defined be-
low. Using (3.3) and (3.5) and assuming that I − zX is nonsingular it follows
that

M̃(z) = (I− zX)M(z)(I− zX)−1

= (I− zX)(V + zB(I− zA)−1U)(I− zX)−1

= (V − zxV + z(I− zX)B(I− zA)−1U)(I − zX)−1

≡ (V − zXV + zBU)(I− zX)−1

≡ (V − zXV + z(XV −VX))(I − zX)−1

= (V − zVX)(I− zX)−1.

Hence, (I−zX)M(z)(I−zX)−1 ≡ V. We can write this relation in the following
form

(I− zX)M(z)(I− zX)−1 =




M̃11(z) M̃12(z)

0 0
...

...

0 0

0 0

0 v34 . . . v3,s+1

...
...

. . .
...

0 0 . . . vs,s+1

0 0 . . . 0




,

where M̃11(z) ∈ R2×2, and M̃12(z) ∈ R2×(s−1). Hence, the characteristic

function p(w, z) of M̃(z) and M(z) assumes the form (3.4). This completes the
proof. 2

4 Construction of Methods with s = 1 and s = 2

Use of representation formulas (2.3), (2.7) and (2.8) for p = q = s = 1 leads
to a three-parameter family of methods depending on c1, λ, and v12. The
coefficients of these methods are

[
A U

B V

]
=




λ 1 c1 − λ

1 − v12 1 v12

1 0 0




Math. Model. Anal., 16(1):82–96, 2011.
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and the stability polynomial takes the form

p(w, z) = (1 − λz)w2 − p1(z)w + p0(z),

where

p1(z) = 1 + (1 + c1 − 2λ− v12)z, p0(z) = (c1 − λ− v12)z.

This polynomial is already of degree 2 with respect to w. Taking c1 = 1,
λ = 1, v12 = 0 we obtain the backward Euler formula given by

[
A U

B V

]
=




1 1 0

1 1 0

1 0 0


 .

This method is A-stable and algebraically stable.
Case p = q = s = 2 is nontrivial. First we use (2.3), (2.7), and (2.8) and

obtain that the matrices B and U are given by

U =


 1 c1 − λ (c21 − 2λc1)/2

1 c2 − λ− a21 (c22 − 2λc2 − 2a21c1)/2


 ,

B =




1 − 2c2 + 2c2v12 − 2v13
2(c1 − c2)

−1 + 2c1 − 2c1v12 + 2v13
2(c1 − c2)

1 − c2 − v23
c1 − c2

−1 + c1 + v23
c1 − c2

1/(c1 − c2) −1/(c1 − c2)



.

Solving conditions (3.2) and (3.3) with respect to coefficients of matrix X, a21
and v23 we obtain

A =

[
λ 0

c2 − c1 λ

]
, U =


 1 c1 − λ 1

2

(
c21 − 2c1λ

)

1 c1 − λ 1
2

(
2c21 − 2c2c1 + c22 − 2c2λ

)


 ,

B =




2v12c2 − 2c2 − 2v13 + 1
2(c1 − c2)

−2v12c1 + 2c1 + 2v13 − 1
2(c1 − c2)

c1 − 3c2 + 2λ + 2
2(c1 − c2)

c1 + c2 − 2λ− 2
2(c1 − c2)

1/(c1 − c2) 1/(c2 − c1)



,

V =




1 v12 v13

0 0 1
2 (−c1 + c2 − 2λ)

0 0 0


 .

The stability polynomial of such method for c = [0, 1]T is

p(w, z) = w3(λz − 1)2 − w2p1(z) + wp0(z),
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where

p1(z) =
1

2

(
4λ2z2 + 2λv12z

2 − 4λz2 − 8λz −2v12z − 2v13z
2 + z2 + 3z + 2

)
,

p0(z) =
1

2
(2λ2z2 + 2λv12z

2 − 4λz2 − 4λz − 2v12z
2 − 2v12z − 2v13z

2+z2+z).

The method is L-stable if p22 = 0 and p12 = 0 (compare (3.1)). We solve this
system with respect to v12 and v13 and obtain that:

v12 = −λ2, v13 = −λ3 + 2λ2 − 2λ + 1/2,

and stability polynomial of this family is

p(w, z) = w3 (λz − 1)
2

+
1

2
w2
(
−2λ2z + 8λz − 3z − 2

)
+

1

2
w
(
2λ2z − 4λz + z

)
.

Now we describe search for A-stable methods (compare [18], pages 110-112,
also pages 258-259). Define

q(w, y) = p(w, iy), q̂(w, y) = w2q (1/w, y) ,

q1(w, y) =
1

w
(q̂(0, y)q(w, y) − q(0, y)q̂(w, y)) ,

q̂1(w, y) = wq1 (1/w, y) , q0(y) =
1

w
(q̂1(0, y)q1(w, y) − q1(0, y)q̂1(w, y)) .

Then it follows from Schur theorem ([21]) that all roots of q(w, y) are in the
unit circle for all y ∈ R if and only if q0(y) > 0 and |q̂(0, y)| > |q(0, y)|. This
leads to system of inequalities:





−1/2 + 2λ− 4λ2 + 3λ3 > 0,

−11/4λ4 + 16λ5 − 25λ6 + 16λ7 − 3λ8 > 0,

3/4 + 2λ− 3λ2 + 4λ3 > 0,

which is satisfied for λ ∈ (0.287159, 3.24488).
An example of such method corresponding to λ = 1 is

[
A U

B V

]
=




1 0 1 −1 0

1 1 1 −1 − 1
2

1 1 1 −1 − 1
2

− 1
2

3
2 0 0 − 1

2

−1 1 0 0 0




.

5 Construction of Methods with s = 3

We use representation formulas and obtain a 13-parameter family depending on
coefficients of A, V and c. Then we set c = [1/3, 2/3, 1]T , solve IQS conditions

Math. Model. Anal., 16(1):82–96, 2011.
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(3.2) and (3.3) with respect to X, a21, a31, a32, v23, v24 and v34. We obtain

A =




λ 0 0
1
3 λ 0
1
3

1
3 λ


 , U =




1 1
3 (1 − 3λ) 1

18 (1 − 6λ) 1
162 (1 − 9λ)

1 1
3 (1 − 3λ) 1

9 (1 − 6λ) 1
162 (5 − 36λ)

1 1
3 (1 − 3λ) 1

6 (1 − 6λ) 1
54 (4 − 27λ)


 ,

BT =




−3v12 + 15
2 v13 − 9v14 + 3

4 9λ2 − 12λ + 11
6 9λ 9

3v12 − 12v13 + 18v14 −18λ2 + 18λ− 8
3 −18λ− 3 −18

v12 + 9
2v13 − 9v14 + 1

4 9λ2 − 6λ + 11
6 9λ + 3 9


 ,

V =




1 v12 v13 v14

0 0 1
3 (1 − 6λ) 1

27

(
−27λ2 − 9λ + 2

)

0 0 0 1
6 (1 − 6λ)

0 0 0 0



.

The stability function of this family of methods is of the form

p(w, z) = (1−λz)3w4−(1 + p31z + p32z
2 + p33z

3)w3+(p21z + p22z
2 + p23z

3)w2,

where coefficients p33 and p23 are given by

p33 = −2λ3 − λ2v12 + 3λ2 −
λv12

3
+ λv13 − λ−

v12
9

+
v13
2

− v14 +
13

108
,

p23 = −λ3 − λ2v12 + 3λ2 +
5λv12

3
+ λv13 − 2λ−

5v12
18

−
v13
2

− v14 +
1

4
.

We solve system {
p33 = 0,

p23 = 0

with respect to v13, v14 and obtain a two-parameter family of L-stable Nord-
sieck methods depending on v12 and λ. Remaining parameters can be used to
ensure A-stability. Use of Schur theorem leads us to a system of six polynomial
inequalities, which are not listed here. λ and v12 for which this inequalities are
satisfied are presented in Figure 1a.

An example of such method corresponding to λ = 1 and v12 = −2 is

[
A U

B V

]
=




1 0 0 1 − 2
3 − 5

18 − 4
81

1
3 1 0 1 − 2

3 − 5
9 − 31

162
1
3

1
3 1 1 − 2

3 − 5
6 − 23

54
8
9 − 44

9 7 1 −2 − 191
54 − 62

27

− 7
6 − 8

3
29
6 0 0 − 5

3 − 34
27

9 −21 12 0 0 0 − 5
6

9 −18 9 0 0 0 0




.
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a) b)

Figure 1. L-stable and A-stable methods with a) c = [1/3, 2/3, 1]T , b) c = [0, 1, 2]T

If we choose c = [0, 1, 2]T we obtain:

A =




λ 0 0

1 λ 0

1 1 λ


 , U =




1 −λ 0 0

1 −λ 1
2 (1 − 2λ) 1

6 (1 − 3λ)

1 −λ 1 − 2λ 1
6 (5 − 12λ)


 ,

BT =




−v12 + 3
2v13 − v14 + 5

12 λ2 − 3λ + 4
3 λ− 1 1

−2v13 + 2v14 + 2
3 −2λ2 + 4λ− 2

3 1 − 2λ −2
1
2v13 − v14 −

1
12 λ2 − λ + 1

3 λ 1


 ,

V =




1 v12 v13 v14

0 0 1 − 2λ 1
6

(
1 − 6λ2

)

0 0 0 1
2 (1 − 2λ)

0 0 0 0



.

We solve L-stability system p33 = 0, p23 = 0. Parameters λ and v12 for
which methods are also A-stable are shown in Figure. 1b. An example of such
method corresponding to λ = 1/2 and v12 = 0 is

[
A U

B V

]
=




1
2 0 0 1 − 1

2 0 0

1 1
2 0 1 − 1

2 0 − 1
12

1 1 1
2 1 − 1

2 0 − 1
6

9
16

1
2 − 1

16 1 0 1
8

1
24

1
12

5
6

1
12 0 0 0 − 1

12

− 1
2 0 1

2 0 0 0 0

1 −2 1 0 0 0 0




.
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6 Construction of methods with s ≥ 4

Again, first we use representation formulas for U and B. Then we set
c = [1/4, 1/2, 3/4, 1]T . Next we solve IQS conditions with respect to coefficients
of matrix X and a21, a31, a32, a41, a42, a43,v23, v24, v25, v34, v35 and v45. We
obtain a family of Nordsieck methods given by

A =




λ 0 0 0
1
4 λ 0 0
1
4

1
4 λ 0

1
4

1
4

1
4 λ



, (6.1)

V =




1 v12 v13 v14 v15

0 0 3
8 − 3λ 7

48 − 7
8λ− 3λ2 − 1

64 + 67
192λ− 15

8 λ
2 − λ3

0 0 0 1
4 − 2λ 11

192 − 3
8λ− λ2

0 0 0 0 1
8 − λ

0 0 0 0 0




. (6.2)

Matrices B and U can be obtained from (2.3),(2.7), and (2.8) and are not listed
here.

Range of v12 versus v13 for some arbitrary chosen λ for which methods with
coefficients given by (6.1) and (6.2) are L- and A- stable are shown in Figure 2.

For λ = 1, v12 = −2, v13 = −5 we obtain an example of such a method:

A =




1 0 0 0
1
4 1 0 0
1
4

1
4 1 0

1
4

1
4

1
4 1



, U =




1 − 3
4 − 7

32 − 11
384 − 5

2048

1 − 3
4 − 7

16 − 43
384 − 29

1536

1 − 3
4 − 21

32 − 1
4 − 129

2048

1 − 3
4 − 7

8 − 85
192 − 19

128



,

B =




− 537
16

2971
24 − 7531

48
209
3

− 175
6

1325
12 − 863

6
763
12

− 5
3 35 −69 107

3

−72 232 −248 88

−64 192 −192 64




,

V =




1 −2 −5 − 1271
256 − 1551

512

0 0 − 21
8 − 179

48 − 61
24

0 0 0 − 7
4 − 253

192

0 0 0 0 − 7
8

0 0 0 0 0




.

Problem of searching highly stable methods with quadratic stability func-
tion becomes very difficult for s > 4. It is still possible to solve IQS conditions
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Figure 2. L-stable and A-stable methods with c = [1/4, 1/2, 3/4, 1]T

for s = 5. We obtain a six-parameters family of methods of order p = 5 and
stage order q = 5 depending on λ, v12, v13, v14, v15 and v16 for which the
stability function assumes form (3.4). Search for A- and L- stable methods was
unsuccessful due to limitations of symbolical manipulation package MATHE-
MATICA. For s = 6 we can solve order, stage order and IQS conditions, but
we were not able to generate stability function (1.3). We plan to search for
such methods in a numerical computing environment such as Matlab.

7 Numerical Experiments

In this section we present the results of numerical experiments on the problem
of Van der Pol equation (compare [14]):

{
y′1 = y2, y1(0) = 2,

y′2 = ((1 − y21)y2 − y1)/ε, y2(0) = −2/3,
(7.1)

with integration interval [0, T ], T = 3/4 and stiffness parameter ε.
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We rewrite method (1.2) in vector form ([17, 18]):

[
Y [n]

z[n]

]
=

[
A⊗ I U⊗ I

B⊗ I V ⊗ I

][
hF (Y [n])

z[n−1]

]
, (7.2)

where

Y [n] =




Y
[n]
1

...

Y
[n]
s


 , F (Y [n]) =




f(Y
[n]
1 )
...

f(Y
[n]
s )


 , z[n] =




z
[n]
1

...

z
[n]
s+1


 ,

I is the identity matrix of dimension of the ordinary differential system (1.1)
and ⊗ is the Kronecker product of two matrices. The vector Y [n] from nonlinear
system of equations arising in (7.2) is computed by Newton iteration with initial
guess Y 0 defined as (compare [17]):

Y 0
i =

s+1∑

k=1

(
ck−1
i

(k − 1)!

)
z
[n−1]
k , i = 1, 2, . . . , s.

We apply method of order p = q = s = 4 obtained in Section 6 to problem
(7.1) with fixed stepsize h = T/N where N = 16, 32, 64, 128, 256, 512 and 1024.
In Table 1 we present results of numerical experiments. Here, ||eh(T )|| is the
norm of error at the endpoint of integration and p is the order of convergence
given by

p =
log(||eh(T )||/||eh/2(T )||)

log(2)
.

Table 1. Numerical results for method of order p = q = 4.

ε = 10−4 ε = 10−6 ε = 10−8

N ||eh(T )|| p ||eh(T )|| p ||eh(T )|| p

16 5.78 · 10−1 5.92 · 10−1 5.92 · 10−1

32 6.92 · 10−2 3.06 7.22 · 10−2 3.04 7.22 · 10−2 3.04

64 4.01 · 10−3 4.11 4.33 · 10−3 4.06 4.33 · 10−3 4.06

128 1.17 · 10−4 5.10 1.39 · 10−4 4.96 1.39 · 10−4 4.96

256 1.03 · 10−6 6.82 2.48 · 10−6 5.81 2.58 · 10−6 5.75

512 6.82 · 10−8 3.92 3.51 · 10−8 6.14 8.28 · 10−8 4.96

1024 6.51 · 10−9 3.39 7.28 · 10−10 5.59 2.09 · 10−9 5.31

These results illustrate that the method achieves the expected order of
accuracy for stiff differential system and do not suffer from order reduction
phenomenon.
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8 Concluding Remarks

In this paper a new criteria for quadratic stability was given. Based on this
results and the Schur theorem new families of L- and A-stable methods up to
order 4 were constructed. Further work will be concerned with the implemen-
tation aspects including a choice of initial stepsize, local error estimation for
small and large stepsizes, step size and order changing strategies, construction
of continuous extensions, approximation of the Jacobian matrix, and solving
nonlinear equations by simplified Newton iterations at each step of the inte-
gration.
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