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Abstract. In this paper, we investigate the second-order Sturm–Liouville problem
with two additional Nonlocal Boundary Conditions. Nonlocal boundary conditions
depends on two parameters. We find condition for existence of zero eigenvalue in
the parameters space and classified Characteristic Curves in the plane and extended
plane is described as torus. The Characteristic Curve on torus may be of three types
only. Some new conclusions about existence and uniqueness domain of solution are
presented.
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1 Introduction

During the last decade there has been a growing interest in the investigation
various problems with nonlocal boundary conditions and numerical methods
for them. Problems with nonlocal integral conditions were investigated by
Cannon [2, 1963] and Kamynin [17, 1964], Bitsadze and Samarskii have in-
vestigated elliptic boundary value problem [1, 1969]. Il’in obtained necessary
and sufficient conditions for the existence of a subsystem of eigenfunctions and
adjoint functions (as a basis) for Keldysh’s bundle of ordinary differential op-
erators [11].

Initially, these conditions were nameless, but later called nonclassical. For
the first time the concept of nonlocal boundary conditions probably was used
in [15, 1977], where one-dimensional parabolic equation with integral condition

∫ 1

0

u(x, t)dx = µ(t) (1.1)
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2 A. Štikonas

was considered. This term is used already in Samarskii and Nikolaev book
[22, 1978 (Russian Ed.)]. Il’in and Moiseev [13, 14], Sapagovas and Čiegis [24]
investigated the existence and uniqueness for second order ordinary differential
equations with various NBC. Survey of other results in theory and applications
for problems with NBC is presented in [9, 10, 12, 18].

The investigation of existence and properties of solution for stationary prob-
lems with NBC is connected with Sturm–Liouville problem with NBC [27] and
Green’s function properties for stationary problems with NBC [19, 28]. Prop-
erties of spectrum and particularly conditions when zero eigenvalue exists are
useful for investigation multi-dimensional and non-stationary problems or sta-
bility numerical methods and convergence of iterative methods [3, 16, 23, 25].

In paper [6] the second order linear stationary equation with nonlocal
boundary conditions was investigated

lu := − d

dx

(
p(x)

du

dx

)
+ q(x)u = f, x ∈ (0, 1), (1.2)

u(0) = γ0〈k0, u〉+ f0, γ0 > 0, (1.3)

u(1) = γ1〈k1, u〉+ f1, γ1 > 0, (1.4)

where k0 and k1 are linear functionals:

〈k0, u〉 := α0u(a0) +

∫ 1

0

β0(x)u(x) dx, (1.5)

〈k1, u〉 := α1u(a1) +

∫ 1

0

β1(x)u(x) dx. (1.6)

and u ∈ C2(0, 1) ∩ C1[0, 1] for 0 < p0 6 p ∈ C1[0, 1], 0 6 q ∈ C[0, 1] and
weights βi ∈ L1(0, 1). The existence, uniqueness and stability of the solution
for this problem were proved.

In the domain [0, 1] we introduce meshes

ω̄h = {0 = x0 < x1 < · · · < xn = 1}, ωh = ω̄h
r {x0, xn}

with step sizes hi = xi−xi−1, 1 ≤ i ≤ n, h0 = hn+1 = 0 and semi-integer mesh

ωh
1/2 = {xi+ 1

2

|xi+ 1

2

= (xi + xi+1)/2, 0 ≤ i ≤ n− 1}

with step sizes hi+ 1

2

= (hi + hi+1)/2, 0 ≤ i ≤ n. A mesh ω will denote one of

the meshes ω̄h, ωh, ω̄h
1/2. We denote h = max

1≤i≤n
hi. Let F(ω) be a space of real

valued functions which are defined on the mesh ω and F [0, 1] is a space of real
valued functions on [0, 1].

We define the following mesh operators

(δZ)i+ 1

2

=
Zi+1 − Zi

hi+1
, Z ∈ F(ω̄h), (δZ)i =

Zi+ 1

2

− Zi− 1

2

hi+ 1

2

, Z ∈ F(ωh
1/2).

We can use the same notation for continuous and discrete norms, inner products
and linear functionals, e.g.:

(u, v) :=

∫ 1

0

u(x)v(x) dx, (U, V ) :=

n∑

i=0

UiVihi+ 1

2

,
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where u, v ∈ F [0, 1], U, V ∈ F(ω̄h).
In papers [4, 6] analogous results for finite-difference scheme

LU := −δ(PδU) +QU = F in ωh, (1.7)

U |i=0 = γ0〈K0, U〉+ f0, γ0 > 0, (1.8)

U |i=n = γ1〈K1, U〉+ f1, γ1 > 0 (1.9)

were established. In discrete case linear functionals are defined by

〈K0, U〉 := α0Ũ(a0) + (B0, U), (1.10)

〈K1, U〉 := α1Ũ(a1) + (B1, U), (1.11)

where U,B0, B1 ∈ F(ω̄h), 0 < p0 ≤ P ∈ F(ωh
1/2), 0 ≤ Q ∈ F(ωh), F ∈ F(ωh)

and Z̃ be a linear interpolant

Z̃(x) =
xi − x

hi
Zi−1 +

x− xi−1

hi
Zi for x ∈ [xi−1, xi].

In these two papers [4, 6] the dependence of solution on parameters γ0 and γ1
was investigated. The main result of these papers is that the solution for differ-
ential problem with NBC (1.2)–(1.4) or solution for FDS with NBC (1.7)–(1.9)
exists and is unique for all γ0 > 0 and γ1 > 0 except points on hyperbola or
line(s). So, sufficient and necessary conditions for existence of unique solution
for stationary problem were found. In [5] the one dimensional parabolic equa-
tion with three types of integral nonlocal boundary conditions is approximated
by the implicit Euler finite difference scheme. Stability analysis is done in the
maximum norm and it is proved that the radius of the stability region depends
on the signs of coefficients in the nonlocal boundary condition.

The analysis of characteristic function for stationary problem with one clas-
sical boundary condition (γ0 = 0) and another NBC [26, 27, 29] and investi-
gation of auxiliary stationary problems [16, 21, 23, 25] show that restrictions
γ0 > 0 and γ1 > 0 are not necessary, and in general case we can take γ0, γ1 ∈ C̄.
In this paper we assume that γ0, γ1 ∈ R̄.

The structure of the paper is as follows. We introduce some notations in
Section 2. In Section 3 we investigate second–order linear equation with two
additional functional conditions. Then we reformulate results of paper [6] for
problem (1.2)–(1.3) (problem (1.7)–(1.9)) in the case γ0, γ1 ∈ R in Section 4.
We investigate Characteristic Curve for equation (1.2) with NBC on torus in
Section 5 and formulate main result of this article in Lemma 3. Finally, we
give some conclusions.

2 Notation

Now we introduce a few notations related to linear functionals. Let F (X) :=
{u | w : X → R} be a linear space of real functions, where X can be any

set. If we have vector-function w = [w1, . . . , wn] ∈ Fn(X) :=
n∏

i=1

F (X), and

Math. Model. Anal., 16(1):1–22, 2011.
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x = (x1, . . . , xn) ∈ Xn, then we consider matrix-function [w] : Xn → Mn×n(R)
and its functional determinant det[w] : Xn → R:

[w](x) = [w1, . . . , wn](x1, . . . , xn) :=



w1(x1) . . . w1(xn)
. . . . . . . . .

wn(x1) . . . wn(xn)


 ,

D[w](x)=det[w](x)=det[w1, . . . , wn](x1, . . . , xn) :=

∣∣∣∣∣∣

w1(x1) . . . w1(xn)
. . . . . . . . .

wn(x1) . . . wn(xn)

∣∣∣∣∣∣
.

We consider the space F ∗(X) of linear functionals in the space F (X), and
we use the notations 〈f, w〉, 〈f(·), w(·)〉, 〈f(x), w(x)〉 for the functional f value
of the function w. For example, if f is a regular functional, then 〈f, w〉 =∫ l

0
f(x)w(x) dx; δx is a functional if 〈δx, w〉 = w(x). If f ∈ F ∗(X), g ∈ F ∗(Y ),

then we can define the linear functional (direct product) f · g ∈ F ∗(X × Y ):

〈f(x) · g(y), w(x, y)〉 := 〈f(x), 〈g(y), w(x, y)〉〉, w(x, y) ∈ F (X × Y ).

Analogously, we can define the direct product for f = (f1, . . . , fn), fi ∈ F ∗(Xi)

ḟ = f1 · f2 · . . . · fn = f1 · (f2 · . . . · fn) ∈ F ∗(

n∏

i=1

Xi).

We define a matrix

M(f)[w] :=




〈f1, w1〉 . . . 〈fn, w1〉

. . . . . . . . .
〈f1, wn〉 . . . 〈fn, wn〉





for f = (f1, . . . , fn), w = [w1, . . . , wn], and determinant

D(f)[w] := 〈ḟ(x), D[w](x)〉 =

∣∣∣∣∣∣

〈f1, w1〉 . . . 〈fn, w1〉
. . . . . . . . .

〈f1, wn〉 . . . 〈fn, wn〉

∣∣∣∣∣∣
= detM(f)[w].

For example, D(δx)[w] = 〈δ̇x(y), D[w](y)〉 = D[w](x).

3 Problem with Two Additional Conditions

In papers [4, 6] the maximum principle was used for investigation of stability.
So, the condition q > 0 was proposed. In this paper we require q ∈ C[0, l] only.

We consider the second-order ordinary linear differential equation (LDE)

Lu := u′′ + r(x)u′ + q̄(x)u = f̄(x), (3.1)

where r, q, f ∈ C[0, l], too. This equation can be rewritten in self-adjoint form
(1.2) [8], where p(x) = exp(

∫ x

0 r(t) dt) ≥ p0 > 0, p ∈ C1[0, l], q = −q̄p ∈ C[0, l],
f = −f̄p ∈ C[0, l]. But in this paper we do not distinguish these two forms.
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General solution for equation (3.1) has a form u = c0u0 + c1u1 + uf , where
{u0, u1} is a fundamental system of the corresponding homogeneous equation

u′′ + r(x)u′ + q̄(x)u = 0, (3.2)

and uf is a particular solution of the nonhomogeneous equation (3.1) and c0, c1
are constants of integration. Function f̄ on the right hand side influences only
properties of solution uf .

If r, q ∈ C[0, l] then fundamental system {u0, u1} exists [8], i.e. we have
linearly independent solutions u0, u1 ∈ C2[0, l]. On the other hand, if we
know fundamental system {u0, u1} of the homogeneous equation (3.2) then
Wronskian

W [u0, u1](x) :=

∣∣∣∣∣
u0(x) u1(x)

u′
0(x) u′

1(x)

∣∣∣∣∣ 6= 0 for x ∈ [0, l].

Let us write equation

∣∣∣∣∣∣

u0 u1 u
u′
0 u′

1 u′

u′′
0 u′′

1 u′′

∣∣∣∣∣∣
= W [u0, u1]u

′′ −
∣∣∣∣
u0 u1

u′′
0 u′′

1

∣∣∣∣ u
′ +

∣∣∣∣
u′
0 u′

1

u′′
0 u′′

1

∣∣∣∣ u = 0. (3.3)

This equation is equivalent to differential equation (3.2) with

r[u0, u1] = −
∣∣∣∣
u0 u1

u′′
0 u′′

1

∣∣∣∣ /W [u0, u1], q̄[u0, u1] =

∣∣∣∣
u′
0 u′

1

u′′
0 u′′

1

∣∣∣∣ /W [u0, u1],

and r, q ∈ C[0, l]. If {ū0, ū1} is another fundamental system, and [ū0, ū1] =
P[u0, u1], where P ∈ GL2(R), then r[ū0, ū1] = r[u0, u1], q̄[ū0, ū1] = q̄[u0, u1].

Finally, the coefficients r, q̄ ∈ C[0, l] define all the solutions, i.e., the two
dimensional linear space S := {u ∈ C2[0, l] : Lu = 0}, which can be described
by the fundamental system {u0, u1}, and conversely, the two dimensional linear
subspace in C2[0, l] fully determines r, q̄ ∈ C[0, 1]. So, properties of fundamen-
tal system determine properties of coefficients, and conversely.

Suppose, we know the fundamental system {u0, u1} for the homogeneous
differential equation (3.2). Then general solution of this equations has form

u(x) = c0u0(x) + c1u1(x). (3.4)

In paper [6] functions u0 and u1 were defined as solutions with classical
boundary conditions:

a)

{
u0(0) = 1,
u0(1) = 0;

b)

{
u1(0) = 0,
u1(1) = 1.

(3.5)

Such solutions may not exist for non positive q(x). So, in this article we use
fundamental system defined by initial conditions:

a)

{
u0(0) = 1,
u′
0(0) = 0;

b)

{
u1(0) = 0,
u′
1(0) = 1.

(3.6)

Math. Model. Anal., 16(1):1–22, 2011.
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The unique solution for problems (3.1),(3.5) and (3.1),(3.6) exists if homoge-
neous problems

{
Lu = 0,
u(0) = 0, u(1) = 0;

{
Lu = 0,
u(0) = 0, u′(0) = 0

(3.7)

have unique solution, respectively. The second problem always has the unique
solution, but the first one may have non unique solution. These two examples
of boundary conditions show that investigation of such homogeneous problems
with homogeneous boundary conditions is important task for investigation of
nonhomogeneous problem, too.

In general case {u0, u1} can be any fundamental system. We have two
unknown constants of integration c0, c1. So, we use two additional conditions:

〈L0, u〉 = 0, 〈L1, u〉 = 0, (3.8)

where L0, L1 ∈ S∗ are linearly independent linear functionals and L = (L0, L1).
We introduce new functions

v0(x) :=
D(δx, L1)[u]

D(L)[u]
, v1(x) :=

D(L0, δx)[u]

D(L)[u]
. (3.9)

These two solutions are well-defined, because the following lemma is valid [28].

Lemma 1. Let {u0, u1} be the basis of the linear space S. Then the following
are equivalent:

1. Functionals L0 and L1 are linearly independent;

2. Functions v0(x) and v1(x) are linearly independent;

3. D(L)[u] 6= 0.

The two basis {v0, v1} and {L0, L1} are biorthogonal:

〈Li, vj〉 = δij , i, j = 0, 1, (3.10)

and Wronskian (see, [28]) is equal to

W [v](x) =
W [u](x)

D(L)[u]
. (3.11)

Remark 1. If {ū0, ū1} is another fundamental system, and [ū0, ū1] = P[u0, u1],
where P ∈ GL2(R), then

D(δx, L1)[ū]

D(L)[ū]
=

D(δx, L1)[u]

D(L)[u]
,

D(L0, δx)[ū]

D(L)[ū]
=

D(L0, δx)[u]

D(L)[u]
.

So, definition of v(x) := [v0(x), v1(x)] is invariant with regard to basis {u0, u1}.

Corollary 1. If D(L)[u] 6= 0, then homogeneous problem (3.2) with two addi-
tional conditions (3.8) has only trivial solution.
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So, in this case zero is not eigenvalue for problem (3.2) with additional con-
ditions (3.8) and we can write solution of nonhomogeneous problems using
Green’s function [20, 28].

Remark 2. The case D(L)[u] = 0 will be realized if one of these functionals can
be expressed by the other one. So, in this case we have only one functional
equation, for example, 〈L0, u〉 = 0. If KerL0 = S (dimKerL0 = 2), then we
have a trivial case L0 = 0, i.e. u = c0u1 + c1u1 is solution for all c0, c1. In the
case KerL0 6= S (dimKerL0 = 1) we have a nontrivial solution ũ(x) and all
solutions are u = cũ(x).

Example 1. Let us consider differential equation (λ is parameter)

u′′ + λu = 0

with two types of conditions which correspond to boundary conditions (3.5)
and (3.6):

L̄0 = δ(x), L̄1 = δ(x− 1), (3.12)

L0 = δ(x), L1 = −δ′(x), (3.13)

where 〈δ(x), u〉 = u(0), 〈δ(x − 1), u〉 = u(1), 〈δ′(x), u〉 = −u′(0), and denote
q =

√
λ for λ > 0, q =

√
−λ for λ < 0. Fundamental system

{ū0, ū1} =





{ sin((1−x)q)
sin q , sin(xq)

sin q

}
for λ > 0, λ 6= π2k2, k ∈ N,

{1− x, x} for λ = 0,{ sinh((1−x)q)
sinh q , sinh(xq)

sinh q

}
for λ < 0

corresponds to functionals L̄0, L̄1, and fundamental system

{u0, u1} =






{ sinh((1−x)q)
sinh q , sinh(xq)sinh q

}
for λ > 0,

{1, x} for λ = 0,{ sinh((1−x)q)
sinh q , sinh(xq)sinh q

}
for λ < 0

corresponds to functionals L0, L1. We have

D(L̄)[u] =





sin q/q for λ > 0,
1 for λ = 0,
sinh q/q for λ < 0;

D(L)[u] = W [u](0) = 1

for (3.12) and (3.13), respectively. If λ = π2k2, k ∈ N, then D(L̄)[u] = 0. In
this case the first problem (3.7) has nontrivial solutions (i.e., zero eigenvalue
exists) and fundamental system do not exists.

If λ 6= π2k2, k ∈ N then formulae (3.9) give relations between two funda-
mental systems

ū0(x) =
D(δx, L̄1)[u]

D(L̄)[u]
, ū1(x) =

D(L̄0, δx)[u]

D(L̄)[u]

Math. Model. Anal., 16(1):1–22, 2011.
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and

u0(x) =
D(δx, L1)[ū]

D(L)[ū]
, u1(x) =

D(L0, δx)[ū]

D(L)[ū]
.

So, there is no difference which fundamental system is used.
If λ = π2k2, k ∈ N then linear functionals L̄0, L̄1 are not linearly indepen-

dent. In this case fundamental system exists for the case of functionals (3.13),
but there is no fundamental system for the case of the functionals (3.12).

4 Sturm–Liouville Problems with NBC

The main aim of this paper is to investigate existence condition for zero eigen-
value for problems with two nonlocal boundary conditions. So, we formulate
Sturm–Liouville problem with two nonlocal boundary conditions (as functional
condition):

Lu := −(p(x)u′)′ + q(x)u = λu, (4.1)

〈k0, u〉 = γ0〈n0, u〉, γ0 ∈ R, (4.2)

〈k1, u〉 = γ1〈n1, u〉, γ1 ∈ R, (4.3)

where p(x) ≥ p0 > 0, p ∈ C1[0, 1], q ∈ C[0, 1]. We can write many problems
with NBC in this form, where 〈ki, u〉 := 〈ki(x), u(x)〉 is a classical part, and
〈ni, u〉 := 〈ni(x), u(x)〉, i = 0, 1, is a nonlocal part of boundary conditions. For
example, the functionals ni, i = 0, 1, can describe the multi-point (ξj ∈ [0, 1],
j = 1, . . . ,m) or integral NBCs

〈n, u(t)〉 =
m∑

j=1

(
κju(ξj) + κju

′(ξj)
)
, 〈n, u(t)〉 =

∫ 1

0

κ(t)u(t) dt,

and the functional ki, i = 0, 1, can describe the local (classical) boundary
conditions

〈k0, u(t)〉 = α0u(0) + β0u
′(0), 〈k1, u(t)〉 = α1u(1) + β1u

′(1),

where the parameters |αi| + |βi| > 0, i = 0, 1. If γ0, γ1 = 0, then problem
(4.1)–(4.3) becomes classical.

Remark 3. Equation (4.1) can be rewritten in the form

−(p(x)u′)′ + (q(x) − λ)u = 0. (4.4)

So, we can restrict to investigation only of the case λ = 0.

If we take Li = γini − ki, i = 0, 1, then we can rewrite the condition
D(L)[u] = 0 as

D(n0, n1)[u]γ0γ1 −D(n0, k1)[u]γ0 −D(k0, n1)[u]γ1 +D(k0, k1)[u] = 0. (4.5)

We call the solution of equation (4.5) a Characteristic Curve for problem (4.1)–
(4.3) and denote a set of it’s points in plane R2

γ0,γ1
by the letter C.
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Remark 4. If {ū0, ū1} is another fundamental system, and [ū0, ū1] = P[u0, u1],
where P ∈ GL2(R), then

D(n0, n1)[ū] = D(n0, n1)[u] detP, D(n0, k1)[ū] = D(n0, k1)[u] detP,

D(k0, n1)[ū] = D(k0, n1)[u] detP, D(k0, k1)[ū] = D(k0, k1)[u] detP.

Thus, equation (4.5) (and equations (4.8)–(4.10)) is invariant with regard to
fundamental system {u0, u1} and notation “Characteristic Curve” corresponds
to this point of view.

The plane algebraic curve of the second degree (conic section)

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (4.6)

may be classified by the discriminant B2−4AC. If the conic is non-degenerate,
then equation (4.6):

1. if B2 − 4AC < 0, represents an ellipse;

2. if B2 − 4AC = 0, represents a parabola;

3. if B2 − 4AC > 0, represents a hyperbola.

There are seven degenerate cases: two parallel lines (corresponding to an el-
lipse with one axis infinite and the other axis real and non-zero, the distance
between the lines); a point (corresponding to degeneration of an ellipse); a pair
of intersecting lines (corresponding to degeneration of an hyperbola); a straight
line (a line with multiplicity 2, corresponding to degeneration of a parabola or
two parallel lines); empty set (A = B = C = D = E = 0, F 6= 0); a plane
(A = B = C = D = E = F = 0); a line (A = B = C = 0, D 6= 0 or E 6= 0).

It is easy to prove (see, [28]):

∣∣∣∣∣
D(n0, n1)[u] D(n0, k1)[u]

D(k0, n1)[u] D(k0, k1)[u]

∣∣∣∣∣ = D(n0, k0)[u]D(n1, k1)[u]. (4.7)

So, we can rewrite the equation (4.5):

(
γ0 − D(n0,k1)

D(n0,n1)

)(
γ1 − D(k0,n1)

D(n0,n1)

)
= D(k0,n0)

D(n0,n1)
D(n1,k1)
D(n0,n1)

, if D(n0, n1) 6= 0; (4.8)

D(n0,k1)
D(k0,k1)

γ0 +
D(k0,n1)
D(k0,k1)

γ1 = 1, if D(n0, n1) = 0, D(k0, k1) 6= 0; (4.9)

D(n0, k1)γ0 +D(k0, n1)γ1 = 0, if D(k0, k1) = D(n0, n1) = 0. (4.10)

Corollary 2. Problem (4.1)–(4.3) in the classical case (γ0 = 0 and γ1 = 0) has
zero eigenvalue if and only if D(k0, k1) = 0.

Corollary 3. If D(n0, n1) 6= 0 and D(k0, n0)D(n1, k1) 6= 0 then λ = 0 is eigen-
value of problem (4.1)–(4.3) if and only if the point (γ0, γ1) lies on hyperbola

(4.8). The hyperbola has vertical and horizontal asymptotes: γ0 = D(n0,k1)
D(n0,n1)

,

γ1 = D(k0,n1)
D(n0,n1)

.

Math. Model. Anal., 16(1):1–22, 2011.
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Table 1. Classification of the Characteristic Curves.

Case curve in plane R2 matrix A R2

1
R2

2
R2

3
Case curve on T2

1 whole plane 1 A = O 1 1 1 3 whole torus

2 empty set 2
(

0 0
0 a11

)

4a 3b 3a 2 two circles

3 line 3a
(

0 a01

0 0

)

3b 4a 2 2 two circles

3b
(

0 0
a10 0

)

3a 2 4a

3c
(

0 a01

0 a11

)

4c 4c 3c

3d
(

0 0
a10 a11

)

4b 3d 4b

3e
(

0 a01

a10 0

)

3e 5b 5b 1 circle

3f
(

0 a01

a10 a11

)

5e 5d 5c

4 two lines 4a
(

a00 0
0 0

)

2 3a 3b 2 two circles

4b
(

a00 a01

0 0

)

3d 4b 3d

4c
(

a00 0
a10 0

)

3c 3c 4c

4d
(

a00 a01

a10 a11

)

, detA = 0 4d 4d 4d

5 hyperbola 5a
(

a00 a01

a10 a11

)

, detA 6= 0, 5a 5a 5a 1 circle

5b
(

a00 0
0 a11

)

5b 3e 3e

5c
(

a00 a01

0 a11

)

5d 5e 3f

5d
(

a00 0
a10 a11

)

5c 3f 5e

5e
(

a00 a01

a10 0

)

3f 5c 5d

Corollary 4. If D(n0, n1) 6= 0 and D(k0, n0)D(n1, k1) = 0 then λ = 0 is eigen-
value of problem (4.1)–(4.3) if and only if the point (γ0, γ1) lies on the union

of vertical and horizontal lines (4.8): γ0 = D(n0,k1)
D(n0,n1)

, γ1 = D(k0,n1)
D(n0,n1)

.

Corollary 5. IfD(n0, n1) = 0, D(k0, k1) 6= 0 andD(n0, k1) 6= 0 orD(k0, n1) 6= 0
then λ = 0 is eigenvalue of problem (4.1)–(4.3) if and only if the point (γ0, γ1)
lies on the line (4.9).

Corollary 6. If D(n0, n1) = 0 and D(k0, k1) 6= 0 and D(n0, k1) = D(k0, n1) = 0
then λ = 0 is not eigenvalue of problem (4.1)–(4.3) (the case of empty set).

Corollary 7. If D(n0, n1) = D(k0, k1) = 0 and D(n0, k1) 6= 0 or D(k0, n1) 6= 0
then λ = 0 is eigenvalue of problem (4.1)–(4.3) if and only if the point (γ0, γ1)
lies on the line (4.10). The point (0, 0) (the classical case) is on this line.
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Corollary 8. If D(n0, n1) = D(k0, k1) = D(n0, k1) = D(k0, n1) = 0 then λ = 0
is eigenvalue of problem (4.1)–(4.3) for all γ0, γ1 (whole plane).

Let denote matrix

A =

(
a00 a01
a10 a11

)
:=

(
D(n0, n1) D(n0, k1)
D(k0, n1) D(k0, k1)

)
. (4.11)

From Corollaries 2–8 we get classification of Characteristic Curves in the plane
R2 := R2

γ0,γ1
. Each matrix A corresponds to one of the five types of Charac-

teristic Curves. More detailed classification is shown in Table 1 (in this table
aij , i, j = 0, 1 are nonzero elements). We have 16 types of matrices overall and
one type is split into two cases( detA = 0 and detA 6= 0). So, the next lemma
is valid.

Lemma 2. A Characteristic Curve for problem (4.1)–(4.3) in the plane R2 can
be one of the following five types:

1. If D(n0, n1) = D(k0, k1) = D(n0, k1) = D(k0, n1) = 0 then the curve is
whole plane;

2. If D(n0, n1) = D(n0, k1) = D(k0, n1) = 0, D(k0, k1) 6= 0 then the curve
is empty set;

3. If D(n0, n1) = 0, D(n0, k1) 6= 0 or D(n0, n1) = 0, D(k0, n1) 6= 0 then the
curve is line;

4. If D(n0, n1) 6= 0 and detA = 0 then the curve is union of vertical and
horizontal lines;

5. If D(n0, n1) 6= 0 and detA 6= 0 then the curve is hyperbola.

Remark 5. We see, that Characteristic Curve in the plane R
2 cannot be alge-

braic curve such as ellipse, parabola, point, parallel lines, double line.

Remark 6. If detA 6= 0 then the line (Case 3) is neither vertical nor horizontal
(see Cases 3e,f in Table 1), otherwise we have single vertical or single horizontal
line (see Cases 3a-d in Table 1).

Example 2 [see [6]]. In this example we analyze Characteristic Curve for the
nonlocal boundary conditions given in [6]: l = 1, k0 = δ(x) and k1 = δ(x− 1),
i.e. 〈k0, u〉 = u(0) and 〈k1, u〉 = u(1). We use fundamental system (3.5). In
this case we have:

D(k0, k1)[u] =

∣∣∣∣∣
u0(0) u1(0)

u0(1) u1(1)

∣∣∣∣∣ =
∣∣∣∣∣
1 0

0 1

∣∣∣∣∣ = 1;

D(n0, k1)[u] =

∣∣∣∣∣
〈n0, u0〉 〈n0, u1〉
u0(1) u1(1)

∣∣∣∣∣ =
∣∣∣∣∣
〈n0, u0〉 〈n0, u1〉

0 1

∣∣∣∣∣ = 〈n0, u0〉;

D(k0, n1)[u] =

∣∣∣∣∣
u0(0) u1(0)

〈n1, u0〉 〈n1, u1〉

∣∣∣∣∣ =
∣∣∣∣∣

1 0

〈n1, u0〉 〈n1, u1〉

∣∣∣∣∣ = 〈n1, u1〉.

Math. Model. Anal., 16(1):1–22, 2011.



12 A. Štikonas

(a) D(n0, n1) < 0 (b) D(n0, n1) = 0 (c) D(n0, n1) > 0

Figure 1. Characteristic Curve for Bitsadze-Samarskii type nonlocal boundary
conditions in the case 0 < ξ0, ξ1 < l.

(a) D(n0, n1) 6= 0 (b) D(n0, n1) = 0,
〈n0, u0〉 6= 0

(c) D(n0, n1) = 0,
〈n1, u1〉 6= 0

Figure 2. Characteristic Curve for Bitsadze-Samarskii type nonlocal boundary
conditions in the case detA = 0.

So, we have the same equation for Characteristic Curve as in [6]:

D(n0, n1)[u]γ0γ1 − 〈n0, u0〉γ0 − 〈n1, u1〉γ1 + 1 = 0 (4.12)

and

A =

(
D(n0, n1)[u] 〈n0, u0〉

〈n1, u1〉 1

)
, detA = −〈n0, u1〉 · 〈n1, u0〉.

In this example the Characteristic Curve can be (see Table 1) one of the fol-
lowing four types (A 6= O):

1. If D(n0, n1) = 〈n0, u0〉 = 〈n1, u1〉 = 0 then the curve is empty set ;

2. If D(n0, n1) = 0, 〈n0, u0〉 6= 0 or D(n0, n1) = 0, 〈n1, u1〉 6= 0 then the
curve is line;

3. If D(n0, n1) 6= 0 and detA = 0 then the curve is union of vertical and
horizontal lines ;

4. If D(n0, n1) 6= 0 and detA 6= 0 then the curve is hyperbola.
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Let us consider the case when the maximum principle is valid. For example,
consider equation −u′′ + u = 0. If functionals n0 = δ(x − ξ0), n1 = δ(x − ξ1),
0 < ξ0, ξ1 < 1 are used, then we have the Bitsadze-Samarskii type nonlocal
boundary conditions: u(0) = γ0u(ξ0), u(1) = γ1u(ξ1). For the fundamental
system (3.5) from the maximum principle it follows 0 < 〈nj , ui〉 = ui(ξj) < 1,
i, j = 0, 1. In this case we have

detA = −〈n0, u1〉 · 〈n1, u0〉 < 0

and from Lemma 2 and Remark 6 we derive that the Characteristic Curve
can be hyperbola (D(n0, n1) 6= 0) or line (D(n0, n1) = 0). The Characteristic
Curve crosses the coordinate axes at the points γ0 = 1/〈n0, u0〉 > 0 and γ1 =
1/〈n1, u1〉 > 0 (see Figure 1).

If we take in the Bitsadze-Samarskii type nonlocal boundary conditions
ξ0 = 0 or ξ1 = 1 then we get the degenerative case detA = 0, i.e. the union
of vertical and horizontal lines (see Figure 2(a)). The lines intersection point
corresponds to the case when both nonlocal boundary conditions are trivial. If
n0 = δ(x − ξ0), n1 = 0 then D(n0, n1) = 0, 〈n1, u1〉 6= 0, detA = 0, and the
characteristic curve is a vertical line (see Figure 2(b)). Finally, for n0 = n1 = 0
we have classical boundary conditions u(0) = γ0 · 0 = 0, u(1) = γ1 · 0 = 0, and
the Characteristic Curve is empty set.

Example 3. For the boundary value problem

u′′ + π2u = 0, (4.13)

u(0) = γ0u
′(0), u(1) = γ1u(0) (4.14)

we cannot use the fundamental system (3.5). In this case we use fundamental
system (3.6), i.e. {u0, u1} = {cos(πx), sin(πx)/π}:

D(k0, k1)[u] =

∣∣∣∣∣
u0(0) u1(0)

u0(1) u1(1)

∣∣∣∣∣ =
∣∣∣∣∣

1 0

u0(1) u1(1)

∣∣∣∣∣ = u1(1) = 0;

D(n0, k1)[u] =

∣∣∣∣∣
u′
0(0) u′

1(0)〉
u0(1) u1(1)

∣∣∣∣∣ =
∣∣∣∣∣

0 1

u0(1) u1(1)

∣∣∣∣∣ = −u0(1) = 1;

D(k0, n1)[u] =

∣∣∣∣∣
u0(0) u1(0)

u0(0) u1(0)

∣∣∣∣∣ = 0;

D(n0, n1)[u] =

∣∣∣∣∣
u′
0(0) u′

1(0)〉
u0(0) u1(0)

∣∣∣∣∣ =
∣∣∣∣∣
0 1

1 0

∣∣∣∣∣ = −1,

and Characteristic Curve consists of two lines (Case 4b)

γ0(γ1 + 1) = 0. (4.15)

Math. Model. Anal., 16(1):1–22, 2011.
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Figure 3. Plane, cylinder and torus, O = (0, 0), X = (∞, 0),

Y = (0,∞), B = (∞,∞), in the plane R̂2.

5 Characteristic Curve on Torus

The example of NBC (4.2)–(4.3) is

u(0) = γ0

∫ 1

0

α(x)u(x) dx, u(1) = γ1

∫ 1

0

β(x)u(x) dx. (5.1)

Sometimes instead of NBCs (5.1) conditions (one or both) are used for Sturm–
Liouville problem:

∫ 1

0

α(x)u(x) dx = 0,

∫ 1

0

β(x)u(x) dx = 0. (5.2)

Formally, we can say that such cases are realized for γ0 = ∞ or γ1 = ∞. More
general problem will be if we consider NBCs:

∫ 1

0

α(x)u(x) dx = γ̃0u(0),

∫ 1

0

β(x)u(x) dx = γ̃1u(1). (5.3)

Now left hand side of these BC is “classical” and right hand side “nonlocal”.
In the case NBC (4.2)–(4.3) we must investigate problem (4.1) with NBC:

〈n0, u〉 = γ̃0〈k0, u〉, γ̃0 ∈ R, 〈n1, u〉 = γ̃1〈k1, u〉, γ̃1 ∈ R. (5.4)

The Characteristic Curve in the plane R2
1 := R2

γ̃0,γ̃1
is described by equation

D(k0, k1)γ̃0γ̃1 −D(k0, n1)γ̃0 −D(n0, k1)γ̃1 +D(n0, n1) = 0.

So, we have five cases again (see column R
2
1 in Table 1). If NBCs have form

〈k0, u〉 = γ0〈n0, u〉, γ0 ∈ R, 〈n1, u〉 = γ̃1〈k1, u〉, γ̃1 ∈ R; (5.5)

〈n0, u〉 = γ̃0〈k0, u〉, γ̃0 ∈ R, 〈k1, u〉 = γ1〈n1, u〉, γ1 ∈ R, (5.6)

then Characteristic Curves in the planes R2
2 := R2

γ0,γ̃1
, R2

3 := R2
γ̃0,γ1

are

D(n0, k1)γ0γ̃1 −D(n0, n1)γ0 −D(k0, k1)γ̃1 +D(k0, n1) = 0,

D(k0, n1)γ̃0γ1 −D(k0, k1)γ̃0 −D(n0, n1)γ1 +D(n0, k1) = 0.
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Figure 4. Torus T2 and planes R2, R2

1
, R2

2
, R2

3
.

If Characteristic Curve C in the plane R2 is described by matrix A (see
(4.11)) then Characteristic Curve in the planes R2

1, R2
2, R2

3 is described by
matrices

A1 =

(
a11 a10
a01 a00

)
, A2 =

(
a01 a11
a00 a10

)
, A3 =

(
a10 a11
a00 a01

)
,

accordingly. Columns R
2
1, R

2
2, R

2
3 in Table 1 show the type of Characteristic

Curve C in these planes. For example, line in the case 3f) corresponds to
hyperbola in the planes R2

1, R
2
2, R

2
3 (the cases 5e,5d,5c).

If γi 6= 0 and γ̃i 6= 0, i = 0, 1 , then relation between these parameters are
γ̃i = 1/γi. Now we consider that γi ∈ R∪ {∞} = R̂ = RP 1, i.e. real projective
line, which is a homogeneous space, in fact homeomorphic to a circle S1.

Topologically, a torus (see Figure 3) is a closed surface defined as the prod-
uct of two circles: T2 = S1 × S1. We can consider the parameters planes R2,
R2

1, R
2
2, R

2
3 as four charts which form an atlas for the torus (see Figure 4).

Lemma 3. On torus Characteristic Curve for problem (4.1)–(4.3) can be one
of the following three types:

(1) If A ∈ GL2(R) then the curve is homeomorphic to a circle, and this curve
winds around the torus one time (one time in one direction and one in the
other direction);

(2) If O 6= A 6∈ GL2(R) then the curve is the union of two circles (strictly
’latitudinal’ and strictly ’longitudinal’) with one common point;

(3) Otherwise (i.e., A = O) the curve is whole torus.

Proof. Let begin with Case 4d in the plane R2. In this case Characteristic
Curve C is the union of two (vertical and horizontal) lines γ0 = a 6= 0, γ1 =
b 6= 0 with intersection point (a, b) (see Corollary 3). In the plane R2

1 we again
have the union of two lines γ̃0 = 1/a 6= 0, γ̃1 = 1/b 6= 0. Points (1/a, 0) and

(0, 1/b) in this plane corresponds to points (a,∞) and (∞, b) in R̂2. So, line

Math. Model. Anal., 16(1):1–22, 2011.
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Figure 5. Characteristic Curve on torus in Case 1
and Case 2.

Figure 6. Domain of
regularity R and connected
components.

la := {(a, γ1) : γ1 ∈ R} in the R2 is part of a curve la ∪ {(a,∞)} in the R̂2

which is homeomorphic to a circle, and the line lb := {(γ0, b) : γ0 ∈ R} in R2 is

part of a curve lb ∪ {(∞, b)} in the R̂2 which is homeomorphic to a circle, too.
The point of intersection of these two curves is (a, b). In Cases 4a, 4b, 4c we
have the same situation, but a or b are zero. So, the line la or the line lb can
be axes. If only the vertical line la is axis in the plane R2 (Case 4b) then we
have one horizontal line in the plane R2

1 (Case 3b) and it is better to use the
plane R2

2 for investigation of vertical line la in the point Y = (0,∞). We note,
that if la and lb are axes then in R2

1 Characteristic Curve is empty set (Case
2), and in planes R2

2, R
2
3 we have only one line. Finally, Case 4 (two lines in

R2) corresponds to the circles on torus. Moreover, we have two circles in Case
2, 3a, 3b, 3c, 3d, too, because the case of two lines is in one of the planes R2

1,
R2

2, R
2
3 (see Table 1).

In Case 3e we have line l in R2 and we must investigate the point B =
(∞,∞). In the plain R2

1 this point is in origin and we have a line again. So,
l ∪ B is homeomorphic to a circle. Moreover, we have circle in Case 5b, too
(see Table 1). This case corresponds to hyperbola and axis are it’s asymptotes.
If we add points X = (∞, 0) and Y = (0,∞), then we get curve which is
homeomorphic to a circle. All other hyperbolae (Cases 5a, 5c, 5d, 5e) have
vertical and horizontal asymptotes and give such curve, analogously. A line in
Case 3f is hyperbola (Case 5e) in R2

1.
If A = O then we have whole planes R2, R2

1, R2
2, R2

3. So, in this case
Characteristic Curve is a whole torus. Note, that in the case A 6= O we have
two circles on torus if and only if detA = 0. Lemma is proved. ⊓⊔

Case 1 and Case 2 are presented in Figure 5.
Let us consider two Characteristic Curves C1 and C2 which correspond to

matrices A1 and A2, respectively. We can define distance between curves as
distance between matrices. If we introduce matrix elementwise max norm

‖A‖ := max{|a00|, |a01|, |a10|, |a11|} for A =

(
a00 a01
a10 a11

)
,

then a set of Characteristic Curves becomes metric space with distance

d(C1, C2) := ‖A1 −A2‖.
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For max norm an inequality

| detA1 − detA2| 6 (‖A1‖+ ‖A2‖) ‖A1 −A2‖ (5.7)

is valid. So, a difference between matrix determinants can be estimated via
‖A1 −A2‖.

Remark 7. GL2(R) is open set in R4. So, small changes of coefficients of matrix
A do not change Characteristic Curve type (i.e., we have circle on torus again).
Meanwhile, if detA = 0 or A = O then there exist matrices from GL2(R)
in the neighborhood of the matrix A. In the plane R2 the first case on torus
corresponds to the cases: 3e, 3f (line) and 5 (hyperbola). Matrices of hyperbolae
make open set in GL2(R), too. If we consider special cases of nonlocal boundary
conditions the class of matrices can satisfy condition detA = 0 or can describe
lines only.

Every strictly ’latitudinal’ circle γ0 = const ∈ R̂ or strictly ’longitudinal’
circle γ1 = const ∈ R̂ on torus crosses Characteristic Curve. The intersection
is a circle in Case 3, a point in Case 1 and a point or circle in Case 2.

We name the point (γ0, γ1) which does not belong to Characteristic Curve
regular point. All regular points make a domain of regularity R. For Case 3 R
is empty set.

Corollary 9. The domain R ⊂ T2 is a path-connected open set.

Remark 8. The domain R ⊂ R
2 may consist of a few connected components

(one, two or three).

Remark 9. One of main results of paper [6] was that we can change continu-
ously parameters γ0 and γ1 in the plane R2 from point (0, 0) (classical boundary
condition) to some area R+ limited by Characteristic Curve in the first quad-
rant (in the paper [6] only the case γ0, γ1 > 0 was considered). The second
order problem with nonlocal boundary conditions as in Example 2 has unique
solution in all points of this area. It is easy to expand this area into bigger
domain if we use negative γ0 and γ1, but we cannot cross the Characteristic
Curve if we want to connect two points in different connected components.

On torus the domain of regularity R is path-connected open set and R+ ⊂
R. We can connect two points of this domain by continuous path. Moreover,
the path can be union of two parts and each of them belongs to circle γ0 =
const ∈ R̂ or circle γ1 = const ∈ R̂ on torus. For each point in the domain R
there exists only one other point in this domain such that we need to use three
such parts in the case detA 6= 0. For some points we need only one such path.
In Figure 6, we have three connected components in R2 and one on torus. The
area R+ corresponds to results of paper [6]. The domain with points A and
B under the left part of hyperbola is one of the three connected domains in
the plain. On torus we can continuously move to points C, D, X , too. If we
connect origin O and point X then we must use path with three linear (the
vertical or horizontal) parts.

Math. Model. Anal., 16(1):1–22, 2011.
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R
2: γ1 = 2 − γ0 R

2

1
: γ̃1 =

γ̃0
2γ̃0−1

R
2

2
: γ̃1 = 1

2−γ0
R

2

3
: γ1 = 2 − 1

γ̃0

(a) (b) (c) (d)

Figure 7. Characteristic Curve for integral nonlocal boundary conditions.

R
2: γ1 = 1/γ0 R

2

1
: γ̃1 = 1/γ̃0 R

2

2
: γ̃1 = γ0 R

2

3
: γ1 = γ̃0

(a) (b) (c) (d)

Figure 8. Characteristic Curve and area paradox.

Example 4 [integral NBCs]. For functionals n0 = 1, n1 = 1 we have integral
type nonlocal boundary conditions [6, 7]:

u(0) = γ0

∫ 1

0

u(x) dx, u(1) = γ1

∫ 1

0

u(x) dx. (5.8)

In this case 0 < 〈nj , ui〉 =
∫ 1

0
ui(x)dx < 1, i = 0, 1. Since D(n0, n1) =

D(1, 1) = 0, the Characteristic Curve in R2 is a line (see Figure 7(a)). If we
investigate problem with integral boundary conditions on torus then in the
planes R2

1, R
2
2, R

2
3 we have hyperbolae (see Figure 7) and they correspond to

nonlocal boundary conditions:

∫ 1

0

u(x)dx = γ̃0u(0),

∫ 1

0

u(x) dx = γ̃1u(1); (5.9)

u(0) = γ0

∫ 1

0

u(x) dx,

∫ 1

0

u(x)dx = γ̃1u(1); (5.10)

∫ 1

0

u(x) dx = γ̃0u(0), u(1) = γ1

∫ 1

0

u(x) dx; (5.11)

respectively. Note, that the first boundary condition (5.10) coincides with the
second condition for γ0 = γ̃1 = 0 and the origin of the coordinate plane belongs
to hyperbola. On torus problems with boundary conditions (5.8)–(5.11) is the
same problem and Characteristic Curve is the circle on the torus. In Figure 7
we see four various maps of this curve. The area R+ (see the first quadrant)
shows the domain investigated in [6]. In all maps we see a path between points
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A(γ0 = 0.5, γ1 = 1) and E(γ0 = 2, γ1 = 1):

A(0.5, 1) → B(0, 1) → C(−1, 1) → D(∞, 1) → E(2, 1),

and each closed interval [A,B], [B,C], [C,D], [D,E] is finite in at least one of
the planes R2, R2

1, R
2
2, R

2
3.

Example 5 [an area paradox]. Let us consider nonlocal boundary conditions
(see Example 2, too)

u(0) = γ0u(1), u(1) = γ1u(0). (5.12)

In this case the Characteristic Curve in plane R2 is γ0γ1 = 1.
If we consider problem on torus then this curve is hyperbola or line in the

planes R2
1, R

2
2, R

2
3 (see Figure 8). The domain R+ and domains corresponding

to R+ in these planes are shown in Figure 8(a)-(d). In the plane R2
1 the formula

for the Characteristic Curve is γ̃0γ̃1 = 1 and boundary conditions are

u(1) = γ̃0u(0), u(0) = γ̃1u(1). (5.13)

These conditions are the same as (5.12), thus domainR+ for parameters (γ̃1, γ̃0)
must be the same as in Figure 8(a).

If we consider the domain of regularity R on torus then we do not have this
paradox. Note, that in this example classical boundary conditions u(0) = 0
and u(1) = 0 correspond to two points O(0, 0) and (∞,∞) on torus (or (0,0)
in planes R2 and R2

1).

Let us consider the two cases of the boundary conditions

〈k0, u〉 = γ0〈n0, u〉, 〈k1, u〉 = γ1〈n1, u〉, (5.14)

〈K0, U〉 = γ0〈N0, U〉, 〈K1, U〉 = γ1〈N1, U〉, (5.15)

and denote Φkij := 〈ki, uj〉− 〈Ki, Uj〉, Φnij := 〈ni, uj〉− 〈Ni, Uj〉. We have two
matrices

A1 =

(
D(n0, n1) D(n0, k1)
D(k0, n1) D(k0, k1)

)
, A2 =

(
D(N0, N1) D(N0,K1)
D(K0, N1) D(K0,K1)

)
.

From inequality (5.7) it follows

|D(n0, n1)−D(N0, N1)| 6 C1‖M(n0, n1)[u0, u1]−M(N0, N1)[U0, U1]‖
6 C1 max{|Φn00|, |Φn10|, |Φn01|, |Φn11|}.

Similar inequalities are valid for

|D(n0, k1)−D(N0,K1)|, |D(k0, n1)−D(K0, N1)|, |D(k0, k1)−D(K0,K1)|.

Finally, we get estimate

‖A1 −A2‖ 6 C max
j=0,1

{|Φkij |, |Φnij |}. (5.16)
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Corollary 10. The Characteristic Curve continuously depends on functionals in
boundary conditions.

Remark 10. Lemma 3 is valid for the discrete Sturm–Liouville problem

LhUh := −δ(P hδUh) +QhUh = 0 in ωh, (5.17)

〈Kh
0 , U

h〉 = γ0〈Nh
0 , U

h〉, 〈Kh
1 , U

h〉 = γ1〈Nh
1 , U

h〉, (5.18)

(γ0, γ1) ∈ T2.

A proof is the same as for the differential case.

Remark 11. If we consider differential problem (4.1)–(4.3) (the case λ = 0) and
discrete problem (5.17)–(5.18), then

Φh
ki

:= 〈ki, u〉 − 〈Kh
i , U

h〉, Φh
ni

:= 〈ni, u〉 − 〈Nh
i , U

h〉, i = 0, 1,

denote approximation errors in boundary conditions. Let C and Ch be Char-
acteristic Curves for differential and discrete problems, respectively. If Φh

ki
=

O(hα), Φh
ni

= O(hα), then from (5.16) we get ‖A1 −A2‖ = O(hα), i.e., Char-
acteristic Curve C is approximated by Characteristic Curve Ch with the same
order as functionals in the boundary conditions.

Remark 12. For complex γi ∈ Ĉ = C∪{∞}, i = 0, 1 we must use Ĉ× Ĉ instead

of torus R̂× R̂. This is an open problem for future investigations.

Another open problem is classification of points in the regularity domain:

• Subsets where all eigenvalues are positive, or exists one or a few negative
eigenvalues;

• Subsets where exists constant eigenvalue points or multiple eigenvalue
points (see, [29]);

• Qualitative analysis of spectrum dependence on γ0 and γ1 and other
parameters in NBCs.

Conclusions

In this article the Sturm–Liouville problem with NBCs depending on two pa-
rameters is investigated. Zero eigenvalue existence conditions are investigated
and geometric interpretation of the results are given. We propose to investigate
these results not in a plane but on torus. Classification of Characteristic Curves
in the plane and on the tore is done. Obtained results can be generalized to
n-th order equation with n NBCs.

Acknowledgement. The author appreciate Prof. R. Čiegis for his valuable
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[25] M. Sapagovas and O. Štikonienė. A fourth-order alternating-direction method
for difference schemes with nonlocal condition. Lith. Math. J., 49(3):309–305,
2009. Doi:10.1007/s10986-009-9057-5.
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