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Abstract. In this paper, we analyze the optimal consumption and investment prob-
lem of an agent who has a quadratic-type utility function and faces a subsistence
consumption constraint. We use the dynamic programming method to solve the op-
timization problem in continuous-time. We further provide the sufficient conditions
for the optimization problem to be well-defined.
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1 Introduction

We consider a continuous-time optimal consumption and portfolio selection
problem of an agent who has a quadratic utility function and faces a subsistence
consumption constraint. We solve the problem using the dynamic programming
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method and find closed-form solutions for the value function and the optimal
consumption and investment policies.

Our paper follows the literature that studies optimal consumption and port-
folio selection in continuous time using the dynamic programming method.
Merton [13] solved a continuous-time optimal consumption and portfolio selec-
tion problem for an agent with constant relative risk aversion (CRRA) utility
using the dynamic programming method. Merton [14] expanded [13] to con-
sider the case of an agent with hyperbolic absolute risk aversion (HARA) utility.
Quadratic utility is a member of the HARA class of utilities introduced in Mer-
ton [14]. Karatzas et al. [7] further expanded the literature by using dynamic
programming to solve an optimal consumption and portfolio selection problem
for an agent with general utility.

Quadratic utility is widely used in mean-variance analysis. Markowitz [12]
insisted that quadratic utility provides a good approximation to other utility
functions in portfolio choice models. Hanoch and Levy [5] and Buccola [1]
compare the risk aversion of quadratic utility with cubic and exponential utility
respectively. Hanoch and Levy [5] provide an optimal efficiency criteria for
a portfolio selection problem when the agent’s utility is quadratic. Buccola
[1] finds that the choice between quadratic and exponential utility have no
effect on optimal portfolio selection if the corresponding absolute risk aversion
coefficients at the optimal solution are equal.

Our paper also follows the literature studying subsistence consumption con-
straints. A subsistence consumption constraint provides a lower bound for
which a decline in consumption below this level is not tolerated. As Dybvig [3]
notes, such a constraint can be interpreted as an exterme form of habit forma-
tion. The existence of a subsistence consumption constraint has a significant
impact on the agent’s optimal consumption and investment policies, especially
when the constraints are binding. Cox and Huang [2], Gong and Li [4], Huang
and Pagès [6], Koo et al. [8], Lakner and Nygren [9], Lee and Shin [10], Lim
et al. [11], Shim and Shin [15], Shin and Lim [16], Shin et al. [17], and Yuan
and Hu [18] have studied optimal consumption and portfolio selection problems
with subsistence consumption constraints.

Koo et al. [8] also solved an optimal consumption and portfolio selec-
tion problem for an agent with quadratic utility and subsistence consumption
constraints. However, Koo et al. [8] solved the problem using the martin-
gale method, while we use the dynamic programming method. More signifi-
cantly, we can replicate the results of Koo et al. [8] without the assumption
ρ− 2r+ θ2 > 0. We further provide a verification theorem that shows that the
value function obtained using the dynamic programming method is the same
as the value function obtained using the martingale method in Koo et al. [8].

The rest of this paper proceeds as follows. In Section 2, we describe the
financial market. We use the dynamic programming method to solve our opti-
mization model in Section 3. Section 4 provides some properties of the optimal
solutions and Section 5 concludes.
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2 The financial market

We assume that there are two assets in the financial market: A riskless asset
with constant interest rate r > 0 and a risky asset St governed by the following
geometric Brownian motion:

dSt = µStdt+ σStdBt,

where µ > 0 and σ > 0 are constants and Bt is a standard Brownian mo-
tion defined on a complete probability space (Ω,F ,P) and {Ft}t≥0 is the P-
augmentation of the filtration generated by the standard Brownian motion
{Bt}t≥0.

Let πt be the amount invested in the risky asset at time t and ct be con-
sumption at time t. A portfolio process {πt}t≥0 is a measurable and adapted
process with respect to {Ft}t≥0, and a consumption process {ct}t≥0 is a mea-
surable and adapted positive process with respect to {Ft}t≥0. They satisfy the
following mathematical conditions:∫ t

0

π2
sds <∞ and

∫ t

0

csds <∞, for all t ≥ 0 a.s. (2.1)

Let Xt be the agent’s wealth process at time t. It evolves according to the
following stochastic differential equation (SDE):

dXt = [rXt + πt(µ− r)− ct]dt+ σπtdBt (2.2)

with initial endowment X0 = x. Furthermore we assume that there is a subsis-
tence consumption constraint which restricts the minimum consumption level
such that

ct ≥ Γ, for all t ≥ 0, (2.3)

where Γ > 0 is a fixed constant lower bound of consumption. From this
constraint (2.3), we have the following condition for the initial endowment:
x > Γ/r.

3 The optimization problem with a dynamic
programming approach

Now we consider the following optimization problem. The infinite-lived agent
wants to maximize her expected discounted lifetime utility:

V (x) := sup
(c,π)∈A(x)

E
[∫ ∞

0

e−ρtu(ct)dt

]
(3.1)

subject to the wealth constraint (2.2) and the subsistence consumption con-
straint (2.3). A(x) is the class of all admissible controls

(c, π) := ((ct)t≥0, (πt)t≥0)

at initial wealth x with x > Γ/r and each control (c, π) is subject to the
constraints (2.1) and (2.3). Here, ρ > 0 is a subjective discount factor and u(·)
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is a quadratic-type utility function defined by u(c) := c−Rc2, where R > 0 is
a constant. We also assume that the wealth process Xt at time t should satisfy
the following transversality condition:

lim
t→∞

e−ρtV (Xt) = 0. (3.2)

By the dynamic programming principle, the value function V (x) in (3.1)
satisfies the following Bellman equation

ρV (x) = max
c≥Γ,π

[
(rx+ π(µ− r)− c)V ′(x) +

1

2
σ2π2V ′′(x) + c−Rc2

]
. (3.3)

From the first order conditions (FOCs) of the Bellman equation (3.3), we derive
the candidate optimal consumption and portfolio policies (c∗, π∗) as follows:

c∗ =

 Γ, if Γ/r < x < x̃
(1− V ′(x))/(2R), if x̃ ≤ x < x̄
c̄ = 1/(2R), if x ≥ x̄

, π∗ = − θ
σ

V ′(x)

V ′′(x)
, (3.4)

where θ := (µ− r)/σ is the market price of risk, x̃ is the threshold wealth level
which corresponds to a subsistence consumption level Γ , and x̄ = 1/(2rR)
is the wealth level that can support the bliss level of consumption c̄ (for the
concrete forms of the boundary wealth levels, refer to Koo et al. [8]).

Remark 1. For later use, we define two quadratic equations:

f(m) := rm2 −
(
ρ+ r + θ2/2

)
m+ ρ = 0, (3.5)

with two roots m1 and m2 satisfying m1 > 1 > m2 > 0 and

g(n) := θ2n2/2 +
(
ρ− r + θ2/2

)
n− r = 0, (3.6)

with two roots n1 and n2 satisfying n1 > 0 and n2 < −1. The roots of the two
quadratic equations (3.5) and (3.6) have the following relationship:

n2 =
1

m2 − 1
and m2 =

n2 + 1

n2
. (3.7)

Theorem 1. The value function V (·) of the optimization problem (3.1) is given
by

V (x) =


C2 (x− Γ/r)m2 + (Γ −RΓ 2)/ρ, if Γ/r < x < x̃,

r−θ2n1/2
ρ

D1(1−2Rξ)n1+1+
(1− 2Rξ)2

4R(ρ−2r+θ2)
+

1

4ρR
, if x̃ ≤ x < x̄,

1/(4ρR), if x ≥ x̄,

where

D1 =
ρ− rm2 + θ2

2rR(ρ− 2r + θ2)(n1(m2 − 1)− 1)
(1− 2RΓ )1−n1 ,

x̃ = D1(1− 2RΓ )n1 − 1

ρ− 2r + θ2
Γ +

ρ− r + θ2

2rR(ρ− 2r + θ2)

= n1(m2−1)D1(1−2RΓ )n1+
(m2 − 1)(1−2RΓ )

2R(ρ− 2r + θ2)
+
Γ

r
,



Optimal Consumption and Investment Problem with Quadratic Utility 631

C2 =
1− 2RΓ

m2

(
x̃− Γ

r

)1−m2

> 0,

and ξ is determined from the algebraic equation

x = D1(1− 2Rξ)n1 − 1

ρ− 2r + θ2
ξ +

ρ− r + θ2

2rR(ρ− 2r + θ2)
.

Proof. For Γ/r < x < x̃, substituting the FOCs (3.4) into equation (3.3)
implies

ρV (x) = (rx− Γ )V ′(x)− 1

2
θ2

(V ′(x))2

V ′′(x)
+ Γ −RΓ 2. (3.8)

From equation (3.8), we obtain the solution V (x) as follows:

V (x) = C2

(
x− Γ

r

)m2

+
Γ −RΓ 2

ρ
, for Γ/r < x < x̃, (3.9)

where C2 is a constant, and m1 and m2 satisfying m1 > 1 > m2 > 0 are two
roots of the quadratic equation (3.5). We will show that C2 > 0 later (see
(3.19)).

For x ≥ x̄, optimal consumption is constant at the bliss level c̄, and the
agent has zero investment in the risky asset. Thus the value function V (x) is
obtained from the Bellman equation (3.3) as follows:

V (x) = 1/(4ρR), for x ≥ x̄.

For x̃ ≤ x < x̄, we assume that optimal consumption c = C(x) is a function
of wealth and X(·) = C−1(·), that is, X(c) = X(C(x)) = x. Then, from the
FOCs (3.4), we have

V ′(x) = 1− 2RC(x), V ′′(x) = −2R/X ′(c). (3.10)

Plugging the FOCs (3.4) and the equations (3.10) into equation (3.3) implies

ρV (X(c)) = r(1− 2Rc)X(c) +
θ2(1− 2Rc)2

4R
X ′(c) +Rc2. (3.11)

Differentiating equation (3.11) with respect to c, we obtain the following equa-
tion

θ2(1− 2Rc)2

4R
X ′′(c)−

(
ρ− r + θ2

)
(1−2Rc)X ′(c)−2rRX(c)+2Rc = 0. (3.12)

Thus we obtain the solution to the second order ordinary differential equation
(3.12)

X(c) = D1(1− 2Rc)n1 − 1

ρ− 2r + θ2
c+

ρ− r + θ2

2rR(ρ− 2r + θ2)
, (3.13)

where D1 is a constant and n1 > 0 is one of two roots of the quadratic equation
(3.6). Substituting X(c) in (3.13) into (3.11) implies

V (x) =
r − 1

2θ
2n1

ρ
D1(1− 2Rc)n1+1 +

(1− 2Rc)2

4R(ρ− 2r + θ2)
+

1

4ρR
, for x̃ ≤ x < x̄.
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Substituting c = Γ into the function X(·) and the derivative of X(·) in
(3.13) implies

x̃ = X(Γ ) = D1(1− 2RΓ )n1 − 1

ρ− 2r + θ2
Γ +

ρ− r + θ2

2rR(ρ− 2r + θ2)
, (3.14)

X ′(Γ ) = −2n1RD1(1− 2RΓ )n1−1 − 1/(ρ− 2r + θ2).

From (3.9) and (3.10), C1- and C2- conditions of V (x) at x̃ imply the following
equations:

V ′(x̃) = m2C2 (x̃− Γ/r)m2−1 = 1− 2RΓ, (3.15)

V ′′(x̃) = m2(m2 − 1)C2 (x̃− Γ/r)m2−2 = −2R/X ′(Γ ). (3.16)

From (3.15) and (3.16), we obtain

x̃ = n1(m2 − 1)D1(1− 2RΓ )n1 +
(m2 − 1)(1− 2RΓ )

2R(ρ− 2r + θ2)
+
Γ

r
. (3.17)

From (3.14) and (3.17), we also derive

D1 =
ρ− rm2 + θ2

2rR(ρ− 2r + θ2)(n1(m2 − 1)− 1)
(1− 2RΓ )1−n1 , (3.18)

and, from (3.15), we have

C2 =
1− 2RΓ

m2

(
x̃− Γ

r

)1−m2

> 0. (3.19)

ut

4 Properties of the optimal policies

In this section, we provide properties of the optimal policies without the as-
sumption ρ− 2r + θ2 > 0 given in Koo et al. [8].

Lemma 1. If ρ− 2r + θ2 < 0, then ρ− rm2 + θ2 > 0.

Proof. Plugging m = (ρ+ θ2)/r into the function f(·) in (3.5) implies

f

(
ρ+ θ2

r

)
= r

(
ρ+ θ2

r

)2

−
(
ρ+ r +

1

2
θ2
)
ρ+ θ2

r
+ ρ

=
ρ− 2r + θ2

2r
θ2 < 0.

Thus we have the following inequality: m2 < (ρ+ θ2)/r < m1, and conse-
quently we see that ρ− rm2 + θ2 > 0. ut

Lemma 2. X ′(c) is an increasing function for Γ ≤ c < 1/(2R).
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Proof. We can easily see that X ′′(c) = 4n1(n1 − 1)R2D1(1 − 2Rc)n1−2. Ob-
viously the sign of X ′′(c) depends on the signs of (n1 − 1) and D1. Noting
that g(1) = ρ − 2r + θ2, we consider the cases when g(1) > 0 and g(1) < 0,
respectively.

First, when g(1) = ρ−2r+θ2 > 0, we find that 0 < n1 < 1 and ρ−m2r+θ
2 >

ρ − 2r + θ2 > 0 since g(1) > 0 and 0 < m2 < 1, respectively. Thus we have
D1 < 0. Second, when g(1) = ρ − 2r + θ2 < 0, we obtain n1 > 1 and
ρ − rm2 + θ2 > 0 by Lemma 1. Thus we have D1 > 0. Ultimately, we always
obtain

1− n1
ρ− 2r + θ2

> 0 and (n1 − 1)D1 > 0. (4.1)

Therefore we see that X ′′(c) is always positive. ut

Lemma 3. The wealth function X(c) is an increasing function for Γ ≤ c <
1/(2R).

Proof. By Lemma 2, we see that X ′(c) is an increasing function for Γ ≤ c <
1/(2R). Now we want to show that X ′(Γ ) > 0. Note that

X ′(Γ ) = −2n1RD1(1− 2RΓ )n1−1 − 1

ρ− 2r + θ2

= − (ρ− rm2 + θ2)n1
r(ρ− 2r + θ2)(n1(m2 − 1)− 1)

− 1

ρ− 2r + θ2

= − 1

ρ− 2r + θ2

{
(ρ− rm2 + θ2)n1n2

r(n1 − n2)
+ 1

}
= − n1n2

r(ρ− 2r + θ2)(n1 − n2)

(
ρ− rn2 + 1

n2
+ θ2 − 1

2
θ2(n1 − n2)

)
= − n1

r(ρ−2r+θ2)(n1−n2)

(
ρn2 − r(n2 + 1) + θ2n2 −

1

2
θ2n1n2 +

1

2
θ2n22

)
= − n1

r(ρ−2r+θ2)(n1−n2)

{
1

2
θ2n22+

(
ρ−r+1

2
θ2
)
n2−r+

1

2
θ2n2 (1− n1)

}
= −

1
2θ

2n1n2 (1− n1)

r(ρ− 2r + θ2)(n1 − n2)
> 0,

where the third and the fourth equalities are obtained from the relationships
between the roots (3.7) and Vieta’s formula for the quadratic equation (3.6),
the seventh equality from the fact that n2 is one root of the quadratic equation
(3.6), and the inequality from the first inequality in (4.1). Therefore X ′(c) is
positive since X ′(c) is an increasing function for Γ ≤ c < 1/(2R). ut

Lemma 4.

1

1−2RΓ

[
− 1

2Rn21D1(ρ−2r+θ2)

] 1
n1−1

=

[
− (ρ−rm2+θ2)n21n2

r(n1 − n2)

] 1
1−n1

<1. (4.2)

Math. Model. Anal., 23(4):627–638, 2018.



634 Y.H. Shin, J.L. Koo and K.-H. Roh

Proof. If we substitute D1 in (3.18) into the left-hand side of the above equa-
tion (4.2) and use the relationships in (3.7), we can obtain the equality. Let us
consider

− (ρ−rm2+θ2)n21n2
r(n1 − n2)

=− n21n2
r(n1 − n2)

[
ρ−rn2 + 1

n2
+θ2 − 1

2
θ2(n1 − n2)

]
+ n1

= − n21
r(n1 − n2)

[
1

2
θ2n22 +

(
ρ− r +

1

2
θ2
)
n2 − r +

1

2
θ2n2 (1− n1)

]
+ n1

= n1(1− n2)/(n1 − n2),

where the first equality is obtained from the relationships in (3.7) and Vieta’s
formula for the quadratic equation (3.6), and the third equality from the fact
that n2 is one root of the quadratic equation (3.6) and Vieta’s formula for the
quadratic equation (3.6).

Now we consider two cases. When 0 < n1 < 1, we see that

n1(1− n2)/(n1 − n2) < 1,

and consequently we obtain[
− (ρ− rm2 + θ2)n21n2

r(n1 − n2)

] 1
1−n1

=

[
n1(1− n2)

n1 − n2

] 1
1−n1

< 1
1

1−n1 = 1.

When n1 > 1, we see that

n1(1− n2)/(n1 − n2) > 1,

and consequently we obtain[
− (ρ− rm2 + θ2)n21n2

r(n1 − n2)

] 1
1−n1

=

[
n1(1− n2)

n1 − n2

] 1
1−n1

< 1
1

1−n1 = 1.

ut

Lemma 5. We have that x̃ < x̂ < x̄, where

ξ̂ :=
1

2R
− 1

2R

[
− 1

2Rn21D1(ρ− 2r + θ2)

] 1
n1−1

, (4.3)

x̂ := X(ξ̂) = D1(1− 2Rξ̂)n1 − 1

ρ− 2r + θ2
ξ̂ +

ρ− r + θ2

2rR(ρ− 2r + θ2)
. (4.4)

Proof. It is enough to show that Γ < ξ̂ < 1/(2R) because the wealth function

X(c) is increasing for Γ < c < 1/(2R). From the definition of ξ̂ in (4.3), we

can easily check that ξ̂ < 1/(2R) since −1/(2Rn21D1(ρ− 2r + θ2)) > 0. Let us
consider

ξ̂ =
1

2R
− 1

2R

[
− 1

2Rn21D1(ρ− 2r + θ2)

] 1
n1−1

>
1

2R
− 1− 2RΓ

2R
= Γ,



Optimal Consumption and Investment Problem with Quadratic Utility 635

where the inequality is obtained from (4.2) in Lemma 4. ut

The following theorem details the optimal consumption and portfolio policies
and their properties without the assumption ρ − 2r + θ2 > 0 given in Koo et
al. [8].

Theorem 2. The optimal consumption and portfolio policies (c∗, π∗) are given
by

c∗t =


Γ, if Γ/r < Xt < x̃,

ξt, if x̃ ≤ Xt < x̄,

1/2R, if Xt ≥ x̄,

π∗t =


θ

σ(1−m2)

(
Xt − Γ

r

)
, if Γ/r < Xt < x̃,

θ
σ

(
−n1D1(1− 2Rξt)

n1 − 1
2R(ρ−2r+θ2) (1− 2Rξt)

)
, if x̃ ≤ Xt < x̄,

0, if Xt ≥ x̄,

where ξt is determined from the equation

Xt = D1(1− 2Rξt)
n1 − 1

ρ− 2r + θ2
ξt +

ρ− 2r + θ2

2rR(ρ− 2r + θ2)
.

Furthermore, we reaffirm the findings of Theorem 2.1 in Koo et al. [8], that π∗t
increases for x̃ ≤ Xt < x̂, but π∗t decreases for x̂ ≤ Xt < x̄, without requiring
the assumption ρ− 2r + θ2 > 0.

Proof. Using the FOCs (3.4) and (3.10) with the value function V (·) obtained
in Theorem 1, we derive the optimal consumption and portfolio policies. For
x̃ ≤ Xt < x̄, we define a function h(·) as follows:

h(ξt) :=
dπ∗t
dξt

=
θ

σ

{
2Rn21D1(1− 2Rξt)

n1−1 +
1

ρ− 2r + θ2

}
.

Taking the derivative of h(·), we derive

h′(ξt) = −4θR2n21(n1 − 1)D1

σ
(1− 2Rξt)

n1−2.

By the second inequality in (4.1), h′(·) is always negative, that is, h(·) is always
decreasing. From the proof of Lemma 2, for ρ−2r+θ2 > 0, we have 0 < n1 < 1
and D1 < 0, and for ρ − 2r + θ2 < 0, we have n1 > 1 and D1 > 0, that is,
(ρ− 2r+ θ2)D1 < 0. Thus h(·) = 0 has a unique solution ξ̂ given in (4.3), and

x̂ := X(ξ̂) is given in (4.4). Therefore we obtain, for x̃ ≤ Xt < x̂, h(·) > 0,
and, for x̂ ≤ Xt < x̄, h(·) < 0. From Lemma 3, X(c) is an increasing function
for Γ ≤ c < 1/(2R), i.e., dξt/dXt > 0. Thus, we obtain that for x̃ ≤ Xt < x̂,
dπ∗t /dXt = dπ∗t /dξt · dξt/dXt = h(ξt) · dξt/dXt > 0, and, for x̂ ≤ Xt < x̄,
dπ∗t /dXt = dπ∗t /dξt · dξt/dXt = h(ξt) · dξt/dXt < 0. ut

Theorem 3 [Verification Theorem]. V (·) in Theorem 1 satisfies the opti-
mization problem (3.1).

Math. Model. Anal., 23(4):627–638, 2018.



636 Y.H. Shin, J.L. Koo and K.-H. Roh

Proof. For any pair (c, π) ∈ A(x), we have

E
[ ∫ T

0

e−ρt
(
ct −Rc2t

)
dt
]
≤ E

[
−
∫ T

0

e−ρt
{

(rXt + πt(µ− r)− ct)V ′(Xt)

+
1

2
σ2π2

t V
′′(Xt)− ρV (Xt)

}
dt
]

= E
[
−
∫ T

0

d(e−ρtV (Xt))
]

+ E
[ ∫ T

0

e−ρtσπtV
′(Xt)dBt

]
= V (x)− e−ρtV (XT ),

where the inequality is obtained from the Bellman equation (3.3), the first
equality from Itô’s formula to e−ρtV (Xt), and the last equality from the fact
that the second term of the left-hand side of the equality is a martingale.

Taking T →∞ and using the transversality condition (3.2), we obtain the
following inequality:

V (x) ≥ sup
(c,π)∈A(w)

E
[∫ ∞

0

e−ρt
(
ct −Rc2t

)
dt

]
.

Similarly, for the pair (c∗, π∗) of optimal strategies described in Theorem 2,
we have

V (x) = E
[∫ ∞

0

e−ρt
{
c∗t −R(c∗t )

2
}
dt

]
.

Thus V (·) which is the solution to the Bellman equation (3.3) satisfies the
optimization problem (3.1). ut

5 Concluding remarks

In this paper we consider a continuous-time optimal consumption and port-
folio selection problem for an agent with quadratic utility and subsistence
consumption constraints. We find the value function and optimal consump-
tion and investment policies using the dynamic programming method. We are
able to prove all our theorems and lemmas without an explicit assumption of
ρ− 2r + θ2 > 0. As in Koo et. al [8], we find that an agent will consume at a
subsistence consumption level for wealth below a certain threshold. Her con-
sumption will increase monotonically with wealth for wealth levels above this
threshold until it reaches a bliss level of consumption for which consumption
does not increase with wealth. With regards to the agent’s investment policy,
the agent will invest a constant fraction of excess wealth into the risky asset for
wealth levels that support the subsistence consumption. The agent’s invest-
ment will increase at a decreasing rate for wealth levels above this threshold
until it reaches its maximum at another threshold, and will decline with wealth
for wealth levels above this threshold. At the wealth level which supports bliss
consumption, the agent’s investment in the risky asset will be zero.
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