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Abstract. This paper discusses the problem of estimating the trajectory of the
unknown curve γ from the sequence of m + 1 interpolation points Qm = {γ(ti)}mi=0

in arbitrary Euclidean space En. The respective knots Tm = {ti}mi=0 (in ascending
order) are assumed to be unknown. Such Qm is coined reduced data. In our setting, a
piecewise-cubic Lagrange interpolation γ̂3 : [0, T̂ ]→ En is applied to fit Qm. Here, the
missing knots Tm are replaced by their estimates T̂m = {t̂i}mi=0 in accordance with the
exponential parameterization. The latter is controlled by a single parameter λ ∈ [0, 1].
This work analyzes the intrinsic asymptotics in approximating γ by γ̂3 based on the
exponential parameterization and Qm. The multiple goals are achieved. Firstly, the
existing result established for λ = 1 (i.e. for the cumulative chord parameterization) is
extended to the remaining cases of λ ∈ [0, 1) and more-or-less uniformly sampled Qm.
As demonstrated herein, a quartic convergence order α(1) = 4 in trajectory estimation
drops discontinuously to the linear one α(λ) = 1, for all λ ∈ [0, 1). Secondly, the
asymptotics derived in this paper is also analytically proved to be sharp with the aid
of illustrative examples. Thirdly, the latter is verified in affirmative upon conducting
numerical testing. Next, the necessity of more-or-less uniformity imposed on Qm

is shown to be indispensable. In addition, several sufficient conditions for γ̂3 to be

�
Copyright c© 2019 The Author(s). Published by VGTU Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution

License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and source are credited.

ISSN: 1392-6292
https://doi.org/10.3846/mma.2019.006
mailto:ryszard.kozera@gmail.com
mailto:magda.wilkolazka@gmail.com
http://creativecommons.org/licenses/by/4.0/


Piecewise-Cubics and Exponential Parameterization 73

reparameterizable to the domain of γ are formulated. Lastly, the motivation for using
the exponential parameterization with λ ∈ [0, 1) is also outlined.

Keywords: interpolation, reduced data, convergence order and sharpness.
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1 Introduction

Let γ : [0, T ]→ En be a smooth regular curve (i.e. γ̇(t) 6= 0) over t ∈ [0, T ], for
0 < T <∞. The term reduced data Qm determines m+ 1 interpolation points
{qi}mi=0 (with qi = γ(ti)) in arbitrary Euclidean space En. The corresponding
interpolation knots T = {ti}mi=0 satisfying t0 = 0 < t1 < . . . < tm = T are
assumed here to be unknown. Any fitting scheme γ̂ interpolating Qm with
some pre-selected knots’ estimates T̂ = {t̂i}mi=0 ≈ T subject to qi = γ̂(t̂i) is
called non-parametric interpolation (see e.g. [3], [14] or [15]).

Having chosen an interpolation scheme γ̂ : [0, T̂ ]→ En and some substitutes
{t̂i}mi=0 of the respective missing knots {ti}mi=0, the question of the intrinsic
asymptotic order α in γ approximation by γ̂ arises naturally. Recall first the
basic definition (see e.g. [1], [6] or [19]):

Definition 1. We say that {ti}mi=0 is admissible if:

lim
m→∞

δm → 0+, where δm = max
1≤i≤m

{ti − ti−1 : i = 1, 2, . . . ,m}. (1.1)

The following subclass of (1.1) is here of particular relevance (see [9]):

Definition 2. The sampling {ti}mi=0 is more-or-less uniform if for some con-
stants 0 < Kl ≤ Ku and sufficiently large m: Kl

m ≤ ti− ti−1 ≤
Ku
m holds for all

i = 1, 2, . . . ,m. Equivalently, the last two inequalities can be replaced by

βδm ≤ ti+1 − ti ≤ δm, (1.2)

satisfied for some β ∈ (0, 1] and sufficiently large m.

Recall now the following (see e.g. [1] or [6]):

Definition 3. Consider a family {fδm , δm > 0} of functions fδm : [0, T ] → E.
We say that fδm is of order O(δαm) (denoted as fδm = O(δαm)), if there is a
constant K > 0 such that, for some δ̄ > 0 the inequality |fδm(t)| ≤ Kδαm holds
for all δm ∈ (0, δ̄), uniformly over [0, T ]. In case of vector-valued functions
Fδm : [0, T ]→ En by Fδm = O(δαm) it is understood that ‖Fδm‖ = O(δαm).

This paper deals with a special family of discrete exponential parametetriza-
tions designed to estimate the missing knots {ti}mi=0 (see e.g. [14]) according
to:

t̂0,λ = 0, ti+1,λ = t̂i,λ + ‖qi+1 − qi‖λ, (1.3)

for arbitrary λ ∈ [0, 1] and i = 0, 1, 2, . . . ,m − 1. In order to preserve the
ascending order of T̂λ = {t̂i,λ}mi=0 an extra constraint qi+1 6= qi is imposed
here on the admitted class of reduced data Qm. Visibly, the case of λ = 0
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in (1.3) yields the uniform distribution of {ti,0}mi=0 with no account given to
the geometrical layout of Qm. On the other hand, the so-called cumulative
chord parameterization (i.e. when λ = 1 in (1.3)) incorporates the dispersion
of Qm. Noticeably, the case of λ = 0, 5 in (1.3) covers the so-called centripetal
parameterization (see [14]). To abbreviate the notation, from now on (unless
needed otherwise) the parameter λ in subscript of t̂i,λ determined by (1.3) is
omitted.

Upon selecting specific interpolation scheme (e.g. piecewise r-degree La-
grange polynomials γ̂ = γ̂r, with either r = 2 or r = 3) and then varying the
parameter λ ∈ [0, 1] in (1.3) different interpolants γ̂r can be constructed. Recall
that for {qi, qi+1, qi+2} with r = 2 the Lagrange quadratic γ̂2,i : [t̂i, t̂i+2]→ En
satisfies γ̂2,i(t̂i+j) = qi+j , for j = 0, 1, 2 (where e.g. t̂i+j are defined accord-
ing to (1.3)). The track sum of γ̂2,i defines a piecewise-quadratic interpolant
γ̂2 : [t̂0 = 0, t̂m] → En based on reduced data Qm and {t̂i}mi=0. Upon ex-

tending the domain of each γ̂2,i from Îi = [t̂i, t̂i+2] into R one defines a mod-
ified collection of quadratics γ̌2,i : R → En fulfilling the interpolation con-
ditions γ̌2,i(t̂i+j) = qi+j and satisfying γ̌2,i|[t̂i,t̂i+2]

= γ̂2,i. The latter yields

γ̌2,i ◦ ψi = γ̂2,i ◦ ψi, for arbitrary mapping ψi : Ii = [ti, ti+2] → [t̂i, t̂i+2]. In

particular, this holds for ψi reparameterizing Ii into Îi (i.e. for ψi strictly in-
creasing). However, for ψi([ti, ti+2]) 6⊆ [t̂i, t̂i+2] the asymptotic analysis of the
difference γ̂2,i ◦ ψi − γ over Ii needs to be adjusted to γ̌2,i ◦ ψi − γ over Ii.

Assume now that ψi = ψ2,i is a unique Lagrange quadratic satisfying
ψ2,i(ti+j) = t̂i+j (for j = 0, 1, 2), where t̂i+j are defined as in (1.3). The
following result holds (see [9] and [17]):

Theorem 1. Let γ be a C3([0, T ]) regular curve in En sampled more-or-less
uniformly (see Definition 2). Assume that Qm forms reduced data with the
unknown knots estimated by (1.3). Then, uniformly over [0, T ]:

γ̌2,i ◦ ψ2,i − γ = O(δ1m), for λ ∈ [0, 1) (1.4)

and for either uniform {ti}mi=0 = iT/m or λ = 1 we have:

γ̌2,i ◦ ψ2,i − γ = O(δ3m). (1.5)

Moreover, if the mapping ψ2,i is a reparameterization of Ii into Îi (e.g. when
{ti}mi=0 is uniform or for λ = 1) then, in both (1.4) and (1.5), a phrase γ̌2,i can
be replaced by γ̂2,i.

Note that if λ = 1 the condition (1.2) can be replaced by the weaker assumption
imposed on samplings T i.e. by the condition (1.1). The asymptotics from
Theorem 1 is also proved to be sharp (see [9]) understood as:

Definition 4. For a given interpolation scheme γ̂ based on reduced data Qm
and some estimates T̂ of the unknown knots T (and subject to some selected
mapping ψ : [0, T ] → [0, T̂ ]) we say that asymptotics γ − γ̂ ◦ ψ = O(δαm)
over [0, T ] is sharp within the prescribed family of curves γ ∈ J and family
of samplings T ∈ K, if for some γ ∈ J and some sampling T ∈ K, there
exist t̄ ∈ [0, T ] and some positive constant K such that ‖(γ̂ ◦ ψ)(t̄) − γ(t̄)‖ =
Kδαm +O(δηm), where η > α.
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In particular, for sharpness of (1.4): J = C3, the more-or-less uniform
samplings (1.2) forms K, γ̂ = γ̌2 (built from γ̂2) with ψ = ψ2. Here γ̂2 (and
ψ2) is the track-sum of γ̂2,i (and of ψ2,i).

Visibly, (1.4) and (1.5) introduce the unexpected left-hand side disconti-
nuity in convergence orders α(λ) at λ = 1 dropping sharply from α(1) = 3
to α(λ) = 1 (for all λ ∈ [0, 1). The sufficient conditions guaranteeing ψ2,i :
[ti, ti+2]→ [t̂i, t̂i+2] to be a genuine reparameterization for some λ ∈ [0, 1) and
β ∈ (0, 1] are given in [9] or [10].

On the other hand, a full convergence analysis for piecewise cubic Lagrange
interpolation γ̂3,i : [t̂i, t̂i+3]→ En based on exponential parameterization (1.3)

and ψ3,i : Ji = [ti, ti+3] → Ĵi = [t̂i, t̂i+3] (satisfying ψ3,i(ti+j) = t̂i+j , for
j = 0, 1, 2, 3) is so-far completed merely for λ = 1. Indeed, as shown in [13]
and [17] a sharp quartic convergence order in estimating γ̂3,i ◦ ψ3,i − γ over
[0, T ] prevails. Here, similarly to the case of r = 2 and λ = 1 the cubic ψ3,i

defines a genuine reparameterization.

2 Main results and motivation

We emphasize now the main contributions and the motivation of this paper:
1. This paper extends the analysis of approximation error in γ̂3,i◦ψ3,i−γ for

the remaining λ ∈ [0, 1) - the case λ = 1 is covered in [17]. In fact, as proved in
the next section an analogous sharp deceleration in convergence orders claimed
by Theorem 1 appears also for r = 3 and λ ∈ [0, 1]. Before formulating the
main result we adopt a similar notation for the adjusted cubics γ̌3,i : R → En
satisfying γ̌3,i(t̂i+j) = qi+j and γ̌3,i|[t̂i,t̂i+3]

= γ̂3,i. As previously if ψ3,i maps

Ji into Ĵi then γ̌3,i ◦ ψ3,i = γ̂3,i ◦ ψ3,i. The latter holds e.g. if ψ3,i defines a

genuine reparameterization of Ji into Ĵi (i.e. ψ̇3,i > 0).
The following result is proved in this paper (see Section 3):

Theorem 2. Let γ be a C4([0, T ]) regular curve in En sampled more-or-less
uniformly (see Definition 2). Suppose that Qm defines reduced data with the
missing knots T = {ti}mi=0 compensated according to (1.3). Then the following
holds (uniformly over [0, T ]):

γ̌3,i ◦ ψ3,i − γ = O(δ1m), for λ ∈ [0, 1). (2.1)

In addition, for either Tu = { iTm }
m
i=0 or λ = 1 (for λ = 1 - see [17]) we obtain:

γ̌3,i ◦ ψ3,i − γ = O(δ4m). (2.2)

Moreover, if additionally the mapping ψ3,i is asymptotically a reparameteriza-

tion of Ji into Ĵi (e.g. when {ti}mi=0 is uniform or for λ = 1) then, in both
(2.1) and (2.2), the curve γ̌3,i can be replaced by γ̂3,i.

Recently a similar linear convergence order as in (2.1) is established in [7]
for the so-called modified Hermite interpolant γ̂H ∈ C1 combined with the
exponential parameterization (1.3) and λ ∈ [0, 1) (the case of λ = 1 was covered
in [6] or [8]). The proof used in [7] exploits the final claim of Theorem 2.

Math. Model. Anal., 24(1):72–94, 2019.
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Indeed, in order to substantiate ρ = γ̂H ◦φ−γ = O(δ1m) one decomposes ρ into
ρ = (γ̂H ◦ φ− γ̂3 ◦ ψ3) + (γ̂3 ◦ ψ3 − γ). The O(δ1m) asymptotics for the second
component in ρ follows directly from (2.1). The linear asymptotics determining
the first component γ̂H ◦ φ − γ̂3 ◦ ψ3 results upon conducting more advanced
argument (as compared to Section 3) - see [7].

2. The convergence orders established in Theorem 2 are justified analyti-
cally as sharp in accordance with Definition 4 - see Section 5.

3. Section 7 supplements a) and b) with the numerical tests conducted
in Mathematica confirming experimentally the sharpness of the asymptotics
determined in (2.1) and (2.2).

4. In Section 6 (see Example 3) it is also demonstrated with the aid of
symbolic computation performed in Mathematica that more-or-less uniformity
(1.2) cannot be dropped in Theorem 2. Remarkably, by [6] or [17] the case
of λ = 1 does not require more-or-less uniformity (1.2). Here, merely the
general class of admissible samplings (1.1) is sufficient to ascertain (1.5) or (2.2).
Noticeably, for the uniform sampling Tu the coefficient β = 1 as introduced in
(1.2).

5. Sufficient conditions enforcing ψ3,i to be a genuine reparameterization of

Ji into Ĵi are additionally formulated in the closing part of Section 4 (they are
visualized in Figure 1). In general, the question of ψ : [0, T ]→ [0, T̂ ] rendering

a reparameterization is vital e.g. for estimating the length d(γ) =
∫ T
0
‖γ̇(t)‖dt

of γ with d(γ̂) =
∫ T̂
0
‖γ̂′(t̂)‖dt̂ (see e.g. [2] and [6]). However, in certain circum-

stances, the non-parameterization cases (yielding loops in trajectory path γ̂ ◦ψ
over some segments Ji) may also be desirable for some specific applications like
robot or airborne flying devise trajectory planning (e.g. for inspecting electrical
poles by drones).

6. Fitting reduced data Qm (dense or sparse) constitutes an important task
in computer graphics and vision, engineering, physics and in other applications
like medical or biological image processing - see e.g. [4], [5], [11], [14] or [18]. The

resulting abrupt deceleration in estimating γ̂3◦ψ3−γ = O(δ
α(λ)
m ) dropping from

α(1) = 4 to α(λ) = 1 (with λ ∈ [0, 1)) yields an interesting theoretical result
complementing [17], Theorem 1 and [7]. However, the interpolation conditions
γ̂(t̂i) = qi are frequently accompanied with some extra collateral constraints
(e.g. minimizing the curvature of the γ̂ in curve modelling - see [12]). The
exponential parameterization (1.3) may serve here as a possible tool in selecting
the respective “optimal knots” T̂λ. Indeed, upon relaxing a single parameter
λ ∈ [0, 1) at the cost of maintaining a slow order α(λ) = 1 in γ estimation, an
optimal λopt ∈ [0, 1) can be found to reinforce the extra constraint in question.
Evidently, such degree of freedom is lost once λ in (1.3) is fixed. In particular,
the latter eventuates for λ = 1 frozen. Here despite resulting a fast convergence
order in trajectory estimation (as in (1.5) or in (2.2)) no flexibility of adjusting
optimal parameter λ enforcing additional constraint is left anymore.
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3 The proof of Theorem 2

In this section the proof of Theorem 2 is given. In doing so recall first the
Hadamard’s Lemma (see e.g. [16]):

Lemma 1. Let f : [a, b] → En be of class Cl, where l ≥ 1 and assume that
f(t0) = 0, for some t0 ∈ (a, b). There exists a Cl−1 function g : [a, b]→ En for
which f(t) = (t− t0)g(t). Additionally, g(t) = O(dfdt ).

If function f(t) has multiple zeros t0 ≤ t1 ≤ ... ≤ tk with k + 1 ≤ l, then
Hadamard’s Lemma applied k + 1 times yields:

f(t) = (t− t0)(t− t1)...(t− tk)h(t), (3.1)

where h is Cl−(k+1) and h = O(dk+1f/dtk+1). From now on, to justify The-
orem 2, the abbreviated notation for both cubics ψ3,i = ψi and γ̌3,i = γ̌i is
used.

Proof. The proof of Theorem 2 admits an arbitrary λ ∈ [0, 1) and any
more-or-less uniform sampling. In contrast, the special case λ = 1 (omitted
here as already justified in [17]) extends to all admissible samplings (1.1) but is
still restricted to γ ∈ C4. Noticeably, for λ = 1 each cubic ψi defines a genuine
reparameterization of Ji into Ĵi - see [6] or [17].

Define now the following “error function” fi(t) = (γ̌i ◦ ψi)(t)− γ(t). Com-
bining fi(ti+j) = 0 (for j = 0, 1, 2, 3) with Hadamard’s Lemma yields (see here
(3.1)):

fi(t) = (t− ti)(t− ti+1)(t− ti+2)(t− ti+3)[(γ̌i ◦ ψi)(4)(t)− γ(4)(t)]
= O(δ4m) ·O((γ̌i ◦ ψi)(4)(t)− γ(4)(t)). (3.2)

Since γ̌i and ψi are cubics the chain rule applied to (3.2) results in:

(γ̌i ◦ ψi)(4)(t) = 6γ̌′′′i (t̂)ψ̇2
i (t)ψ̈i(t) + 3γ̌′′i (t̂)ψ̈2

i (t) + 4γ̌′′i (t̂)ψ̇i(t)
...
ψ i(t) (3.3)

with the respective derivatives over t or t̂ = ψi(t) expressed by either dotted or
apostrophed notations, respectively. Coupling the latter with (3.2) and γ ∈ C4

defined over a compact set [0, T ] leads to:

fi(t) = O(δ4m)[O(γ̌′′′i (t̂)ψ̇2
i (t)ψ̈i(t))

+O(γ̌′′i (t̂)ψ̈2
i (t)) +O(γ̌′′i (t̂)ψ̇i(t)

...
ψ i(t)) +O(1)]. (3.4)

We pass now to the determination of the respective asymptotics for all
contributing terms appearing in (3.4).

3.1 Estimation of derivatives of ψi

To examine the asymptotics of the derivatives of ψi, recall now Newton’s in-
terpolation formula (see [1] or [19]) reading as:

ψi(t) = ψi[ti] + ψi[ti, ti+1](t− ti) + ψi[ti, ti+1, ti+2](t− ti)(ti − ti+1)

+ψi[ti, ti+1, ti+2, ti+3](t− ti)(t− ti+1)(t− ti+2),

Math. Model. Anal., 24(1):72–94, 2019.



78 R. Kozera and M. Wilko lazka

over Ji. Hence

ψ̇i(t) = ψi[ti, ti+1] + (2t− ti − ti+1)ψi[ti, ti+1, ti+2] + [(t− ti+1)(t− ti+2)

+ (t− ti)(t− ti+1) + (t− ti)(t− ti+2)]ψi[ti, ti+1, ti+2, ti+3]. (3.5)

Consequently

ψ̈i(t) = 2ψi[ti, ti+1, ti+2] + 2(3t− ti+2 − ti+1 − ti)ψi[ti, ti+1, ti+2, ti+3],
...
ψi(t) = 6ψi[ti, ti+1, ti+2, ti+3]. (3.6)

Thus by (3.5) and (3.6), the examination of the asymptotics of ψ̇i, ψ̈i,
...
ψ i

over each Ji relies on estimating the asymptotic orders of divided differences
ψi[ti, ti+1], ψi[ti, ti+1, ti+2] and ψi[ti, ti+1, ti+2, ti+3]. Taylor’s expansion com-
bined with (1.3) (see also [9], where quadratics ψ2,i instead of cubics ψ3,i are
analyzed) yields:

ψi[ti, ti+1] =
ψi(ti+1)− ψi(ti)

ti+1 − ti
=
‖γ(ti+1)− γ(ti))‖λ

ti+1 − ti
= (ti+1 − ti)λ−1 +O((ti+1 − ti)λ+1) = O(δλ−1m ). (3.7)

Note that since λ−1 < 0 the last step in (3.7) resorts to more-or-less uniformity
since then 0 < (ti+1 − ti)

λ−1 ≤ βλ−1δ1−λm . In addition, the justification of
(3.7) relies also on the regularity of the curve γ. Indeed, such curves are
reparameterizable to arc-length rendering ‖γ̇(t)‖ = 1 (for each t ∈ [0, T ]) -
see [15] and [2]. Thus, the dot product 〈γ̇(t)|γ̈(t)〉 ≡ 0 nullifies slow terms in
Taylor expansion of ‖γ(ti+1)− γ(ti)‖. Similarly, for j = 0, 1 we have

ψi[ti+j+1, ti+j+2] = (ti+j+2 − ti+j+1)λ−1

+O((ti+j+2 − ti+j+1)λ+1) = O(δλ−1m ). (3.8)

The formula for ψi[ti, ti+1, ti+2] and 0 < (ti+j+1 − ti+j)(ti+2 − ti)−1 < 1 (for
j = 0, 1) coupled together with (3.7) and (3.8) yields:

ψi[ti, ti+1, ti+2] =
(ti+2 − ti+1)λ−1 − (ti+1 − ti)λ−1

ti+2 − ti
(3.9)

+O((ti+2 − ti+1)λ) +O((ti+1 − ti)λ) = O(δλ−2m ).

Again (1.2) is exploited while justifying the last step of (3.9). Analogously:

ψi[ti+1, ti+2, ti+3] =
(ti+3 − ti+2)λ−1 − (ti+2 − ti+1)λ−1

ti+3 − ti+1
(3.10)

+O((ti+3 − ti+2)λ) +O((ti+2 − ti+1)λ) = O(δλ−2m ).

Thus by (3.9) and (3.10) the fourth divided difference

ψi[ti, ti+1, ti+2, ti+3] =
(ti+3 − ti+2)λ−1 − (ti+2 − ti+1)λ−1

(ti+3 − ti+1)(ti+3 − ti)

− (ti+2−ti+1)λ−1−(ti+1−ti)λ−1

(ti+2 − ti)(ti+3 − ti)
+
O((ti+3−ti+2)λ+1)+O((ti+2−ti+1)λ+1)

(ti+3 − ti+1)(ti+3 − ti)

+
O((ti+2 − ti+1)λ+1) +O((ti+1 − ti)λ+1)

(ti+2 − ti)(ti+3 − ti)
. (3.11)
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Upon observing 0 < (ti+j+2 − ti+j+1)2((ti+3 − ti+1)(ti+3 − ti))
−1 < 1 and

0 < (ti+j+1 − ti+j)2((ti+2 − ti)(ti+3 − ti))−1 < 1 (for j = 0, 1) formula (3.11)
used together with more-or-less uniformity leads to:

ψi[ti, ti+1, ti+2, ti+3] = O(δλ−3m ) +O(δλ−1m ) = O(δλ−3m ). (3.12)

Coupling together (3.5), (3.7), (3.9) and (3.12) leads to:

ψ̇i(t) = O(δλ−1m ) +O(δm) ·O(δλ−2m ) +O(δ2m) ·O(δλ−3m ) = O(δλ−1m ). (3.13)

Similarly by (3.6), (3.7), (3.9) and (3.12) the following holds:

ψ̈i(t) = O(δλ−2m ) +O(δm) ·O(δλ−3m ) = O(δλ−2m ),
...
ψ i(t) = O(δλ−33 ). (3.14)

The latter exploits the inequalities

|t− tk| ≤ ti+3 − ti = (ti+1 − ti) + (ti+2 − ti+1) + (ti+3 − ti+2) ≤ 3δm,

holding for each t, tk ∈ [ti, ti+3] (with k = 0, 1, 2).
For the special case of uniform samplings Tu = { iTm }

m
i=0 (where β = 1 -

see (1.2)) by (3.7), (3.9) and (3.11) we have (for λ ∈ [0, 1)):

ψi[ti, ti+1] = δλ−1m +O(δλ+1
m ), ψi[ti, ti+1, ti+2] = O(δλm),

ψi[ti, ti+1, ti+2, ti+3] = O(δλ−1m ). (3.15)

Consequently for β = 1, by (3.5), (3.6) and (3.15) we have (over each Ji):

ψ̇i(t) = δλ−1m +O(δλ+1
m ), ψ̈i(t) = O(δλm) and

...
ψ i(t) = O(δλ−1m ). (3.16)

Hence by (3.16), ψ̇i > 0 asymptotically. Thus for uniform samplings {iT/m}mi=0

ψi defines a genuine reparameterization of Ji into Ĵi, for sufficiently large m.

3.2 Estimation of derivatives of γ̌i

We estimate now the derivatives of γ̌i : [ti, ti+3] → En present in (3.2) and
(3.3). Again Newton’s interpolation formula (see e.g. [1]) applied to γ̌i yields
(for any t̂ ∈ R):

γ̌i(t̂) = γ̌i[t̂i] + γ̌i[t̂i, t̂i+1](t̂− t̂i) + γ̌i[t̂i, t̂i+1, t̂i+2](t̂− t̂i)(t̂i − t̂i+1)

+γ̌i[t̂i, t̂i+1, t̂i+2, t̂i+3](t̂− t̂i)(t̂− t̂i+1)(t̂− t̂i+2).

Hence

γ̌′′i (t̂) = 2γ̂i[t̂i, t̂i+1, t̂i+2] + 2(3t̂− t̂i+2 − t̂i+1 − ti)γ̌i[t̂i, t̂i+1, t̂i+2, t̂i+3],

γ̌′′′i (t̂) = 6γ̌i[t̂i, t̂i+1, t̂i+2, t̂i+3]. (3.17)

As previously, the orders of γ̌i[t̂i, t̂i+1], γ̌i[t̂i, t̂i+1, t̂i+2] and γ̌i[t̂i, t̂i+1, t̂i+2, t̂i+3]
need to be examined. In doing so, observe first that:

γ̌i[t̂i, t̂i+1] =
γ̌i(t̂i+1)− γ̌i(t̂i)

t̂i+1 − t̂i
=

γ(ti+1)− γ(ti)

‖γ(ti+1)− γ(ti)‖λ
. (3.18)
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Taylor’s expansion applied to γ yields:

γ(ti+1)− γ(ti) = (ti+1 − ti)[γ̇(ti) +
(ti+1 − ti)

2
γ̈(ti) +O((ti+1 − ti)2)]. (3.19)

Since ‖γ̇(t)‖ = 1 (and thus 〈γ̇(t)|γ̈(t)〉 = 0) we arrive at:

t̂i+1 − t̂i = ‖γ(ti+1)− γ(ti))‖λ = (ti+1 − ti)λ[1 +O((ti+1 − ti)2)]
λ
2

= (ti+1 − ti)λ[1 +O((ti+1 − ti)2)]. (3.20)

The last step exploits (1 + x)
λ
2 = 1 + λ

2x + O(x2) (for x separated from −1).
Hence by (3.18), (3.19) and (3.20) we obtain

γ̌i[t̂i, t̂i+1] =
(ti+1 − ti)1−λ[γ̇(ti) + (ti+1−ti)

2 γ̈(ti) +O((ti+1 − ti)2)]

1 +O((ti+1 − ti)2)

= (ti+1 − ti)1−λ[γ̇(ti) +
(ti+1 − ti)

2
γ̈(ti) +O((ti+1 − ti)2)] (3.21)

as (1 +O(x))−1 = 1 +O(x) (for x separated from −1). Analogously

γ̌i[t̂i+1, t̂i+2] = (ti+2 − ti+1)1−λ[γ̇(ti+1)

+
(ti+2 − ti+1)

2
γ̈(ti+1) +O((ti+2 − ti+1)2)]. (3.22)

By (3.21), (3.22) and t̂i+k+2 − t̂i+k = (t̂i+k+2 − t̂i+k+1) + (t̂i+k+1 − t̂i+k) (for
k = 0, 1) the asymptotic bound for γ̌i[t̂i+k, t̂i+k+1, t̂i+k+2] = a

a =
(ti+k+2 − ti+k+1)1−λ[γ̇(ti+k+1) + ti+k+2−ti+k+1

2 γ̈(ti+k+1)]

(t̂i+k+2 − t̂i+k+1) + (t̂i+k+1 − t̂i+k)

−
(ti+k+1 − ti+k)1−λ[γ̇(ti+k) + ti+k+1−ti+k

2 γ̈(ti+k)]

(t̂i+k+2 − t̂i+k+1) + (t̂i+k+1 − t̂i+k)

+
O((ti+k+2 − ti+k+1)2) +O((ti+k+1 − ti+k)2)

(t̂i+k+2 − t̂i+k+1) + (t̂i+k+1 − t̂i+k)
. (3.23)

Using hybrids of (3.20) with (3.23) renders ‖γ̌i[t̂i+k, t̂i+k+1, t̂i+k+2]‖ = b

b ≤
(ti+k+2 − ti+k+1)1−2λ‖γ̇(ti+k+1) + ti+k+2−ti+k+1

2 γ̈(ti+k+1)‖
1 +O((ti+k+2 − ti+k+1)2)

+
(ti+k+1 − ti+k)1−2λ‖γ̇(ti+k) + ti+k+1−ti+k

2 γ̈(ti+k)‖
1 +O((ti+k+1 − ti+k)2)

+
‖O((ti+k+2 − ti+k+1)2−λ)‖
1 +O((ti+k+2 − ti+k+1)2)

+
‖O((ti+k+1 − ti+k)2−λ)‖
1 +O((ti+k+1 − ti+k)2)

. (3.24)

In the latter the asymptotic positivity of both factors from (3.20) is used as for
the exponential parameterization (1.3) with qi+1 6= qi we have t̂l − t̂s > 0 for
l > s. Since 1 − 2λ < 2 − λ (for λ ∈ [0, 1)) and f(x) = (1 + x)−1 = 1 + O(x)
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(holding for x separated from −1), more-or-less uniformity of {ti}mi=0 (needed
when 1− 2λ < 0) combined with ‖γ̇(t)‖2 = 〈γ̇(t)|γ̇(t)〉 ≡ 1 leads to:

‖γ̌i[t̂i+k, t̂i+k+1, t̂i+k+2]‖ = O(δ1−2λm ) +O(δ2−λm ) = O(δ1−2λm ),

which by Definition 3 reformulates into:

γ̌i[t̂i+k, t̂i+k+1, t̂i+k+2] = O(δ1−2λm ). (3.25)

In order to examine the asymptotics of γ̌i[t̂i, t̂i+1, t̂i+2, t̂i+3], formula (3.23)
and 0 < t̂i+3 − t̂i = (t̂i+3 − t̂i+2) + (t̂i+2 − t̂i+1) + (t̂i+1 − t̂i) are combined
together. Thus as previously for exponential parameterization (1.3) we have
(t̂i+3 − t̂i)−1 ≤ (t̂i+l+1 − t̂i+l)−1 (for l = 0, 1, 2). Hence by (3.23) the fourth
divided difference

γ̌i[t̂i, t̂i+1, t̂i+2, t̂i+3] =
γ̌i[t̂i+1, t̂i+2, t̂i+3]− γ̌i[t̂i, t̂i+1, t̂i+2]

t̂i+3 − t̂i

=
1

t̂i+3 − t̂i

( (ti+3 − ti+2)1−λ[γ̇(ti+2) + ti+3−ti+2

2 γ̈(ti+2)]

(t̂i+3 − t̂i+2) + (t̂i+2 − t̂i+1)

−
(ti+2 − ti+1)1−λ[γ̇(ti+1) + ti+2−ti+1

2 γ̈(ti+1)]

(t̂i+3 − t̂i+2) + (t̂i+2 − t̂i+1)

+
O((ti+3 − ti+2)2)

(t̂i+3 − t̂i+2) + (t̂i+2 − t̂i+1)
+

O((ti+2 − ti+1)2)

(t̂i+3 − t̂i+2) + (t̂i+2 − t̂i+1)

−
(ti+2 − ti+1)1−λ

(
[γ̇(ti+1) + ti+2−ti+1

2 γ̈(ti+1)] + [γ̇(ti) + ti+1−ti
2 γ̈(ti)]

)
(t̂i+2 − t̂i+1) + (t̂i+1 − t̂i)

+
O((ti+2 − ti+1)2)

(t̂i+2 − t̂i+1) + (t̂i+1 − t̂i)
+

O((ti+1 − ti)2)

(t̂i+2 − t̂i+1) + (t̂i+1 − t̂i)

)
. (3.26)

Thus as for (3.24), formula (3.26) yields an upper bound for

‖γ̌i[t̂i, t̂i+1, t̂i+2, t̂i+3]‖ ≤
(ti+3 − ti+2)1−3λ‖γ̇(ti+2) + ti+3−ti+2

2 γ̈(ti+2)‖
1 +O((ti+3 − ti+2)2)

+2
(ti+2 − ti+1)1−3λ‖γ̇(ti+1) + ti+2−ti+1

2 γ̈(ti+1)‖
1 +O((ti+2 − ti+1)2)

+
‖O((ti+3 − ti+2)2−2λ)‖
1 +O((ti+3 − ti+2)2)

+
‖O((ti+2 − ti+1)2−2λ)‖
1 +O((ti+2 − ti+1)2)

.

Hence as for proving (3.25), given 1− 3λ < 2− 2λ (for λ ∈ [0, 1]) we obtain:

γ̌i[t̂i, t̂i+1, t̂i+2, t̂i+3] = O(δ1−3λm ).

Consequently by (3.17) the following holds:

γ̌′′′i (t̂) = O(δ1−3λm ). (3.27)

Furthermore, again by (3.17) and (3.25) (for t̂ ∈ ψi([ti, ti+3])) we have:

γ̌′′i (t̂) = O(δ1−2λm ) + 2[(t̂− t̂i+2) + (t̂− t̂i+1) + (t̂− t̂i)] ·O(δ1−3λm ). (3.28)
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Thus by (3.13) and Lagrange Theorem for arbitrary t̂ = ψi(t) ∈ ψi([ti, ti+3])
(and for j = 0, 1, 2 and t ∈ [ti, ti+3]) one arrives at:

t̂− t̂i+j =
ψi(t)− ψi(ti+j)

t− ti+j
(t− ti+j) = ψ̇i(ξ)(t− ti+j) = O(δλm). (3.29)

Hence, coupling (3.28) with (3.29) results in:

γ̌′′i (t̂) = O(δ1−2λm ). (3.30)

A special case of uniform samplings Tu = { iTm }
m
i=0 (with β = 1 in (1.2)) leads

to some simplifications. Indeed upon incorporating into (3.23) both ti+k+2 −
ti+k+1 = ti+k+1 − ti+k = δm and γ̇(ti+k+1) = γ̇(ti+k) +O((ti+k+1 − ti+k)) the
term δm factorizes in the first two expressions accelerating the third divided
differences (here 0 ≤ 2− 2λ ≤ 2− λ for λ ≥ 0 and k = 0, 1) by order one to:

γ̌i[t̂i+k, t̂i+k+1, t̂i+k+2] = O(δ2−2λm ) +O(δ2−λm ) = O(δ2−2λm ). (3.31)

A similar reduction follows in (3.26) upon using t̂i+3 − t̂i+2 = t̂i+2 − t̂i+1 =
t̂i+1− t̂i with γ̇(ti+k+1) = γ̇(ti+k)+O(ti+k+1−ti+k) (where k = 0, 1) rendering:

γ̌′′′i (t̂) = 6γ̌i[t̂i, t̂i+1, t̂i+2, t̂i+3] = O(δ2−3λm ) +O(δ2−2λm ) = O(δ2−3λm ). (3.32)

Consequently the latter combined with (3.17), (3.29) and (3.31) yields:

γ̌′′i (t̂) = O(δ2−2λm ) +O(δ2−3λm ) ·O(δλm) = O(δ2−2λm ). (3.33)

3.3 Final estimation of differences fi = γ̌i ◦ ψi − γ

We examine now the underlying asymptotics in fi = γ̌i ◦ψi− γ uniformly over
each Ji and for arbitrary λ ∈ [0, 1) (see (3.4)). Indeed, upon feeding (3.13),
(3.14), (3.27) and (3.30) into (3.4) one obtains:

fi(t) = O(δ4m) · [O(δ1−3λm ) ·O(δ2λ−2m ) ·O(δλ−2m ) +O(δ1−2λm ) ·O(δ2λ−4m )

+O(δ1−2λm ) ·O(δλ−1m ) ·O(δλ−3m ) +O(1)],

which ultimately leads to:

fi(t) = O(δ4m) · [O(δ−3m ) +O(δ−3m ) +O(δ−3m ) +O(1)] = O(δ1m).

The latter justifies the first claim (2.1) of Theorem 2.
The special case of uniform samplings addressed by (2.2) follows once (3.16),

(3.32) and (3.33) are incorporated into (3.4) resulting in (uniformly over Ji):

fi(t) = O(δ4) · [O(δ2−3λm ) ·O(δ2λ−2m ) ·O(δλm) +O(δ2−2λm ) ·O(δ2λm )

+O(δ2−2λm ) ·O(δλ−1m ) ·O(δλ−1m ) +O(1)],

which in turn yields:

fi(t) = O(δ4m) · [O(1) +O(δ2m) +O(1) +O(1)] = O(δ4m).

The proof is thus completed. ut
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4 Sufficient conditions on reparameterization

In this section several sufficient conditions for the cubic ψi to yield a genuine
reparameterization are formulated. The case of λ = 1 renders ψi as a parame-
terization for arbitrary admissible sampling (1.1) as proved in [17]. The impor-
tance of ψ̇i > 0 is outlined in Section 2 - see item e). Noticeably to enforce ψi
as a reparameterization it suffices to let the quadratic ψ̇i(t) = ait

2+bit+ci > 0
over each Ji. The latter follows if e.g. (see Figure 1):

(i) ai < 0 ∧ ψ̇i(ti) > 0 ∧ ψ̇i(ti+3) > 0,

(ii) ai > 0 ∧ ψ̇i(ti) > 0 ∧ − bi/2ai < ti,

(iii) ai > 0 ∧ −bi/2ai > ti+3 ∧ ψ̇i(ti+3) > 0,

(iv) ai > 0 ∧ ψ̇i
(
− bi/2ai

)
> 0. (4.1)

Clearly for a given collection of Qm and T , the testing of ψ̇i > 0 over different Ji
can vary between constraints (i)− (iv) (or between any other ones). Assuming
that we admit the subfamily of more-or-less uniform samplings (1.2) satisfying
0 < β0 ≤ β ≤ 1 (with some β0 fixed) the conditions (4.1) can be expressed in
terms of β0. A full treatment of solving (4.1) for arbitrary λ ∈ [0, 1) exceeds
the scope and page limit for this paper. Some hints can be found in [10], where
the parameterization issue for piecewise-quadratic Lagrange interpolation γ̂2
based on Qm and exponential parameterization (1.3) is thoroughly studied.

a) b)

c) d)

Figure 1. The plot of (4.1) with ψ̇i > 0 over [ti, ti+3] for: a) (i), b) (ii), c) (iii) & d) (iv).

5 Sharpness of the asymptotics in trajectory estimation

The sharpness of the asymptotics from Theorem 2 (see also Definition 4) is
proved below. In doing so, assume the straight line γl(t) = (t, 0) ∈ E2 to be
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sampled more-or-less uniformly (over consecutive Ji) according to:

ti =
i

m
, ti =

i+ 1

m
, ti+2 =

i+ 2

m
and ti+3 =

i+ 4

m
. (5.1)

Here δm = 2
m and β = 1

2 - see Definition 2. The reduced data qi = γl(ti) are

supplemented with T̂ ≈ T determined by the exponential parameterization
(1.3). The analysis to follow (for λ ∈ [0, 1)) results in

f li = γ̌ ◦ ψi − γl = Kδm +O(δηm),

holding asymptotically for some η > 1 (uniformly over each Ji). To prove the
sharpness of Theorem 2 it suffices to show the latter for some particular t̄ ∈ Ji
and a special i. The constant K and those from O(δηm) are independent of m.
The sharpness of (2.1) is proved in the next example.

Example 1. Given δ̄ = δm/2 the sampling (5.1) over J0 reads as:

t0 = 0, t1 = δ̄, t2 = 2δ̄ and t3 = 4δ̄. (5.2)

The exponential parameterization (1.3) for {γl(ti)}3i=0 yields:

t̂0 = 0, t̂1 = δ̄λ, t̂2 = 2δ̄λ and t̂3 = (2 + 2λ)δ̄λ. (5.3)

The corresponding divided differences for a cubic ψ0 : J0 → R are equal to:

ψ0[0] = 0, ψ0[0, δ̄] = ψ0[δ̄, 2δ̄] = δ̄λ−1 and ψ0[0, δ̄, 2δ̄] = 0. (5.4)

Coupling now ψ0[δ̄, 2δ̄, 4δ̄] = (1/3)(2λ−1 − 1)δ̄λ−2 with (5.4) leads to:

ψ0[0, δ̄, 2δ̄, 4δ̄] =
1

12
(2λ−1 − 1)δ̄λ−3. (5.5)

Thus by (3.5), (5.2), (5.4) and (5.5) we arrive at:

ψ0(t) = δ̄λ−1t+
1

12
(2λ−1 − 1)δ̄λ−3t(t− δ̄)(t− 2δ̄), (5.6)

for any t ∈ [0, 4δ̄] = J0. Substituting t̄ = 3δ̄ ∈ J0 into (5.6) yields:

ψ0(3δ̄) =

(
5

2
+ 2λ−2

)
δ̄λ. (5.7)

Similarly, by (5.3) for γl we obtain the following:

γ̌0(0) = ~0, γ̌0(δ̄λ) = (δ̄, 0), γ̌0(2δ̄λ) = (2δ̄, 0), γ̌0((2λ + 2)δ̄λ) = (4δ̄, 0).

Consequently:

γ̌0[0] = ~0, γ̌0[0, δ̄λ] = γ̌0[δ̄λ, 2δ̄λ] = (δ̄1−λ, 0), γ̌0[0, δ̄λ, 2δ̄λ] = ~0. (5.8)

In addition, as γ̌0[2δ̄λ, (2 + 2λ)δ̄λ] = (21−λδ̄1−λ, 0) we have:

γ̌0[δ̄λ, 2δ̄λ, (2 + 2λ)δ̄λ] =

(
21−λ − 1

2λ + 1
δ̄1−2λ, 0

)
. (5.9)
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Hence upon combining now (5.8) with (5.9) we arrive at:

γ̌0[0, δ̄λ, 2δ̄λ, (2 + 2λ)δ̄λ] =
( 21−λ − 1

(2λ + 1)(2 + 2λ)
δ̄1−3λ, 0

)
. (5.10)

Again coupling together (5.3), (5.8) and (5.10) yields, for t̂ = ψ0(t) with t ∈
[0, 4δ̄], the following formula:

γ̌0(t̂) =
(
δ̄1−λt̂+

21−λ − 1

(2λ + 1)(2 + 2λ)
δ̄1−3λt̂(t̂− δ̄λ)(t̂− 2δ̄λ), 0

)
. (5.11)

By (5.7) and (5.11) the “error difference”:

f l0(3δ̄) = γ̌0(ψ0(3δ̄))− γ(3δ̄) = ((1/2)ρ(λ)δm, 0) ,

where for λ ∈ [0, 1) we have

ρ(λ)=
(5

2
+2λ−2

)(
1 +

(1

2
+ 2λ−2

)(3

2
+2λ−2

) 21−λ − 1

(2λ+1)(2+2λ)

)
−3. (5.12)

The plots of the function ρ over [0, 1) together with its magnification over
[0.899, 1) are presented in Figure 2. Evidently the coefficient ρ(λ) standing
along δm is non-vanishing. Noticeably ρ(1) = 0 and thus f l0(3δ̄) = 0.
A moment of reflection reveals that here both γl and γ̌ coincide (since ti = t̂i)
resulting in f l ≡ 0 over [0, T ]. By (5.12) a linear convergence order for f l0
holds at t̂ = 3δ̄ which implies that f l defined as a track-sum of f li cannot be
of faster order than a linear one (uniformly over [0, T ]). On the other by (2.1)
the difference f l satisfies O(δ1m). Consequently the sharpness of (2.1) is proved
(see also Definition 4). Note that the sharpness of (2.2) for λ = 1 and general
admissible samplings (1.1) follows as a spin-off of calculations from Example 3.
�

a) b)

Figure 2. The plot of ρ(λ) > 0 from (5.12) over a) [0, 1) and b) [0, 899, 1).

The next example justifies the sharpness of (2.2) (see also Definition 4)
established for uniform sampling (here δm = T/m). Without loss one may
assume that [0, T ] is shifted left by fixed ε > 0 to [−ε, T −ε] so that, asymptot-
ically it contains all interpolation knots ti = −2δm, ti+1 = −δm, ti+2 = 0 and
ti+3 = δm. In order to simplify the notation used for ti+j (with j = 0, 1, 2, 3)
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we set i = 0. The regular curve tested now coincides with γq(t) = (t4 + t, 0).
The asymptotics of the respective difference hq = γ̌ ◦ ψ − γq is examined over
J0 = [−2δm, δm]. The detailed symbolic calculations used in Example 2 is
stored in Mathematica Notebook under the URL link [20].

Example 2. The uniform knots (with δm = T/m):

t0 = −2δm, t1 = −δm, t2 = 0, t3 = δm (5.13)

together with the exponential parameterization (1.3) and {γq(ti)}3i=0 give
(asymptotically):

t̂0 = 0, t̂1 =
(
δm − 15δ4m

)λ
, t̂2 =

[ (
δm − 15δ4m

)λ
+
(
δm − δ4m

)λ ]
,

t̂3 =
[
(δm − 15δ4m)λ + (δm − δ4m)λ + (δm + δ4m)λ

]
. (5.14)

The divided differences of order one or two for a cubic ψ : [−2δm, δm] → R
amount to:

ψ[−2δm] = 0, ψ[−2δm,−δm] = (δm − 15δ4m)λ/δm,

ψ[−δm, 0] = (δm − δ4m)λ/δm, ψ[0, δm] = (δm + δ4m)λ/δm. (5.15)

Note that we omit here the subscript 0 in ψ0. The latter yields:

ψ[−2δm,−δm, 0] =
(
(δm − δ4m)λ − (δm − 15δ4m)λ

)
/(2δ2m),

ψ[−δm, 0, δm] =
(
(δm + δ4m)λ − (δm − δ4m)λ

)
/(2δ2m), (5.16)

which in turn renders:

ψ[−2δm,−δm, 0, δm] =
(δm − 15δ4m)λ − 2(δm − δ4m)λ + (δm + δ4m)λ

6δ3m
. (5.17)

Combining (3.5) with (5.13), (5.15), (5.16), (5.17) and upon using Collect
Mathematica function (Collect [Collect [ψ[t, λ], λ], t]) leads to:

ψ(t) = (δm − 15δ4m)λ + (δm − δ4m)λ +
[(
− (δm − 15δ4m)λ + 5(δm − δ4m)λ

+ 2(δm + δ4m)λ
)
/(6δm)

]
t+
[(

(δm + δ4m)λ − (δm − δ4m)λ
)
/(2δ2m)

]
t2

+
[(

(δm − 15δ4m)λ − 2(δm − δ4m)λ + (δm + δ4m)λ
)
/(6δ3m)

]
t3, (5.18)

for an arbitrary t ∈ [−2δm, δm]. The evaluation of (5.18) at t̄ = (δm/2) with
Mathematica symbolic computation Collect [ψ[δm/2, λ], λ] results in:

ψ(t̄) = (15/16)(δm − 15δ4m)λ + (5/4)(δm − δ4m)λ + (5/16)(δm + δ4m)λ. (5.19)

As γq and γ̌ coincide at interpolation points {qi+j}3j=0 we have γ̌(t̂2) = ~0 and:

γ̌(t̂0) = (−2δm + 16δ4m, 0), γ̌(t̂1) = (−δm + δ4m, 0), γ̌(t̂3) = (δm + δ4m, 0).

Hence and by (5.14) the respective divided differences for γ̌ are equal:

γ̌[t̂0] = (−2δm + 16δ4m, 0), γ̌[t̂0, t̂1] = ((δm − 15δ4m)1−λ, 0),

γ̌[t̂1, t̂2] = ((δm − δ4m)1−λ, 0), γ̌[t̂2, t̂3] = ((δm + δ4m)1−λ, 0). (5.20)
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Thus the third divided differences satisfy:

γ̌[t̂0, t̂1, t̂2] =

(
−(δm − 15δ4m)1−λ + (δm − δ4m)1−λ

(δm − 15δ4m)λ + (δm − δ4m)λ
, 0

)
,

γ̌[t̂1, t̂2, t̂3] =

(
−(δm − δ4m)1−λ + (δm + δ4m)1−λ

(δm − δ4m)λ + (δm + δ4m)λ
, 0

)
, (5.21)

which in turn with the aid of Mathematica Simplify function leads to:

γ̌[t̂0, t̂1, t̂2, t̂3] =

 (δm−15δ4m)1−λ−(δm−δ4m)1−λ

(δm−15δ4m)λ+(δm−δ4m)λ
+
−(δm−δ4m)1−λ+(δm+δ4m)1−λ

(δm−δ4m)λ+(δm+δ4m)λ

(δm − 15δ4m)λ + (δm − δ4m)λ + (δm + δ4m)λ
, 0

 .

(5.22)

Applying (5.14), (5.19), (5.20), (5.21) and (5.22) with Newton’s interpolation

formula yields for hq(t̄) = (γ̌ ◦ ψ − γq)(t̄) (with ¯̂t = ψ(t̄)) the following:

hq(t̄) =

(
− 2δm + 16δ4m + ¯̂t(δm − 15δ4m)1−λ

+
¯̂t
(¯̂t− (δm − 15δ4m)λ

)(
(δm − δ4m)1−λ − (δm − 15δ4m)1−λ

)
(δm − 15δ4m)λ + (δm − δ4m)λ

+
¯̂t
(¯̂t− (δm − 15δ4m)λ

)(¯̂t− (δm − 15δ4m)λ − (δm − δ4m)λ
)

(δm − 15δ4m)λ + (δm − δ4m)λ + (δm + δ4m)λ
(5.23)

×
( (δm − 15δ4m)1−λ − (δm − δ4m)1−λ

(δm − 15δ4m)λ + (δm − δ4m)λ
+

(δm + δ4m)1−λ − (δm − δ4m)1−λ

(δm − δ4m)λ + (δm + δ4m)λ

)
, 0

)
.

Setting λ = 1 or λ = 0 in (5.23) and applying Mathematica Simplify function
leads to hq(t̄) = 15

16δ
4
m. The latter proves the sharpness of (2.2) for uniformly

sampled regular curves and two special cases of either λ = 1 or λ = 0. In order
to recalculate (5.23) for other λ ∈ (0, 1), Series[fi[δm, {δm, 0, 3}] in Mathematica
is used to expand the expressions fi (for i = 1, 2, 3) into Taylor series (up to the
3rd order at 0) yielding f1(δm) = (1− 15δ3m)λ = 1− 15λδ3m +O(δ4m), f2(δm) =
(1 − δ3m)λ = 1 − λδ3m + O(δ4m), and f3(δm) = (1 + δ3m)λ = 1 + λδ3m + O(δ4m).
The latter passed into (5.14) yields:

t̂1 = δλm
(
1− 15λδ3m +O(δ4m)

)
,

t̂2 = δλm
(
1− 15λδ3m +O(δ4m)

)
+ δλm

(
1− λδ3m +O(δ4m)

)
,

t̂3 = δλm
(
1− 15λδ3m +O(δ4m)

)
+ δλm

(
1 +O(δ4m)

)
. (5.24)

Define now in Mathematica for the first coordinate of hq(t) = γ̌ ◦ ψ − γq the
function:

fun[λ ]:=γ̌[Factor[Collect[ψ[δm/2, λ], λ]], λ]− ((δm/2)4 + δm/2). (5.25)

Upon passing (5.24) into (5.25) (without Simplify) we obtain that

fun(λ) =(
255

16
+

15

8
(14− 14λ)− 15λ+

5

8
(−6 + 6λ) +

5

2
(−15 + 15λ)

)
δ4m +O(δ5m),
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or with Simplify we have fun(λ) = 15
16δ

4
m + O(δ5m) - see also the Mathematica

Notebook under the URL link [20]. The latter justifies the sharpness of (2.2)
for the remaining λ ∈ (0, 1) and any uniformly sampled γ ∈ C4. �

6 Necessity of more-or-less uniformity

We demonstrate now that more-or-less-uniformity for (2.1) (with λ ∈ [0, 1))
is essential and cannot be omitted in Theorem 2. A simple inspection shows
that the admissible sampling (6.1) does not satisfy more-or-less uniformity
(1.2) (with δm → 0). As previously we simplify the notation used for ti+j
(with j = 0, 1, 2, 3) by setting i = 0. The asymptotics of hq(t) = (γ̌ ◦ ψ)(t) −
γq(t) is examined over the sub-interval J0 = [−δm, δm]. The detailed symbolic
computations used in Example 3 are conducted in Mathematica Notebook stored
under the URL link [21].

Example 3. Consider now the following non-more-or-less uniform sampling:

t0 = −δm, t1 = 0, t2 = δ2m and t3 = δm. (6.1)

The exponential parameterization (1.3) applied to {γq(ti)}3i=0 and (6.1) yields
(asymptotically):

t̂0 = 0, t̂1 =
(
δm − δ4m

)λ
, t̂2 =

(
δm − δ4m

)λ
+
(
δ2m + δ8m

)λ
,

t̂3 =
(
δm − δ4m

)λ
+
(
δm − δ2m + δ4m − δ8m

)λ
+
(
δ2m + δ8m

)λ
. (6.2)

The corresponding divided differences for a cubic ψ : J0 → R are equal to:

ψ[−δm] = 0, ψ[−δm, 0] =
(
δm − δ4m

)λ
/δm, ψ[0, δ2m] =

(
δ2m + δ8m

)λ
/δ2m,

ψ[δ2m, δm] =
(
δm − δ2m + δ4m − δ8m

)λ
/(δm − δ2m). (6.3)

Hence latter yields:

ψ[−δm, 0, δ2m] = −
(
δm
(
δm − δ4m

)λ
+
(
δ2m + δ8m

)λ )
/(1 + δm)δ3m, (6.4)

ψ[0, δ2m, δm] = −
δm
(
δm−δ2m+δ4m−δ8m

)λ− (δ2m + δ8m
)λ

+ δm
(
δ2m + δ8m

)λ
(−1 + δm)δ3m

,

which with Mathematica Factor [ψ[−δm, 0, δ2m, δm]] results in

ψ[−δm, 0, δ2m, δm] =
(
δm(δm − δ4m)λ + δ2m(δm − δ4m)λ

− δm(δm − δ2m + δ4m − δ8m)λ + 2(δ4m + δ8m)λ − δ2m(δm − δ2m + δ4m − δ8m)λ

− δm(δ2m + δ8m)λ − δ2m(δ2m + δ8m)λ
)
/
(
2(−1 + δm)(1 + δm)δ4m

)
. (6.5)

Combining (3.5) with (6.1), (6.3), (6.4), (6.5) with Collect [Factor [ψ[t, λ]], t]
yields (where κ1(δm) = (δm − δ2m + δ4m − δ8m)λ and κ2(δm) = (δ2m + δ8m)λ over
J0 the following

ψ(t) =
[ (
δm − δ4m

)λ
(−2δ4m + 2δ6) + t3

( (
δm − δ4m

)λ
(−δm + δ2m)

− κ1(δm)(δm + δ2m) + κ2(δm)(2− δm − δ2m)
)

+ t2
(

(δ2m − δ4m)

×
( (
δm − δ4m

)λ − κ1(δm)− κ2(δm)
))

+ t
( (
δm − δ4m

)λ
(−δ4m + δ5m)
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+ κ1(δm)(δ4m+δ5m)+κ2(δm)(−2δ2m+δ4+δ5m)
)]/(

2(−1+δm)(1+δm)δ4m
)
. (6.6)

The evaluation of (6.6) at t̄ = (δm/2) with Factor [ψ[δ/2, λ]] results in:

ψ(t̄) =
3
((
δm − δ4m

)λ
(−5δm − δ2m + 6δ3m)− κ1(δm)(δm − δ2m − 2δ3m)

)
16(−1 + δm)δm(1 + δm)

−3κ2(δm)(2 + δm − δ2m − 2δ3m)/
(
16(−1 + δm)δm(1 + δm)

)
. (6.7)

Since γq and γ̌ coincide at interpolation points {qi+j}3j=0 we have γ(t̂1) = ~0,

γ̌(t̂0) =
(
−δm + δ4m, 0

)
, γ̌(t̂2) =

(
δ2m + δ8m, 0

)
, γ̌(t̂3) =

(
δm + δ4m, 0

)
.

Hence by (6.2) the respective divided differences for γ̌ are equal:

γ̌[t̂0] = (−δm + δ4m, 0), γ̌[t̂0, t̂1] =
(
(δm − δ4m)1−λ, 0

)
, (6.8)

γ̌[t̂1, t̂2] =
(
(δ2m + δ8m)1−λ, 0

)
, γ̌[t̂2, t̂3] =

((
δm − δ2m + δ4m − δ8m

)1−λ
, 0
)
.

Consequently we obtain:

γ̌[t̂0, t̂1, t̂2] =

(
−
(
δm − δ4m

)1−λ
+
(
δ2m + δ8m

)1−λ
(δm − δ4m)

λ
+ (δ2m + δ8m)

λ
, 0

)
,

γ̌[t̂1, t̂2, t̂3] =

((
δm − δ2m + δ4m − δ8m

)1−λ − (δ2m + δ8m
)1−λ

(δm − δ2m + δ4m − δ8m)
λ

+ (δ2m + δ8m)
λ

, 0

)
, (6.9)

which in turn leads to (λ1 = 1− λ):

γ̌[t̂0, t̂1, t̂2, t̂3]=

 (δm−δ4m)
λ1−(δ2m+δ8m)

λ1

(δm−δ4m)λ+(δ2m+δ8m)λ
+

(δm−δ2m+δ4m−δ
8
m)

λ1−(δ2m+δ8m)
λ1

(δm−δ2m+δ4m−δ8m)λ+(δ2m+δ8m)λ

(δm − δ4m)
λ

+ (δm − δ2m + δ4m − δ8m)
λ

+ (δ2m + δ8m)
λ
, 0

 .

Incorporating (6.2), (6.7), (6.8), (6.9) and the latter into Newton’s interpolation
formula yields for

hq(t̄) = (γ̌ ◦ ψ − γq)(t̄) =
(
− 3δm

2
+

15δ4m
16

+
(
δm − δ4m

)1−λ ¯̂t

+

((
δ2m + δ8m

)1−λ − (δm − δ4m)1−λ) ¯̂t
(

¯̂t−
(
δm − δ4m

)λ)
(δm − δ4m)

λ
+ (δ2m + δ8m)

λ

+ ¯̂t
(

¯̂t−
(
δm − δ4m

)λ)(¯̂t−
(
δm − δ4m

)λ − (δ2m + δ8m
)λ)

×
(δm−δ4m)

1−λ−(δ2m+δ8m)
1−λ

(δm−δ4m)λ+(δ2m+δ8m)λ
+

(δm−δ2m+δ4m−δ
8
m)

1−λ−(δ2m+δ8m)
1−λ

(δm−δ2m+δ4m−δ8m)λ+(δ2m+δ8m)λ

(δm − δ4m)
λ

+ (δm − δ2m + δ4m − δ8m)
λ

+ (δ2m + δ8m)
λ

, 0
)
, (6.10)
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where ¯̂t = ψ(t̄). Setting now e.g. λ = 0 in (6.10) and using Mathematica
Simplify to hq(t̄) leads to (see Mathematica Notebook under the URL link [21]):

hq(t̄) =
−144 + 432δm + 328δ2m + 296δ3m − 5437δ4m − 2757δ5m + 17663δ6m

8192δ2m (−1 + δ2m)
3

+
7605δ7m − 25274δ8m − 8438δ9m + 8577δ10m + 9801δ11m

8192δ2m (−1 + δ2m)
3

+
13845δ12m − 5895δ13m − 19566δ14m + 1116δ15m + 7560δ16m

8192δ2m (−1 + δ2m)
3 .

Visibly the latter is of the sharp order:

hq(t̄) = (−144/8192)δ−2m +O(δ−1m ),

not coinciding with the linear asymptotics from Theorem 2 established for any
λ ∈ [0, 1) and arbitrary more-or-less uniform sampling. Such deceleration effect
is due to the fact that sampling (6.1) does not satisfy (1.2). A similar sharp
asymptotics with the slowest term Kλδ

−2
m (with Kλ 6= 0) follows upon substi-

tuting any λ ∈ [0, 1) into (6.10) and applying Mathematica Simplify function.
Due to the page limitation the Mathematica Notebook is attached (see ( [21]))
so that the latter can be verified upon performing symbolic computation for
any fixed λ ∈ [0, 1). Note also that feeding λ = 1 into (6.10) results in:

hq(t̄) =
3

16
(1− 2δm)δ4m,

which yields an exact quartic convergence order in trajectory estimation at
t̄ = (δm/2). The latter justifies sharpness of Theorem 2 claimed also for λ = 1
and the general class of admissible samplings. Evidently, though (6.1) does not
fulfill more-or-less uniformity it still complies however with (1.1). �

7 Experiments

We verify now numerically the sharpness of the asymptotics established in
Theorem 2 for some regular 2D and 3D curves. All tests are carried out in
Mathematica 10.0 (see [22]) and resort to either uniform or more-or-less uniform
samplings (with ti ∈ [0, 1] and for i = 0, 1, . . . ,m) defined according to:

ti =


i/m+ 1/(2m), for i = 4k + 1,

i/m− 1/(2m), for i = 4k + 3,

i/m, for i even,

(7.1)

and
(i) ti = i/m+ (−1)i+1/(3m), (ii) ti = i/m. (7.2)

Here, β = 1 for (7.2)(ii), β = (1/3) for (7.1) and β = (1/5) for (7.2)(i) - see
Definition 2. For a given m, the error Em, between two continuous functions
γ and γ̂3 reads as Em = max[0,1] ‖(γ̂3 ◦ψ3)(t)− γ(t)‖. To estimate numerically
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the convergence order α(λ) in trajectory approximation, first {Em}mmaxm=mmin
is calculated, where mmin and mmax are sufficiently large fixed constants.
Next a linear regression yielding a function y(x) = ᾱ(λ)x + b is applied to
{(log(m),− log(Em))}mmax

m=mmin
. Mathematica built-in function LinearModelFit

extracts a coefficient ᾱ(λ) ≈ α(λ). The tests conducted here use the following
three different C∞ regular curves: a spiral γsp and a cubic γo in E2 and a
Steinmetz curve γst in E3.

Example 4. Consider a planar spiral γsp : [0, 1] → E2 defined by γsp(t) =
((0.2 + t) cos(π(1− t)), (0.2 + t) sin(π(1− t))) and sampled according to either
(7.1) or (7.2). The numerical results for ᾱ(λ) ≈ α(λ) listed in Table 1 for
different λ ∈ [0, 1], render the asymptotics consistent with this from Theorem 2.
�

Table 1. ᾱ(λ) ≈ α(λ) for γsp sampled as in (7.1) and (7.2) with m ∈ {96, . . . , 120}.

λ 0.0 0.1 0.3 0.5 0.7 0.9 1.0

ᾱ(λ) for (7.1) 1.005 1.009 1.021 1.038 1.076 1.269 4,006
ᾱ(λ) for (7.2)(i) 1.028 1.028 1.026 1.023 1.015 1.007 4.071

α(λ) in Theorem 2 1.0 1.0 1.0 1.0 1.0 1.0 4.0

ᾱ(λ) for (7.2)(ii) 4.027 4.020 4.013 4.037 4.047 4.060 4.067

α(λ) in Theorem 2 4.0 4.0 4.0 4.0 4.0 4.0 4.0

Example 5. Assume now a regular Steinmetz 3D curve γst : [0, 1]→ E3 defined

as γst(t) =
(

cos(2πt), sin(2πt),
√

1.22 − (sin(2πt))2
)

is sampled along either

(7.1) or (7.2). The computed ᾱ(λ) ≈ α(λ) for various λ ∈ [0, 1] are presented
in Table 2. Thus the sharpness of (2.1) and (2.2) is numerically confirmed. �

Table 2. ᾱ(λ) ≈ α(λ) for γst sampled as in (7.1) and (7.2) with m ∈ {72, . . . , 162}.

λ 0.0 0.1 0.3 0.5 0.7 0.9 1.0

ᾱ(λ) for (7.1) 1.000 1.000 1.003 1.001 1.008 1.200 4.981**
ᾱ(λ) for (7.2)(i) 0.993 0.994 0.996 0.998 1.009 1.186 3.961**

α(λ) in Theorem 2 1.0 1.0 1.0 1.0 1.0 1.0 4.0

ᾱ(λ) for (7.2)(ii)∗ 3.977 3.972 3.965 3.950 3.954 3.950 3.948
α(λ) in Theorem 2 4.0 4.0 4.0 4.0 4.0 4.0 4.0

*for 159 ≤ m ≤ 201 **for 201 ≤ m ≤ 240

Example 6. Finally, consider a planar regular curve γo : [0, 1] → E2 given by
γo(t) =

(
cos2(t), 1.5t

)
and sampled as previously according to either (7.1) or

Math. Model. Anal., 24(1):72–94, 2019.
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Table 3. ᾱ(λ) ≈ α(λ) for γo sampled as in (7.1) and (7.2) with m ∈ {72, . . . , 162}.

λ 0.0 0.1 0.3 0.5 0.7 0.9 1.0

ᾱ(λ) for (7.1) 0.998 0.998 0.998 0.999 0.999 1.005 3.91**
ᾱ(λ) for (7.2)(i) 0.999 0.999 0.999 0.999 1.000 1.010 3.94*

α(λ) in Theorem 2 1.0 1.0 1.0 1.0 1.0 1.0 4.0

ᾱ(λ) for (7.2)(ii) 3.999 3.943 3.915 3.952* 3.947* 3.946* 3.95*

α(λ) in Theorem 2 4.0 4.0 4.0 4.0 4.0 4.0 4.0

*for 159 ≤ m ≤ 201 **for 330 ≤ m ≤ 387

(7.2). The respective estimates ¯α(λ) of α(λ) (for varying λ ∈ [0, 1]) are pre-
sented in Table 3. Visibly, the asymptotics established in Theorem 2 (together
with its sharpness) is as above, numerically verified in affirmative. �

8 Conclusions

The main results and the motivation of this work are fully listed in Section 2
(see items a)–f)). The principal findings can be summarized as follows:

Section 3 proves Theorem 2 which extends Theorem 1 holding merely for
λ = 1. The combination of the latter yields a surprising abrupt discontinuity
in convergence orders while estimating γ with γ̂3 ◦ ψ3. Here a fast quartic
order α(1) = 4 drops to the linear one α(λ) = 1 holding for any λ ∈ [0, 1)
incorporated into the exponential parameterization (1.3).

Section 4 formulates several sufficient conditions for ψ3 : [0, T ] → [0, T̂ ] to
be a reparameterization (see (4.1)). Geometrical meaning of (4.1) is also given.

Section 5 justifies the sharpness of (2.1) and (2.2) with the aid of non-trivial
analytic and symbolic computations in accordance with Definition 4.

Section 6 justifies the necessity of more-or-less uniformity (2) in proving
Theorem 2. The analytic argument combined with symbolic computation is
employed. Additionally, the case of λ = 1 relies merely on a general class of
admissible samplings (1.1) as also confirmed herein.

Section 7 verifies independently with the aid of numerical tests performed
in Mathematica the sharpness of the asymptotics established in Theorem 2.

Section 2 specifies the main motivation standing behind this paper including
desirable parameterization or non-parametrization cases of ψ3. The related
literature in the context of specific applications to fit Qm in conjunction with
exponential parametrization is also listed.

Future work may involve C2 cubics splines (see e.g. [1]) and (1.3) as an
extension of C0 piecewise-cubic non-parametric interpolation discussed in this
paper. The case of C1 modified Hermite interpolation is covered in [7] or [8].
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