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1 Introduction

Boundary value problems of ordinary differential equations play an important
role in modelling a wide variety of physical and natural phenomena. They have
wide applications due to the fact that many practical problems in mechanics,
astronomy, economical theory, chemical physics, and electrostatics may be con-
verted directly to such problems or to ones that are closely related to boundary
value problems. There are many approaches numerically available to solving
ordinary boundary value problems [14,21,27]. The main idea of this paper is to
present a new reproducing kernel Hilbert space method for computing solutions
of nonlinear second-order Dirichlet boundary problem of the form:{

η3(V
′′
)2(η) + pη2V

′′
(η) + q(ηV

′
(η)− V (η)) = 0,

V (c) = Vc, V (d) = Vd.
(1.1)

In [19], it is assumed that p and q are positive constants and Vc < Vd. These
problems are related to financial option pricing since they address the existence
of stationary solutions of a class of generalizations of the classical Black-Scholes
model, introduced in 1973 [9], with equation

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂2S
+ r(S

∂V

∂S
− V ) = 0. (1.2)

Equation (1.2) is a partial differential equation with variable coefficients. The
variables in equation (1.2) have the following meaning: V (S, t) is the value
of a call or put option, depending on an underlying asset S and time t, r is
the interest rate, and σ represents the volatility function of underlying asset.
A solution V = V (S, t) represents the price of an option if the price of the
underlying asset is S > 0 at the time t ∈ [0, T ]. If we include transaction costs
in model (1.2) then we can obtain (see [2,12,18]) the following nonlinear version
of (1.2):

∂V

∂t
+

1

2
σ̃2S2 ∂

2V

∂2S
+ bσ2S3(

∂2V

∂2S
)2 + r(S

∂V

∂S
− V ) = 0, (1.3)

where σ̃ is an adjusted volatility. Now, if we consider the stationary version of

(1.3), we obtain the above ordinary differential equation (1.1) where p = σ̃2

2bσ2

and q = r
bσ2 are constants.

In recent years, the reproducing kernel Hilbert space method has been used
for obtaining approximate solutions in a wide class of ordinary differential,
partial differential and integral equations. Please refer to [4,6,7,8,22,24,28,29].
Among plethora of studies addressing the reproduction of kernel Hilbert space
method for solving various problems and even among a bunch of extensive works
related to reproducing kernel Hilbert spaces for solving ordinary equation, we
just mention a number of more interesting problems. The method has the many
advantages such as being supported by a rigorous theory, requiring a simple
process, and easy to implement on computer. It is obvious that constructing a
suitable reproducing kernel spaces and effectively calculating the reproducing

Math. Model. Anal., 23(4):538–553, 2018.



540 M.R. Foroutan, A. Ebadian and H. Rahmani Fazli

kernel expression become the key to apply reproducing kernel Hilbert space
method.

Recently, based on the reproducing kernel theory, Cui and Geng [10, 15,
16, 17] have made much effort to solve some special boundary value prob-
lems. Furthermore, using the reproducing kernel method, some authors have
proposed solutions to some two-point boundary value problems [11, 20]. For
instance, Foroutan et al. [13] proposed a method based on reproducing ker-
nel Hilbert spaces to obtain approximate solutions of linear and nonlinear
four-point boundary value problems. Arqub [5] has investigated a computa-
tional iterative method, the reproducing kernel Hilbert space method, in finding
approximate solutions for various certain classes of Neumann time-fractional
PDEs with parameters derivative in the sense of Riemann-Liouville and Caputo
fractional derivatives. In [3], he employed the reproducing kernel algorithm for
handling differential algebraic systems of ordinary differential equations and
represented the numerical solutions in the form of series through the functions
value at the right-hand side of the corresponding differential and algebraic
equations. Furthermore, Arqub and Rashaideh applied the reproducing kernel
method to obtain approximate solutions of integro-differential algebraic sys-
tems of temporal two-point boundary value problems in [8].

In this paper, we apply the reproducing kernel method for solving nonlinear
third order differential equations that have been extracted from some Black-
Scholes option pricing problem. To this end, we introduce a new technique
based on reproducing kernel Hilbert space method with generalized Jacobi
functions in polynomial space. We also produce a set of orthonormal basis
functions for space solutions by using the kernel function, a boundary operator,
a dense sequence of nodal points in the domain of space solution, and Gram-
Schmidt orthogonalization process.

This paper is structured as follows: Section 2 shows, that generalized Ja-
cobi functions with the given properties can be applied for the approximation
of second order nonlinear differential equations. According to our method, a
brief introduction of the reproducing kernel spaces is represented in Section 3.
Section 4, discusses the reproducing kernel method for linear operators. It also
addresses the application of reproducing kernel Hilbert space method and con-
vergence analysis of reproducing kernel method. We provide the main results
and the exact and approximate solutions in this section. Finally, the error
estimation is presented in Section 5.

2 Generalized Jacobi polynomials

An important class of orthogonal are the so called Jacobi polynomials, which
are denoted by Jα,βn (x), α, β > −1, n ≥ 0, [26] and can be determined with
the aid of the following recurrence formula:

Jα,β0 (x) = 1,

Jα,β1 (x) = 1
2 (α+ β + 2)x+ 1

2 (α− β),

Jα,βn+1(x) = (aα,βn x− bα,βn )Jα,βn (x)− cα,βn Jα,βn−1(x), n ≥ 1,

(2.1)
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where

aα,βn =
(2n+ α+ β + 1)(2n+ α+ β + 2)

2(n+ 1)(n+ α+ β + 1)
, (2.2)

bα,βn =
(β2 − α2)(2n+ α+ β + 1)

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
, (2.3)

cα,βn =
(n+ α)(n+ β)(2n+ α+ β + 2)

(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
. (2.4)

The polynomials Jα,βn (x) are orthogonal on [−1, 1] with respect to the weight
function Wα,β(x) = (1− x)α(1 + x)β , in the sense that∫ 1

−1

Jα,βn (x)Jα,βm (x)Wα,β(x)dx = γα,βn δm,n,

where δm,n is the Kronecker function and

γα,βn =
2α+β+1Γ (n+ α+ 1)Γ (n+ β + 1)

(2n+ α+ β + 1)n!Γ (n+ α+ β + 1)
.

Now, we define the generalized Jacobi polynomials of degree n with α, β ∈ Z
on interval [c, d] by

Gk,ln (x) =


(d− x)−k(x− c)−lJ−k,−ln+k+l(x), if k, l ≤ −1, n ≥ 2,

(d− x)−kJ−k,ln+k (x), if k ≤ −1, l > −1, n ≥ 1,

(x− c)−lJk,−ln+l (x), if k > −1, l ≤ −1, n ≥ 1,

Jk,ln (x), if k > −1, l > −1, n ≥ 0.

(2.5)

Let

k̄ =

{
−k, k ≤ −1
k, k > −1

, k̂ =

{
−k, k ≤ −1

0, k > −1
,

(likewise for l̄, l̂), and n0 := nk,l0 = k̂ + l̂, n1 := nk,l1 = n − nk,l0 . The set
of generalized Jacobi functions are orthogonal in the interval [c, d] in terms of
weight function χk,l(x) = (d− x)k(x− c)l i.e.,∫ d

c

Gk,ln (x)Gk,lm (x)χk,l(x)dx = ξk,ln δm,n, m, n ≥ n0, (2.6)

where

ξk,ln =
(d− c)k̄+l̄+1Γ (n1 + k̄ + 1)Γ (n1 + l̄ + 1)

(2n1 + k̄ + l̄ + 1)Γ (n1 + 1)Γ (n1 + k̄ + l̄ + 1)
. (2.7)

Lemma 1. Let k, l ≥ 1 and k, l ∈ Z. There exists a set of constants {aj} such
that

G−k,−ln (x) =

n∑
j=n−k−l

ajLj(x), n ≥ k + l,
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where, Lj(x) is the standard Legendre polynomial of degree n. As an important
special case, one can verify that

G−1,−1
n (x) =

2(n− 1)

2n− 1
(Ln−2(x)− Ln(x)). (2.8)

Proof. For the proof of Lemma 1 ( see [12], Lemma 1.4.3). ut

3 Reproducing kernel function

In this section, by using the generalized Jacobi basis function, we will intro-
duce a reproducing kernel Hilbert space method for solving the desired bound-
ary value problem with the recognition that this basis function is useful in
constructing reproducing kernel method, because of honestly in the boundary
conditions

V (c) = V (d) = 0.

Since Ln(1) = 1 and Ln(−1) = (−1)n, from the equation (2.8), we have

G−1,−1
n (c) = G−1,−1

n (d) = 0.

According to the equations (2.1) and (2.5), we get

G−1,−1
n+1 (x) = (a−1,−1

n x− b−1,−1
n )G−1,−1

n (x)− c−1,−1
n G−1,−1

n−1 (x), n ≥ 3,

where, an, bn, cn defined in (2.2), (2.3) and (2.4) with α = −1, β = −1, re-
spectively. Now by using equations (2.6) and (2.7), we define

un(x) =

√
(n+ 2)(2n+ 3)

(d− c)3(n+ 1)
G−1,−1
n+2 (x), n = 0, 1, 2, ... .

Definition 1. ( [13]) For a nonempty set E, let H be a Hilbert space of real
value functions on some set E. A function K : E × E −→ R is said to be the
reproducing kernel function of H if and only if

(i) For every y ∈ E, K(·, y) ∈ H.

(ii) For every y ∈ E and f ∈ H, 〈f(·),K(·, y)〉 = f(y).
Also, a Hilbert space of function H that possesses a reproducing kernel K is

a reproducing kernel Hilbert space; we represent the reproducing kernel Hilbert
space and it’s kernel by HK(E) and Ky respectively.

Theorem 1. ( [25] Theorem 1.24) For the orthonormal system {un}∞n=1 and
for

Kn(x, y) =

n∑
j=0

uj(x)uj(y), x, y ∈ I = [c, d]. (3.1)

We have

Kn(x, y) =
kn(un+1(x)un(y)− un(x)un+1(y))

kn+1(x− y)
. (3.2)
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Here, kn > 0 is the coefficient of xn in un(x). We also have

Kn(x, x) =
kn
kn+1

(u′n+1(x)un(x)− u′n(x)un+1(x)).

Define Kn : I×I → R by (3.2). Then, we have an expression of the reproducing
kernel Hilbert space HKn

(I):

HKn
(I) = HKn

([c, d]) = {f : f ∈ L2(I), f(c) = f(d) = 0}.

Equation (3.1) shows that the polynomial reproducing kernel function Kn(x, y)
and the associated reproducing kernel Hilbert space HKn(I) can be updated
by increasing n.

4 The generalized Jacobi reproducing kernel method

In this section, the formulation of approximate solution of equation (1.1) to-
gether with the implementation method is given in the reproducing kernel space
HKn(I). In proving the convergence of the solution of the problem (1.1), we
discuss a convergence analysis with the method suggested by [23]. We recall the
theorem established by Grossinho and Morais in [19], which state an existence
and uniqueness result for problem (1.1).

Theorem 2. ( [19] Theorem 2) Consider the nonlinear Dirichlet boundary
value problem (1.1). The following assertions hold:

1. The function V (x) = Vc

c x is a solution of the problem (1.1) if and only
if Vd/d = Vc/c.

2. If Vd/d < Vc/c, then the problem (1.1) has a convex solution V such that

Vd
d
x ≤ V (x) ≤ Vd − Vc

d− c
x+

dVc − cVd
d− c

.

3. Moreover, V is the unique convex solution of (1.1) in any of the above cases.

Notice that uniqueness of solutions cannot be guaranteed when we include
variable coefficients p and q and functional boundary conditions.
If we assume that

W (η) = V (η)− η − c
d− c

Vd −
d− η
d− c

Vc.

Then, the problem (1.1) changes into the following problem:{
pη2W

′′
(η) + qηW

′
(η)− qV (η) = G(η,W ′′(η)),

W (c) = 0, W (d) = 0,

where G(η,W ′′(η)) = η3(W
′′
)2(η) +

(
q(cVd − dVc)

)
/(d− c). By defining the

linear operator L : HKn
(I)→ L2(I) as

LW (η) = pη2W
′′
(η) + qηW

′
(η)− qV (η).

Math. Model. Anal., 23(4):538–553, 2018.



544 M.R. Foroutan, A. Ebadian and H. Rahmani Fazli

Equation (1.1) changes to{
LW (η) = G(η,W ′′(η)), η ∈ [c, d],

W (c) = 0, W (d) = 0.
(4.1)

Since W (η) is sufficiently smooth. It is easy to show that L : HKn(I)→ L2(I)
is a bounded linear operator [13]. We choose a countable dense subset {ηi}∞i=1

in the domain [c, d], and for any fixed ηi ∈ [c, d] we define

ψi(η) = ψηi(η) = L∗Kn(η, ηi),

where L∗ is the adjoint operator of L.

Theorem 3. Let {ηi}∞i=1 is dense on [c, d], then

ImL∗ = HKn([c, d]), (kerL∗)⊥ = ImL = L2([c, d]).

Proof. Clearly ψi(η) ∈ HKn
([c, d]). For any W ∈ (ImL∗)⊥, since ψi(η) =

L∗Kn(η, ηi), we have

〈W (η), ψi(η)〉HKn ([c,d]) = 0,

which means that

0 = 〈W (η), ψi(η)〉HKn ([c,d]) = 〈W (η), L∗Kn(η, ηi)〉HKn ([c,d])

= 〈LW (η),Kn(η, ηi)〉L2([c,d]) = (LW )(ηi).

Note that {ηi}∞i=1 is dense on [c, d]. Hence (LW )(η)=0. So from the existence
L−1, we have W (η) = 0. That is (ImL∗)⊥ = 0. Therefore ImL∗ = HKn([c, d]).
Similarly, we can prove (kerL∗)⊥ = ImL = L2([c, d]). ut

By Gram-Schmidt process, we obtain an orthogonal basis {ψi(η)}∞i=1 of
HKn

([c, d]), such that

ψi(η) =
i∑

k=1

αikψk(η),

where αik represents orthogonal coefficients (αii > 0, i = 1, 2, ..., n), which are
given by the following relations [1]:

α11 =
1

‖ψ1‖
, αii =

1

aik
, i 6= 1, αij = − 1

aik

i−1∑
k=j

cikαjk, i > j,

such that aik =
√
‖ψi‖2 −

∑i−1
k=1 c

2
ik, cik = 〈ψi, ψk〉HKn ([c,d]) and {ψi(η)}∞i=1

are the orthonormal system in HKn
([c, d]).

Theorem 4. If {ηi}∞i=1 is dense on [c, d] and W is the exact solution of equa-
tion (4.1), then

W (η) =

∞∑
i=1

i∑
k=1

αikG(ηk,W
′′(ηk))ψi(η). (4.2)
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Proof. Let W (η) be solution (4.1) in the space HKn
([c, d]). Since W (η) ∈

HKn
([c, d]) and {ηi}∞i=1 is dense on [c, d], then the series

∑∞
i=1〈W,ψi〉ψi is

convergent in the sense of ‖.‖HKn ([c,d]). On the other hand,

W (η) =

∞∑
i=1

〈W (η), ψi(η)〉HKn
ψi(η)

=

∞∑
i=1

i∑
k=1

αik〈W (η), L∗K(η, ηk)〉HKn
ψi(η)

=

∞∑
i=1

i∑
k=1

αik〈LW (η),K(η, ηk)〉HKn
ψi(η)

=

∞∑
i=1

i∑
k=1

αik〈G(η,W ′′(η)),K(η, ηk)〉HKn
ψi(η)

=

∞∑
i=1

i∑
k=1

αikG(ηk,W
′′(ηk))ψi(η).

This completes the proof. ut

Let Pn : HKn
([c, d])→ Span{ψ1, ψ2, ..., ψn} be an orthogonal projection oper-

ator. Put

Wn(η) =

n∑
i=1

i∑
k=1

αikG(ηk, (Pk−1W )′′(ηk))ψi(η). (4.3)

Here, P0W (η) is any fixed function in HKn([c, d]).

Theorem 5. Suppose that the problem (4.1) has a unique solution. If {ηi}∞i=1

is dense on [c, d], then Wn(η) in (4.3) is convergence to the W (η) and for any
fixed W0(η) ∈ HKn([c, d]), Wn(η) is also represented by

Wn(η) =

n∑
i=1

i∑
k=1

αikG(ηk,W
′′(ηk))ψi(η).

Proof. From the definition of Wn(η) in (4.3), for j ≤ n, we have

LWn(ηj) =

n∑
i=1

i∑
k=1

αikG(ηk, (Pk−1W )′′(ηk))Lψi(η)

=

n∑
i=1

i∑
k=1

αikG(ηk, (Pk−1W )′′(ηk))〈ψi(η), LK(η, ηj)〉HKn

=

n∑
i=1

i∑
k=1

αikG(ηk, (Pk−1W )′′(ηk))〈ψi(η), ψi(η))〉HKn
.

Math. Model. Anal., 23(4):538–553, 2018.
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Therefore

j∑
t=1

αjtLWn(ηj) =

n∑
i=1

i∑
k=1

αikG(ηk, (Pk−1W )′′(ηk))〈ψi(η),

j∑
t=1

αjtψt〉HKn

=

n∑
i=1

i∑
k=1

αikG(ηk, (Pk−1W )′′(ηk))〈ψi(η), ψj(η)〉HKn

=

j∑
k=1

αjkG(ηk, (Pk−1W )′′(ηk)).

If j = 1, we get
(LWn)(η1) = G(η1, (P0W )′′(η1)).

For j = 2, we have

α21(Lwn)(η1) + α22(LWn)(η2) = α21G(η1, (P0W )′′(η1))

+ α22G(η2, (P1W )′′(η2)).

It follows that
(LWn)(η2) = G(η2, (P1W )′′(η2)).

By induction, we conclude that

(LWn)(ηj) = G(ηj , (Pj−1W )′′(ηj)).

Now, we can prove (LPnW )(ηj) = LW (ηj) holds for j ≤ n. It follows that

(LPnW )(ηj) = 〈LPnW (η),Kn(η, ηj)〉L2 = 〈PnW (η), L∗Kn(η, ηj)〉HKn

= 〈PnW (η), ψj(η)〉HKn
= 〈W (η), Pnψj(η)〉HKn

= 〈W (η), ψj(η)〉HKn
= 〈LW (η),Kn(η, ηj)〉HKn

= LW (ηj).

This together with the boundedness of L−1 implies that

PnW (ηj) = L−1(LPnW (ηj)) = L−1(LW (ηj)) = W (ηj). (4.4)

On the other hand,

|(PnW )′′(η)−W ′′(η)| = |∂2
η〈PnW (ζ)−W (ζ),Kn(ζ, η)〉HKn

|
= |〈PnW (ζ)−W (ζ), ∂2

ηKn(ζ, η)〉HKn
|≤‖PnW−W‖HKn

‖∂2
ηKn(ζ, η)‖HKn

.

By the boundedness of ‖∂2
ηKn(ζ, η)‖HKn

and equation (4.4), we get

(PnW )′′(ηj) = W ′′(ηj), j ≤ n.

Since {ηj}∞j=1 is dense on [c, d], for any η ∈ [c, d], there exists a subsequence
{ηnj}∞j=1 such that ηnj → η as j → +∞. Therefore, from the continuity of G,
we have

lim
j→+∞

(LWn)(ηnj
) = lim

j→+∞
G(ηnj

, (Pnj−1W )′′(ηnj
))

= G(η, (W )′′(η)) = LW (η). (4.5)
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Since

lim
j→+∞

(LWn)(ηnj ) = lim
j→+∞

n∑
i=1

i∑
k=1

αikG(ηk, (Pk−1W )′′(ηk))Lψi(ηnj )

=

∞∑
i=1

i∑
k=1

αikG(ηk, (Pk−1W )′′(ηk))Lψi(η)

= lim
n→+∞

L

n∑
i=1

i∑
k=1

αikG(ηk, (Pk−1W )′′(ηk))Lψi(η) = lim
n→+∞

LWn(η). (4.6)

So, from equations (4.5) and (4.6), we conclude that

lim
n→+∞

LWn(η) = LW (η).

Therefore,
lim

n→+∞
Wn(η) = LW (η),

and consequently, by Theorem 4 and equation (4.3), we get

Wn(η) =

n∑
i=1

i∑
k=1

αikG(ηk, (W )′′(ηk))ψi(η), (4.7)

where W0(η) = P0W (η) ∈ HKn
([c, d]). ut

5 Error estimation

The estimation of the truncation errors is stated as follows.

Theorem 6. Let Wn(η) be the approximate solution of (4.1) in space
HKn([c, d]) and W (η) be the exact solution of (4.1), then

|W (η)−Wn(η)|2 ≤ ‖W‖2
(
Kn(η, η)−

n∑
i=1

|ψi(η)|2
)
.

Proof. From equations (4.2) and (4.7), we have

Wn(η) =

n∑
i=1

〈W,ψi〉ψi = 〈
n∑
i=1

ψi(η)ψi,W 〉.

It follows that,

|W (η)−Wn(η)|2 = |〈Kn(., η)−
n∑
i=1

ψi(η)ψi,W 〉|2

≤ ‖W‖2‖Kn(., η)−
n∑
i=1

ψi(η)ψi‖2. (5.1)

Math. Model. Anal., 23(4):538–553, 2018.
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Since
∑n
i=1 ψi(η)ψi =

∑n
i=1〈Kn(., η), ψi〉ψi, then, we get

Kn(., η)−
n∑
i=1

ψi(η)ψi ⊥
n∑
i=1

ψi(η)ψi.

Therefore,

‖Kn(., η)−
n∑
i=1

ψi(η)ψi‖2 = 〈Kn(., η),Kn(., η)〉 −
n∑
i=1

〈Kn(., η), ψi〉ψi(η)

= Kn(η, η)−
n∑
i=1

|ψi(η)|2. (5.2)

By combining the equations (5.1) and (5.2), the proof of the Theorem is com-
plete. ut

Theorem 7. Let Wn(η) be the approximate solution of (4.1) in space
HKn

([c, d]) and W (η) be the exact solution of (4.1), then

‖W −Wn‖2HKn ([c,d]) → 0 as n→ +∞.

Moreover, the sequence ‖W −Wn‖2HKn ([c,d]) is monotonically decreasing in n.

Proof. From equations (4.2) and (4.7), we have

‖W −Wn‖HKn ([c,d]) = ‖
∞∑

i=n+1

i∑
k=1

αikG(ηk,W
′′(ηk))ψi‖HKn ([c,d]).

Thus
‖W −Wn‖2HKn ([c,d]) → 0 as n→ +∞.

Furthermore,

‖W −Wn‖2HKn ([c,d]) = ‖
∞∑

i=n+1

i∑
k=1

αikG(ηk,W
′′(ηk))ψi‖2HKn ([c,d])

=

∞∑
i=n+1

(

i∑
k=1

αikG(ηk,W
′′(ηk))ψi)

2.

Clearly, ‖W −Wn‖2HKn ([c,d]) is monotonically decreasing in n. ut

Theorem 8. Let Wn(η) be the approximate solution of (4.1) in space
HKn([c, d]) and W (η) be the exact solution of (4.1). If c=η1<η2< . . .<ηn=d,
and if G(η,W ′′(η)) ∈ C6[c, d], then

‖W −Wn‖L2 ≤ αh6,

where α is a constant, h = max1≤i≤n−1|ηi+1 − ηi|.
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Proof. From equations (4.2) and (4.7), we have

LWn(ηj) = G(ηj ,W
′′(ηj)), j = 1, 2, ..., n.

Put Rn(η) = G(ηj ,W
′′(ηj))− LWn(ηj). Obviously,

Rn(ηj) = 0, j = 1, 2, ..., n.

On interval [ηi, ηi+1], the application of Roll,s theorem to Rn(η) yields

R′n(αi) = 0, αi ∈ (ηi, ηi+1), j = 1, 2, ..., n− 1.

On interval [αi, αi+1], the application of Roll,s theorem to R′n(η) yields

R′′n(βi) = 0, βi ∈ (αi, αi+1), j = 1, 2, ..., n− 2.

On interval [βi, βi+1], the application of Roll,s theorem to R′′n(η) yields

R(3)
n (γi) = 0, γi ∈ (βi, βi+1), j = 1, 2, ..., n− 3.

On interval [γi, γi+1], the application of Roll,s theorem to R′′′n (η) yields

R(4)
n (δi) = 0, δi ∈ (γi, γi+1), j = 1, 2, ..., n− 4.

Now set,

h = max
1≤i≤n−1

|ηi+1 − ηi|, hα = max
1≤i≤n−2

|αi+1 − αi|,

hβ = max
1≤i≤n−3

|βi+1 − βi|, hγ = max
1≤i≤n−4

|γi+1 − γi|

hδ = max
1≤i≤n−5

|δi+1 − δi|.

Therefore

hα ≤ 2h, hβ ≤ 2hα ≤ 4h, hγ ≤ 2hβ ≤ 8h, hδ ≤ 2hγ ≤ 16h.

Suppose that l(η) is a polynomial of degree=1 that interpolates the function
R′′′n (η) at δ1, δ2. It is clear that l(η) = 0, because

l(η) = R(4)
n (δ1) +

R
(4)
n (δ2)−R(4)

n (δ1)

δ2 − δ1
(η − δ1),

where, R
(4)
n (δi), i − 1, 2, ..., n − 4. So, we have l(η) ≡ 0. On the other hand,

for ∀η ∈ [η1, δ2], there exists ε1 ∈ [η1, δ2] and a constant a1 such that

R(4)
n (η) = R(4)

n (η)− l(η) =
R

(6)
n (ε1)

2
(η − δ1)(η − δ2) ≤ a1h

2.

In a similar way, there exists a constant bi, a2 such that

R(4)
n (η) ≤ bih2, η ∈ [δi, δi+1], i = 2, 3, ..., n− 5,

R(4)
n (η) ≤ a2h

2, η ∈ [δn−4, ηn].
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So, there exists a constant c2 such that

‖R(4)
n (η)‖∞ ≤ c2h2.

On interval [βi, βi+1], i = 1, 2, ..., n− 3 there exists a constant c̄i such that

|R(3)
n (η)| ≤

∫ η

γi

|R(4)
n (t)|dt ≤

∫ η

γi

max|R(4)
n (t)|dt

=

∫ η

γi

‖R(4)
n (η)‖∞dt = ‖R(4)

n (η)‖|η − γi|.

It turns out that

‖R(3)
n (η)‖∞ = max‖R(3)

n (η)‖ ≤ max c̄ih
2|η − γi| ≤ c3h3, η ∈ [c, d],

where c3 is a constant. In the same way, on interval [αi, αi+1], i = 1, 2, ..., n−2
there exists a constant d̄i such that

‖R(2)
n (η)‖∞ = max‖R(2)

n (η)‖ ≤ max d̄ih
3|η − βi| ≤ c4h4, η ∈ [c, d],

where c4 is a constant. On interval [ηi, ηi+1], i = 1, 2, ..., n − 1 there exists a
constant ēi such that

‖R′n(η)‖∞ = max‖R′n(η)‖ ≤ max ēih
3|η − αi| ≤ c5h5, η ∈ [c, d],

Obviously,
|Rn(η)| ≤ max‖Rn(η)‖ = ‖Rn(η)‖∞ ≤ c6h6. (5.3)

According to equation (5.3), we have

‖Rn(η)‖L2 =
(∫ d

c

|Rn(η)|2
) 1

2 ≤ ch6.

Note that W (η)−Wn(η) = L−1Rn(η). So, there exists a constant α such that

‖W (η)−Wn(η)‖HKn ([c,d]) = ‖L−1Rn(η)‖HKn ([c,d]) ≤ ‖L−1‖‖Rn(η)‖L2 ≤ αh6.

ut

6 Numerical examples

In this section, two numerical examples are provided to show the accuracy
of the present method. All computations are performed by Maple 16. Results
obtained by the method are compared with the exact solution for each example
and they are found to be in good agreement with each other.

Example 1. Consider problem (1.1) in the interval [c, d] = [1, 5], with p = q = 1,
and boundary conditions V (1) = 2, V (5) = 10. Using the present method, the
numerical results are given in as Figure 1 and Table 1.

Example 2. Consider problem (1.1) in the interval [c, d] = [1, 5], with p = 7,
q = 2, and boundary conditions V (1) = 1, V (5) = 3. Using the present method,
the numerical results are given in as Figure 2 and Table 1.

The tables and figures show the effectiveness of Theorem 2. Therefore, it can
be said that the results obtained in the present study are accurate.
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Figure 1. A plot of the
price V (η) with boundary
conditions V (1) = 2 and

V (5) = 10.

Figure 2. A plot of the
price V (η) with boundary
conditions V (1) = 1 and

V (5) = 3.

Table 1. Values of V (η) for different values of Vc, Vd with c = 1, d = 5.

V (1) = 2, V (5) = 10 V (1) = 1, V (5) = 3

η V (η) V (η)

1.00 1.99999999999 0.99999999999
1.30 2.60000000319 1.14007775816
1.70 3.40000000327 1.32713494311
2.50 5.00000000445 1.72471006038
3.75 7.50000000601 2.37059796047
4.40 8.80000000750 2.71468357183
5.00 9.99999999999 2.99999999999

7 Conclusions

In this study, a new method for finding a solution in the reproducing ker-
nel Hilbert space is proposed. Each function satisfies boundary conditions
of considered problem. In the reproducing kernel space, the construction of
the orthogonal basis is described for the first time. Using this method, we con-
structed the sequence and proved its uniform convergence to the exact solution.
We also obtained the truncation error estimate of the series solution. These
error estimates can be extended to more general linear and nonlinear boundary
value problems.
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