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Abstract. Lyapunov, Weinstein and Moser obtained remarkable theorems giving
sufficient conditions for the existence of periodic orbits emanating from an equilibrium
point of a differential system with a first integral. Using averaging theory of first order
we established in [1] a similar result for a differential system without assuming the
existence of a first integral. Now, using averaging theory of the second order, we
extend our result to the case when the first order average is identically zero. Our
result can be interpreted as a kind of degenerated Hopf bifurcation.
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1 Introduction and Statement of the Main Results

Consider a system of ordinary differential equations

= f(z), z=(x1,...,%m) (1.1)
near an equilibrium point, which we assume to be the origin z = 0. The
variables xy, for k = 1,...,m, are real, and the dot refers to differentiation

with respect to the independent variable ¢. For the equilibrium point x = 0,
we consider the linear variational equation

&= Az, A:fx(o)v (12)

where f,;(0) denotes the Jacobian matrix of the function f evaluated at z = 0.
Clearly, every pair of conjugated purely imaginary eigenvalues of A gives rise
to periodic solutions of (1.2). We consider the classical problem of finding
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periodic solutions near x = 0 for the nonlinear system (1.1). As it is well
known, for this purpose the presence of purely imaginary eigenvalues is nec-
essary but not sufficient. In 1907 Lyapunov [4] established the existence of a
one-parameter family of periodic solutions under two assumptions. Namely, he
assumed the existence of a first integral and a nonresonance condition on the
purely imaginary eigenvalues of A (see Theorem 9.2.1 of [6]).

A special role in the theory is played by the Hamiltonian systems

ip=Hy o, Gnsk=—He, k=1,...,n,

where H,, denotes the partial derivative of the Hamiltonian H(x1,...,T2,)
with respect to the variable ;. In 1973 Weinstein [10, 11] showed that the
additional nonresonance condition is not necessary for Hamiltonian systems.
In 1976 Moser [7] established a similar result for system (1.1) assuming the
existence of a first integral H(x) with H,(0) = 0 and positive definite Hessian
H,.(0) without requiring the system to be Hamiltonian.

Our goal is to obtain similar results to those obtained by Lyapunov, Wein-
stein and Moser for system (1.1) but now without assuming the existence of a
first integral. We consider vector fields f = f. depending on a real parameter
¢ such that when e = 0 the origin is an equilibrium point of system (1.1) with
eigenvalues +wi # 0 and 0 with multiplicity m — 2. For such systems we pro-
vide sufficient conditions so that periodic orbits bifurcate from the origin when
e # 0 is sufficiently small. In [1] we used averaging theory of first order to es-
tablish a similar result for a differential system without assuming the existence
of a first integral. In the present paper, using averaging theory of the second
order, we extend the results of [1] to the case when the first order average is
identically zero.

The classical Hopf bifurcation is a local bifurcation in which an equilibrium
point of a differential system loses stability as a pair of complex conjugate eigen-
values of the linearization around the equilibrium point cross the imaginary axis
of the complex plane. Under reasonably generic assumptions about the differ-
ential system, we can expect to see a small-amplitude limit cycle branching
from the equilibrium point. We note that our results can be interpreted as a
kind of special degenerate Hopf bifurcation because for ¢ = 0 we have a pair
of complex conjugate eigenvalues of the linearization around the equilibrium
point on the imaginary axis, but moving ¢ it is not necessary that this pair of
complex eigenvalues cross the imaginary axis at ¢ = 0.

Our results are stated in subsection 1.2, and are proved in the following
sections. The proofs use averaging theory of the second order. We refer to
Section 1.1 for a summary of this theory.

1.1 Averaging theory of the second order

The next theorem provides a second order approximation for the limit cycles
of a periodic system when its average vanishes at first order. For a statement
see [5], and for a proof see Theorem 3.5.1 of Sanders and Verhulst [8], or [2].
Consider functions f,g: [0,00) X 2 — R™ and R: [0,00) x 2% (0,9] — R™,
where (2 is an open subset of R™, such that f, g and R are T-periodic in the



Periodic Orbits Near Equilibria via Averaging Theory of Second Order 717

first variable. We set
frt,z) = a—f(t z)y'(t,z), where y'(t,z) / f(s,x) (1.3)

and we consider the averages of f, f! and g, defined respectively by

Lt 1)0 e 1
0 0
T
0 ——
@) = [ oo
We also consider the two initial value problems
& =cf(t,x) +e%g(t,x) + 3 R(t,xz,¢), x(0) = xo, (1.5)

and

§=cf) +2((F)° W) + ), y(0) = zo. (1.6)

Theorem 1. Assume that: (i) f° = 0; (ii) 0f/0x, g and R are Lipschitz
i x, and all these functions are continuous on their domain of definition;
(iii) R(t, z,€) is bounded by a constant uniformly on [0,L/e) x 2 x (0,&¢]; and
(iv) the solution y(t) belongs to §2 in the interval of time [0,1/e]. Then the
following statements hold.

(a) At time scale 1/e we have x(t) = y(t) + ey* (t,y(t)) + O(£?).

(b) If p is an equilibrium point of the averaged system (1.6) with

det((f1), + g5) (p) #0, (1.7)

then there exists a limit cycle ¢(t,e) of period T for system (1.5) that is
close to p, such that $(0,e) = p as e — 0.

(¢) The stability or instability of the limit cycle ¢(t,€) is given respectively
by the stability or instability of the equilibrium point p of system (1.6).

Of course, there are other tools different to the averaging theory for study-
ing the existence of periodic solutions, one of them is the degree theory, see
for instance [3]. But both tools and almost all the tools for finding periodic
solutions are based on the Poincaré return map.

1.2 Statement of the results

We formulate in this section our results for equation (1.1). Let us assume
throughout the paper that the function f is of class C? near z = 0, with

f(O) = (0>07€2)‘3 + 53,“’37 ce a52)‘m + 53Nm)7

Math. Model. Anal., 17(5):715-731, 2012.
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0O —w 0 --- 0

w 0 0 0
ro=[0 0 0 o),

o o 0 --- 0

and that the second and third derivatives f.,(0) and f;..(0) are indepen-
dent of e, where w, A3, us3, ..., Am, i are real constants such that w # 0 and
p3 4 -+ p2, # 0. Under these standing assumptions, and introducing the
notation

Z-lj = fgl“c] (0) and Z-ljk = ix]zk(O) forl=1,2,....m

(which should not be confused with the notation in (1.3) and (1.4)), we can
rewrite system (1.1) in the form

m m m m m
T1 = —wTa + Z Z 5Ufllja:lzj + Z Z Z (qufiljkl‘il'jl’k

i=1 j—i i=1 j=i k=j
+ 04(331, . ,$m,€),

m m m

m m
Ty =wzy + Z Z 8ij fywias + Z Z Z Oijk fisn i

=1 j=1 i=1 j=1i k=j
+ Oy(x1, .. Ty €),

moom m

.'L'k = )\k + E i + Zzézjf”xzx] + Zzzazjkfz]kxzmjxk

i=1 j=i i=1 j=1i k=j

+ O4(z1, ...y Zm,€), (1.8)

for k = 3,...,m, where 6ij =1 for 75 j, (5“ = 1/2, 5iii = 1/67 6ijk = 1/2
fori =j <kori<gj==k%k,and d;; = 1 for i« < j < k. Moreover, each

Oy4(x1,...,2Tm,€) denotes a term of order 4 in x4, ..., 2, and €.
We introduce coordinates (p,0,ys, ..., Ym) in R™ satisfying 1 = epcosb,
xo = egpsinf, and xp, = ey, for k = 3,...,m. Our main aim is to apply the

averaging theory of the second order when the averaged system vanishes at the
first order (see Section 1.1). In this case one is not able to apply the averaging
theory of the first order to the system, or more precisely to the reduced system
in R™~! using the coordinates p,¥s,..., ¥, in the region 6 # 0, taking the
variable 6 as the new time. It is shown in [1] that the averaged system vanishes
at the first order if and only if the following conditions hold:

(H1) \j=0forj=3,...,m;
(H2) fllj:_f22j for j=3,...,m;
(Hg) fflz_f§2 fOI‘jZS,...’m

(H4) fh=0forj=3,...,mandl=j,...,m.
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Thus, these will be standing assumptions in the paper.
The following result gives explicitly the averaged system of the second order
for an arbitrary dimension m.

Theorem 2. In coordinates (p,ys, ..., Ym) and in the region 6 # 0, the aver-
aged system of the second order of the differential system (1.8) is given by

dp
a0 e’ {16 2 <f11f12 + flafao — Fliftr — fifte + faofdo — [iaf3s
S hth =Y Stk 2 Y k)
j=3 j=3 =3
p m m
+ﬁzz5za(fzaf12+fuf22 S = )i,
=3 j=1
p m m m ) )
+ w2 Z 5z'j( ?jffl - filjfgl)yiyl
j:3 i=j 1=3
16w (f111 + flog + [Tz + f322)
p m m
+ E Z Z(élljflzj + 5274jf21,])y1y]:| )
i=3 j=i
%_52 _iiii(g( ka_flfk) iy
F A Y ij izl = Jigla)yiysvi

2 m
0
+ ] Z(f%jf2k2 + f12jf2k2 - 2f22jf1k2
=3
- f121f1kj - f222ffj + f§2f§j + f212f2kj)yj
m m m
p
EDIRN IR o0 ) ST LR

=3 j=1i l=j
fork=3,....m

Theorem 2 is proved in Section 2.

By Theorem 1, looking for the equilibrium points of system (1.9) satisfying
condition (1.7) we obtain periodic orbits of system (1.8). Note that due to
the change of coordinates 1 = epcosf, xo = epsinf, and zp = ey for k =
3,...,m, those periodic orbits tend to the equilibrium point located at the
origin of coordinates of system (1.8) when ¢ — 0. This also justifies in some
sense that we are studying a class of degenerate Hopf bifurcation. Moreover,
taking into account that the radial polar coordinate p is only well defined
when p > 0, we are only interested in the equilibrium points (p,ys, ..., ym) of
system (1.9) with p > 0.

Corollary 1. Assume that the differential system (1.9) satisfying (H1)—(H4)
has finitely many equilibrium points. Then for any sufficiently small e # 0 there

Math. Model. Anal., 17(5):715-731, 2012.
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are at most 3™~ periodic orbits bifurcating from the origin of system (1.8)
using the averaging theory of the second order.

The proof of Corollary 1 follows directly from the fact that every equilibrium
point of system (1.9) satisfying condition (1.7) corresponds to a periodic orbit
of system (1.8) which tends to the origin of this system when € — 0, and from
the Bézout’s Theorem (see for instance [9]) applied to system (1.9).

In dimension 3 we can be more precise. Set

= o Ul ol — SR~ S TSl Sl

— fasfay — fiafoy + 2155 f1a + w(fiiy + flaa + Flaz + foa2)],
o= Lo (Sl + Ihalh— it — Fafhe) + 5 (Fafls — Flafi)
+ 16W(f1133 + f2233),

1
Az = m(f213f232 + fiafa — 2f3s s — fi1fis — [5afis + [oafos + f212f§3)

VAV

4 3
+ ;f1137

1 . 1 .
Ay = *ﬁ(f:’%ff:a — f33f33) + afé%&

Then we have the following statement.

Theorem 3. Under the assumptions of Section 1.2, if uz # 0, A1 Ay <0 and
A Ay — A1 Ay #£ 0, then for any sufficiently small € # 0 system (1.8) has a
periodic solution which is close to the circle of radius

e(Jwusl/2/12]) /(1AL 72| A2 A5 — AL Ay]).

Theorem 3 is proved in Section 3.
The following system in R? satisfies the assumptions of subsection 1.2, and
has three periodic orbits.

Ezample 1. The system

. 9 1 5 1 4 4
T = —WTy + 122 + X3 + —T123 + —T1T3T4 — T,
w w 3w
S.ﬂQ = Wy,
.3 2 2 2
T3 = €3 + TaT33 — 2U3T]T3 — 2U3T4X7,
. 1
iy = 3y + wows — 24w T3 — gyt + ;(—1 + paw) 4T3, (1.10)

has three limit cycles bifurcating from the origin for € # 0 sufficiently small.

The details of the example are given in Section 4.

2 Proof of Theorem 2

Equivalent form of system (1.8)

Under the standing assumptions in Section 1.2 we can write system (1.1) as
in (1.8). Furthermore, using the conditions (H1)-(H4) we can rewrite sys-
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tem (1.8) in the form

. 1 -
i = (=D 'wwsr + 5 et + flamws + (1= 2) > frmay
=3

l_l Zfl]xlxj + f22x2+2f2]x2x] +Zzéljfzjxlxj

7j=3 1=3 j=t

+ gf{ul’:l)’ + 5]0{1233?%2 + By Z filjxij
j=3

Ly 2 N g e 1
+ §f122x1x2 + Z f1oj010215 + Z Z 01k f1K 15Tk

j*3 j*3 k=3

+ f222$2 +3 Z fhawaes + Z 262]kf2]kx2xjxk

Jj=3 k=j

m m m
+ Z szsijkfiljkxixjxk + O4(1, ... T, €),

i=3 j=3 k—j
for I/ =1,2, and
1 m
Ty = Egﬂk _ 5]“2@ (x% — a?%) + fle’ﬂ(}z + fojxlxj
=3

’” 1 1
+ Z f¥mam; + gffnx? + §f1]€1233%$2

j=3
1 1 U
ko2 k 2 k
T3 Zflljxlmj + §f122551$2 + Z fi2;T1222;
= =3

+
s

517kf1]k301%$/c+ f222172+ E f22]x2‘r7
] =3
m m m

52]kf2]kx2xjxk + Z Z g (5”kf”kx1xjxk

=3 j=3 k=j

+
M=
7+ 1

=
Il
<.

3
+ O4(x1, ...y T, €),

fork=3,...,m

Introduction of new variables

Since we want to apply averaging theory, we introduce the change of coordinates
x1 =rcosb, ZTo = rsinf, xpr=2xK, k=3,...,m,

Math. Model. Anal., 17(5):715-731, 2012.
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after which we can rewrite system (1.8) in the form
r=T11(0,r,23,...,2m) + T12(0, 7, 23,...,Tm)
+ Hi(0,r,23,...,xm) + O4(r, 3, ..., Zm),
észrTg(G,r,xg,...,xm) + Hy(0,r,23,...,xm)/T,
ip = + Te1 (0,7, 23, .. 2m) + Tho(0, 7,23, . .., Ty
+ Hp(0,7r,23,...,2m) + O4(r,z3, ..., Z),

for kK =3,...,m, where
1 1
Ty =r? [Qflll cos® 0 + <f112 + 2f121) cos? 0sind
1 1
+ <2f212 + f122> cos fsin? 0 + §f222 sin® 9]

+r Z[fgj (sin2 6 — cos® 9) + (f21J + ffj) cosfsin 6| x;
j=3
+ Z Z i (fllj cosf + ffj sin H)xixj,
i=3 j=i
Ty =13 [éflln cos* @ + %(fll22 + f1212) cos? fsin” 6 + %f2222 sin @

mom

+ TZZ(fllw cos® 0 + f21ij sin® 0) x5,

i=3 j=i

and
To=r Bfl?l cos> 6 + (f122 - ;fh) cos? §sin 0
+ (;f&z - f112> cos fsin? § — %f212 sin® 0]
+ i(ffj cos® 0 — fy;sin® 0 + 2f3; cos O sin )z
j=3m N

1 .
+ - Z Zéij (ff] cosf — fllj sin 0) z;z;,

i=3 j=i

and where for k =3,...,m,

1
Ty = 72 [—2f2k2 (cos® — sin® ) + f1, cos Osin 9}

+7’Z(ffj cosf + kaj sinf)x;,

Jj=3

and

2 m m m m

Tyo = % Z(flklj cos® 0 + f2k2j sin® §)a; + Z Z Zdijlfz%lxixjxl'

Jj=3 i=3 j=i l=j

(2.3)



Periodic Orbits Near Equilibria via Averaging Theory of Second Order 723

Moreover, Hy = Hi(0,r,x3,...,x,) and Hy = Hg(0,r,23,...,2y) for k =
3,...,m are sums of terms of order 3 in 7, 3, ..., Z,,, multiplied by a function
of 6 among the ones in

cosf, sinf, cosfsind, cos® 0, sin’6,
cos® 0sind, cosOsin®0, cos®Osinb, cosbsin® 6. (2.4)

This readily implies that

2m 2
; Hi(0,r,23,...,2m,)d0 = ; Hy(0,r,x3,...,2,)d0 =0,
for k = 3,...,m. Finally, Hy = Hy(0,r,x3,...,%,,) is a function at least of
order 3 in the variables r, x3, ..., Zy,.

We note that in the expression of § in (2.1) we have that T» is a function
at least of order 1 and Haz of order at least 3 in the variables r,z3,...,xm, so
sufficiently close the origin 6 ~ w, and consequently our results work at least
in a neighborhood of the origin.

Reduction of the system to form (1.5)
In the region 6 # 0 system (2.1) yields the equations
d’l" - T11 +T12 +H1 +O4(7“,9,£L’37...,£Cm)

do w+ Ty + Hyfr ’
%_83'uk—|—Tk1—|—Tk2—|—Hk.+O4(T,0,$3,...,$m) (2.5)
d9 - w + T2 + HQ/T ’ ’
for k = 3,...,m, where for simplicity we have omitted the dependence on the
variables 0, r, x3,...,x,,. Here, each O4(r,0,x3,...,x,,) denotes a term of
order 4 in r,x3,...,%,. We note that this system is 27-periodic in the in-
dependent variable 6. Moreover, performing the rescaling (r,xs,...,2Tm) =

e(p,ys,---,Ym), system (2.5) has the appropriate form to apply averaging the-
ory. Namely, setting

~ 1

Tkl(oapayf}a .- 'aerL) = ngl(G,T,J?g,. .. ,1’7n),
- 1

TkQ(aapvy3a"'aym) = ngZ(Gvrax37"'7IM)7
- 1

T2(93p7y35-"aym) = ETQ(gﬂanm"'axm)v

in the variables p,ys, ..., ¥ym the system has the form

d
7p = Efll(aap7y37"'7ym) +E2f12(03p7y37-~-aym)

df
+ 5391(97[)7 Y3, 7ym7€)7
dy
T; = 5fk1(93p7y3a s ,ym) +€2fk2(07pay37' e 7ym)

+53gk(97pay37~~->ym75)7 (26)

Math. Model. Anal., 17(5):715-731, 2012.
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for some functions g1, g3, ..., gm, where

T 05 s Y3y Y
fll(aapay:iy"'ayﬂl) = 11( P s m)

)

w
Tl? eapay?n"'?ym +}~Il 67p7y3a"'7ym
fl?(eap7y37"'aym): ( )(.(.) ( )
T2(97P7937~~7ym)T11(9,P»y37-~«vym)
_ 2 ,
and
Tkl(aapay&'--ay’m)
fk1(97pay37"'aym) = w )
Mk+Tk2 97p3y37"‘7ym +ﬁk 97p7y37"‘7ym
fk2(9:p7y37"'aym) - ( w) ( )
o T2(07P7 Yz, ... 7ym)Tk1(0;p, Ys, ... ,ym)
w2 ’
for k = 3,...,m. Moreover, each Hj, = lffk(&p7 Y3, -+, Ym) is a sum of terms of

order 3 in p,ys, ..., Ym, multiplied by a function of § among the ones in (2.4).
We note that

2m 2m

fjl(g’p’y?’""’ym)da = I:Ij(evp?y?n"'ay’m) do = 07
0 0

for j = 1,3,4,...,m (the first integral vanishes in view of the conditions
(H1)-(H4). Thus, system (2.6) can be written as system (1.5) taking x =
(p7y37'~'7yk:)7 t:9, T:27T,

f:(fllaf31a"'afm1)7 g:(f127f327"'7fm2)7 R:(glvg37"'7gm)'

It is easy to verify that system (2.6) satisfies the assumptions of the averaging
theory of the second order described in Theorem 1, taking 2 = UN(RT xR™~2)
for some open disc U centered at the origin in R™~!, and taking g9 > 0
sufficiently small.

Functions in Theorem 1

To apply Theorem 1 (see (1.7)) we need to compute the functions g and f!
(see (1.3)), which we write in the form

f12(p7y37"'7ym) Fl(pay37"'7ym)
g= f32(P»y3j~-~7ym) and f1: F3(pay3a."~7ym) ,
fmz(va:‘a,---,ym) Fm(p7y3,-~-7ym)
for some functions Fi, Fs, ..., F,,. We also let

1

27
Gi(p,yg,...,ym):%/o [fig(Q,p,yg,...,ym)+Fi(0,p,y37...,ym)] de. (2.7)
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Now we start computing the functions G;, which are the components of the
sum ¢° + (f1)° (see (1.6)). We first observe that

1 27 27 B
= 0 ) A8 = —— | Tua(8,p,ys, .. ym) dO
o 0 f12( y Py Y3, Y ) 2w 12( P, Y3 Yy )
1 27 ~ ~
— T11(6 s Ym)T2(0, 0,93, .., Ym) dB, 2.8
QWQ/O 10,0, Y3, -+ Ym)T2(0, 0, Y3, - s Ym) (2.8)
and
i f 0 )df = +1/27TT (0 ) df
o k2\Us 05 Y35 - -y Ym = HE I 0 k2\Us 05 Y35 - -y Ym
1 2m _
- QWWQA Tk1(97p7y37"'7ym)T2(07p7y37“'aym) d97
for k = 3,...,m. Furthermore, following (1.3) we let

6
}/rj :}/j(97pay37"'7ym) :/ le(w7p7y3a"'7ym)dw7 (29)
0
for j =1,3,...,m. Then the function y' in (1.3) is given by
1 1
y = 7(}/13Y33"'a}/7n)-
w

Moreover

af; 6 )

Computation of the functions G;

Now we proceed with the explicit computation of the integrals giving the func-
tions GG;. We first observe that

1 [ 1
o ; T12(0,p,y3,- - Ym) dO = m[ﬂg’(fllu+f1122+f1212+f2222)
+ 8PZ Z(5lijf11ij + 52ijf22ij)yiyj]

i=3 j=i
(2.11)

Moreover, with the help of an algebraic manipulator such as Mathematica we
obtain

1 27 - -
- 22 / T11(07P7 Ys, .- 7ym)T2(9’p7 Yz, - ayWL) de
0

/)3111111112122112122
=3 §f11f12+§f12f22_§f11f11_§f11f12+§f22f22_§f12f22

Math. Model. Anal., 17(5):715-731, 2012.
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ot 1 Lo 1o
ZZ m(fijflz*§fijf11+§fijf22
:3 =

fzjf11+ fz]f22 f12_7f122>y’ty3

Adding (2.11) and (2.12) we obtain the first component of g°. Now we consider

726

— »Mb

(2.12)

the remaining components. For k = 3,..., m we have
1 27 5
T Tk2(97Pay37~--7?Jm) do
W 0
2 m m m m
|: Z(fll] +f22] Yj +Zzzézjlfz]lyzyjyl:|
=3 j=1 l=j

and after some tedious computations we obtain

1 27 - -
- 27Tw2/ Tk1(97p,y3,---,ym,)TQ(g,p,y37~-~,ym) e

m m m

ZZZ% ‘ffl*filjfzkz)yiyjyz
1=3 j=1 [=3
m

2
P
JF@ (lejf52+f12jf§2*2f22jf52+f112f1kj
j=3
3 1 1 3
§f121f1kj - §f222f1kj + §f2k2f2kj + §f212f2kj - f122f2kj)'
These formulas conclude the computation of the integral in (2.8).
Now we compute the integrals fo Fi(0,p,y3,...,Ym)dl. Setting j = 1
n (2.9) we obtain

6
Y: = Y1(03p3y37' . -,ym) :/ Tll(w7pay37' .. 7ym) dwa
0

and it follows from (2.2) that

2 1 3 1
Y1 = % {—3<f112 + §f121 + 2f222> cosf — (f112 + §f121 f22) cos(30)

3 1 1
3(f111 + 1f212 + f122) sinf + <2f111 - §f212 - f122> Sin(39)}
_ L Z f2] + flj y; cos(20) + 2f2]yj Sm(29)}

=3

Y (2.13)

ZZ ij fw sin @ — Cosﬁ)yly]

Moreover, for j = 3,...,m it follows from (2.9) and (2.3) that

2 m
Y; = _pz [ff2 cos(26) + ]”2”“2 sin(29)] — pZ(kaj cosf — f{“j sin G)yj. (2.14)
=3
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Now we observe that by (2.2) and (2.3),

T 1 1 1
83;1 =2p {2]“111 cos® O+ <f112 + 2f121) cos? fsin 6§ + (2f212+f122) cos 0 sin” 0

Lo .03 (22 2 1 2 .
+§f22 sin 9} + E3[f2j(sm 0 — cos® 0) + (fa; + f1;) cosfsin6)y;,
i=
Ty,

3 p[f3;(sin® 0 — cos® 0) + (fa; + f7;) cosOsinb]
Yj

+ QZ(Sji(fjli cos O + f7;sinf)y;,

i=j
and
o, 1
8;1 2,0[ if ¥ (cos? 0 —sin? ) + fE, cosfsin @
+ Z fljcos O+ f5;sin6)y;,
7j=3
T
0Tk p(ffj cos&—i—fgkj sinﬂ),
dy;
fork=3,...,m

After straightforward computations it follows from (2.13) and (2.14) that

1 2m 8T11 m
2770‘}2/0\ a Yl b = Aw A2 2261] (fz]f12+ fz]fll + fz]f22

=3 j=1

5 i2jf111 - 5 i2jf212 - f122fi2j)yiyja

27 3 m
8T11 P 1 . 1 . .
Dy} Z/ a, Y;df = S _§f21jf52 - §f12jf§2 + f22jff2
j o
t3 DD S (fE L - ) v
=3 i=j 1=3

Summarizing, by (2.10) we conclude that
w2 2T
27/ Fl(ﬂa3/37~-~,ym)d0
™ Jo
3
01 1 1 1 1
=3 (2f111f112 + §f112f212 - §f111f121 - §f121f122 + §f212f222

1 1 . 1 & . m )
3t -5 Y Mith -5 Futh+ > fst)
j=3 j=3 j=3

Math. Model. Anal., 17(5):715-731, 2012.
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[

M 11
Msz-ms

51J(fzgf12+fmf22 %f%l*fizjflzz)yiyj

m

Z‘Sw 'ffl - filjfgl)yiyl

j =3

4+
)

Il
w

] 7

w m m
+ 6 [P3 (flin + flog + fi2 + fon2) + SPZ Z((Slijfllij + 52ijf22ij)yiyj .
i=3 j=i

Moreover, for kK = 3,...,m we have

1 [*oT,
—/ 0 My, do =0,
2rw? Jo  Oy;

and

ZZ 'ffz *filjfzkz)yiyjyz

2

p 1

v 2 (f;j P+ By — 203 0t — sty — 5SS
7j=3

3 3 1 .
ST+ SIS+ Sihtty + T )

Therefore, for j = 3,...,k we have

w? 27 m o m m
sr ) B 0= =32 5TS 0 (7t £ i)
0
=3 j=1 [=3
2

p m
Z Z f2jf2k2 + f12jf2k2 - 2f22jffz
7=3

- fllflj - f222f1kj + f2k2f2kj + f212f2kj)yj

|: Z(fllj +f22] Yj +Zzzéljlfljly1yjyl:|

1=3 j=i l=j

This concludes the computation of the functions G;, and the proof of Theorem 2
is complete.

3 Proof of Theorem 3

When m = 3 the averaged system (1.9) becomes

=A A
d@ 1/0 + 2py37

dys 2 3
= =A Agys.
20 3P7Y3 + A4Y3
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We can easily verify that it has as a single equilibrium point with p > 0, given

by
_ |2wpz| '3 \/14s] (2wpzAr)'/?
P NIA 4525 — Ar A7 (83D — Dy A0)1 )
A simple computation shows that the Jacobian matrix at the point p has de-

terminant 12|wpug|\/|A1As| # 0, and thus we can apply Theorem 1, and we
get Theorem 3.

4 Detalils of Example 1

The purpose of this section is to provide the details of Example 1, showing that
the averaging theory of the second order can be applied to system (1.10).
In coordinates r, 0, x3, x4 system (1.10) becomes

rz3(zy 4+ x3)cos? 0 4rdcost
3w

= x%cos + + 12 cos® fsin 6,

é:

2 2 . 30

x5sinf  4r“cos® fsind .
- + — rcosfsin?6
T 3w

w? cos? 0 — x34 cos O sin — x3 cos O sin O + w? sin® 0

)
w

i3 = (53 + x49€§)ﬂ3 - 2r2(x4 + x3) s cos? 0,
—mx% + 53wu4 + m4x§wﬂ4

G4 = — 29 (xy + x3) g cos? O + ra3sinb.
w

Performing the rescaling p = re, x5 = yse and 24 = yae, in the region 8 # 0
we obtain the reduced system

dp _ ecos 0(y? + p* cos O sin 6)
o w
g2 cos 6

3pw? (—3p2y3y4 cos® 6 — 3p°y5 cos® 6 + 4p* cos” 0

— 3y sinf — 6p>y? cos O sin? @ — 3p?yzy4 cos O sin® O

— 3p%y3 cos Osin? O + 4p* cos® Osin® 6 — 3p* cos? O sin® 9),
dys  e?us(1+ y3ys — 2p?ys cos® 6 — 2p*ysz cos? 0)
de w ’

d epyzsind g2
GYs _ EpYssmy = (—yay3 cos? 0 + wpy cos® O + yayjwps cos®

db w
— 2p%yawiig cos® O — 2p?yswig cost @ + y3yz sin? O — yuy3 sin’ 0
+ Wity sin? 6 + y4y§wu4 sin? 6 — 2p2y4wu4 cos? fsin? 0
— 2pyswiiy cos? Osin? § + p*ys cos O sin® 9).

We can write this system in the form (2.6) with

cos 0(y2 + p? cosfsiné sin 6
Fy = (yitp )7 Far =0, fu = Py377

w

Math. Model. Anal., 17(5):715-731, 2012.
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and

cos
fia=— 3002

— 3y sin @ — 6p%y3 cos O sin? @ — 3p?y4ys3 cos O sin® O

(—3p2y3y4 cos® 0 — 3p?y3 cos® 0 + 4p* cos® 0

— 3p%y3 cos 0 sin? 0 4 4p* cos® 0 sin? 6 — 3p* cos? 0 sin® 9),

Fay = ps(1 4 yay3 — 2p%ys cos® O — 2p?ys3 cos? )
32 w )
1

faz = —5 (—yay3 cos® 0 + wpuy cos® O + yay3wpg cos® 0
w

— 2p2%yawpiy cost O — 2p%yswiig cos® O + yiyg sin? § — y4y§ sin” 6
+ Wity sin? 6 + y4y§wu4 sin? 6§ — 2p2y4w,u4 cos? fsin? 0
— 2p%yswiiy cos® @ sin? 6 + p2ys cos O sin® 9).

Note that

27 27

J11(0, p,y3,y4) dO = Ja1(0,p,y3,94) df = 0.
0 0

Now we study the averages of the second order. Setting

0
Yl(eapa 2/37y4) = / fll(w’pv y372/4) dea Y3 = 07
0

0

Y4(03pa y37y4) = f41(1/)7p7y3ay4) daa
0

with the notation of (2.7) we obtain

1 27
G = — 0 do
1 o o f12( ,P»y37y4)
1 2 afll(gvpv y37y4)
il LA IN IR Y (9 de
—+ QWA ap 1( ap7y3,y4)
1?7 0f11(0,p,y3,y4)
= 2D I8 Iy (g do
+ o ; 6:[/4 4( apay37y4)
p
= ﬁ(—pQ + 3 —ysya +3),
1 2 .
G3: 27 f32(9»P»y373J4) do = &(1+y4y§_p2(y3+y4))’
™ Jo w
1 2w
G4 = 27 f42(97p7y37y4) o
T Jo
1 2m dfn (9 Py Y3, Y4)
L ZJANT 5 I3 9y g df
+ o ; ap 1( 7pay3,y4)
L [*"0fs(6,p,ys,
—+ 2— MYE(&P, y3,y4) o
™ Jo 8294
1

= [ya(ya — y3)ys + (14 yay3 — p*(ys + ya))wpa).
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Computing the zeros of (G1,Gs, G4) yields
b1 = (17170)’ P2 = (17071)7 b3 = (1a171)7

in coordinates p, y3, y4. For the function (G1,G35,Gy), the Jacobians at the
points p; and py have determinant —3us/w’ # 0, and the Jacobian at the
point p3 has determinant 3u3/w® # 0. Thus, we can apply Theorem 1. This
concludes the details of the example.
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