
Mathematical Modelling and Analysis Publisher: Taylor&Francis and VGTU

Volume 17 Number 5, November 2012, 696–714 http://www.tandfonline.com/TMMA

http://dx.doi.org/10.3846/13926292.2012.736089 Print ISSN: 1392-6292

c©Vilnius Gediminas Technical University, 2012 Online ISSN: 1648-3510

Product Quasi-Interpolation in Logarithmically
Singular Integral Equations∗

Eero Vainikkoa and Gennadi Vainikkoa,b

aUniversity of Tartu, Faculty of Mathematics and Computer Science

Liivi 2, 50409 Tartu, Estonia
bEstonian Academy of Sciences

Kohtu 6, 10130 Tallinn, Estonia

E-mail(corresp.): eero.vainikko@ut.ee

E-mail: gennadi.vainikko@ut.ee

Received February 20, 2012; revised August 18, 2012; published online November 1, 2012

Abstract. A discrete high order method is constructed and justified for a class of
Fredholm integral equations of the second kind with kernels that may have bound-
ary and logarithmic diagonal singularities. The method is based on the improving
the boundary behaviour of the kernel with the help of a change of variables, and
on the product integration using quasi-interpolation by smooth splines of order m.
Properties of different proposed calculation schemes are compared through numerical
experiments using, in particular, variable precision interval arithmetics.

Keywords: weakly singular integral equations, boundary singularities, spline quasi-

interpolation, product integration, Nyström-type methods.

AMS Subject Classification: 65R20; 65D07; 65D30.

1 Introduction

In the present paper we treat a fully discrete method of accuracy O(hm) (see
Section 4) for the integral equation

u(x) =

∫ 1

0

[
a(x, y) log |x− y|+ b(x, y)

]
u(y) dy + f(x), 0 ≤ x ≤ 1, (1.1)

with the logarithmic diagonal singularity in the kernel. The coefficient func-
tions a, b ∈ Cm([0, 1] × (0, 1)) and the free term f ∈ C[0, 1] ∩ Cm(0, 1) may
have certain boundary singularities described below in detail. Due to diag-
onal and boundary singularities of the kernel, the derivatives of the solution
to equation (1.1), as a rule, have certain boundary singularities. In Section 2

∗ The work was supported by the European Regional Development Fund through the Esto-
nian Centre of Excellence in Computer Science and by the Estonian Science Foundation,
grants 9019 and 9104.

http://www.tandfonline.com/TMMA
http://dx.doi.org/10.3846/13926292.2012.736089
mailto:eero.vainikko@ut.ee
mailto:gennadi.vainikko@ut.ee

Product Quasi-Interpolation in Logarithmically Singular Integral Equations697

we reduce (1.1) with the help of a smoothing change of variables to a similar
problem

v(t) =

∫ 1

0

(
A(t, s) log |t− s|+ B(t, s)

)
v(s) ds+ g(t), 0 ≤ t ≤ 1,

in which the coefficients A(t, s) and B(t, s) have no singularities and vanish for
s = 0 and s = 1. Simultaneously the singularities of the solution will be milder
or disappear at all for suitable parameters of the change of variables. On the
contrast, the logarithmic diagonal singularity of the kernel of equation (1.1)
still remains to be present. In Section 3 we recall some results about quasi-
interpolation of functions by smooth splines of order m (of degree m − 1)
on the uniform grid of the step size h = 1/n. In Section 4 we introduce and
justify our method based on quasi-interpolation of the products A(t, s)v(s) and
B(t, s)v(s) by smooth splines. The use of smooth splines of order m enables
an m-fold reduction of degrees of freedom, compared with the traditional use
of discontinuous splines in the product integration methods [1, 3, 10]. The use
of quasi-interpolation instead of real interpolation leads to some simplification
of the numerical algorithm. Section 5 is devoted to the computation of the
coefficients in the matrix form of the method. An important advantage of
our method is that we can present simple exact formulae for the coefficients
occurring in the discretized problem. Unfortunately, for big n, far from the
main diagonal, these formulae become numerically unstable, so we complete
them by traditional numerically stable quadrature approximation; the error of
quadrature approximation rapidly decreases as we move away from the main
diagonal. The use of only exact formulae in double precision arithmetics for all
coefficients is usually quite acceptable in engineer computations. A numerical
check and illustration of the method is performed in Section 6; also the interval
arithmetics approach is used for the analysis of the numerical accuracy of exact
formulae and the quadrature computation of the coefficients.

Linear integral equations with a logarithmic diagonal singularity often oc-
cur modelling physical processes. For instance, one of the main equations in
radiative transfer theory, the Milne integral equation [2], has the form

u(x) =
1

2

∫ b

0

a(y)E(x− y)u(y) dy + f(x),

where

E(x) =

∫ ∞
x

e−s

s
ds = −log x+ c+ x− x2

2 · 2!
+

x3

3 · 3!
− x4

4 · 4!
+ · · · , x > 0,

is the integral exponent function, c = limn→∞
(∑n

k=1
1
k − log n

)
≈ 0.5772 is

the Euler constant.
The present paper is a continuation of our work [13], where the convergence,

error and numerical analysis of the same method has been presented for the
integral equation

u(x) =

∫ 1

0

[
a(x, y)|x− y|−ν + b(x, y)

]
u(y) dy + f(x), 0 ≤ x ≤ 1, (1.2)

Math. Model. Anal., 17(5):696–714, 2012.

698 E. Vainikko and G. Vainikko

where ν ∈ (0, 1). Since the convergence analysis for equation (1.1) differs from
that for (1.2) presented in [13] only in small details, we omit detailed proofs
and concentrate mainly on the specific numerical aspects of the method for
equation (1.1).

Denote by T the integral operator of equation (1.1),

(Tu)(x) =

∫ 1

0

(
a(x, y) log |x− y|+ b(x, y)

)
u(y) dy.

The following lemma can be proved by standard argument, cf. [3, 5].

Lemma 1. Let a, b ∈ C([0, 1] × (0, 1)) satisfy for (x, y) ∈ [0, 1] × (0, 1) the
inequality ∣∣a(x, y)

∣∣+
∣∣b(x, y)

∣∣ ≤ cy−λ0(1− y)−λ1 ,

where λ0, λ1 ∈ R, λ0 < 1, λ1 < 1. Then T maps C[0, 1] into C[0, 1], and
T : C[0, 1]→ C[0, 1] is compact.

For m ∈ N, λ0, λ1 < 1, denote by Cm? (0, 1) and Cm,λ0,λ1
∗ (0, 1) the weighted

spaces of functions u ∈ C[0, 1] ∩ Cm(0, 1) such that, respectively,

‖u‖Cm? (0,1) :=

m∑
k=0

sup
0<x<1

xk(1− x)k
∣∣u(k)(x)

∣∣ <∞,
‖u‖

C
m,λ0,λ1
∗ (0,1)

:=

m∑
k=0

sup
0<x<1

wk−1+λ0
(x)wk−1+λ1

(1− x)
∣∣u(k)(x)

∣∣ <∞,
where

wρ(r) =

{
1, ρ < 0,

rρ/(1 + | log r|), % ≥ 0,
r, ρ ∈ R, r > 0.

Clearly, Cm[0, 1] ⊂ Cm,λ0,λ1
∗ (0, 1) ⊂ Cm? (0, 1). Denote ∂kx∂

l
y = (∂/∂x)k(∂/∂y)l.

Lemma 2 [see [9]]. Let a, b ∈ Cm([0, 1]×(0, 1)) and let for k+ l ≤ m, (x, y) ∈
[0, 1]× (0, 1),∣∣∂kx∂lya(x, y)

∣∣+
∣∣∂kx∂lyb(x, y)

∣∣ ≤ cy−λ0−l(1− y)−λ1−l,

where λ0 < 1, λ1 < 1. Then T maps the Banach spaces Cm? (0, 1) and

Cm,λ0,λ1
∗ (0, 1) into themselves, T : Cm? (0, 1) → Cm? (0, 1) is bounded, T 2 :

Cm? (0, 1) → Cm? (0, 1) is compact, and T : Cm,λ0,λ1
∗ (0, 1) → Cm,λ0,λ1

∗ (0, 1) is
compact.

Denote N (I − T) = {u ∈ C[0, 1] : u = Tu}. The following theorem is a
consequence of Lemmas 1 and 2.

Theorem 1. Assume the conditions of Lemma 2 and N (I − T) = {0}. Then
for f ∈ Cm? (0, 1), equation (1.1) has a solution u ∈ Cm? (0, 1) which is unique

in C[0, 1], and ‖u‖Cm? (0,1) ≤ c ‖f‖Cm? (0,1). Further, if f ∈ Cm,λ0,λ1
∗ (0, 1) then

also u ∈ Cm,λ0,λ1
∗ (0, 1), and ‖u‖

C
m,λ0,λ1
∗ (0,1)

≤ c ‖f‖
C
m,λ0,λ1
∗ (0,1)

. The constant

c is independent of f .

Our main results will be established under assumptions of Theorem 1.

Product Quasi-Interpolation in Logarithmically Singular Integral Equations699

2 The Smoothing Change of Variables

In the integral equation (1.1), we perform the change of variables

x = ϕ(t), y = ϕ(s), 0 ≤ t ≤ 1, 0 ≤ s ≤ 1,

where ϕ : [0, 1]→ [0, 1] is defined by the formula [7, 8, 13]

ϕ(t) =
1

c?

∫ t

0

σr0−1(1− σ)r1−1 dσ,

c? =

∫ 1

0

σr0−1(1− σ)r1−1 dσ =
Γ (r0)Γ (r1)

Γ (r0 + r1)
,

Γ is the Euler gamma function, r0, r1 ∈ R, r0 ≥ 1, r1 ≥ 1; practicable al-
gorithms correspond to r0, r1 ∈ N. Clearly, ϕ(0) = 0, ϕ(1) = 1 and ϕ(t) is

strictly increasing in [0, 1]. Hence ϕ(t)−ϕ(s)
t−s > 0, |ϕ(t)−ϕ(s)| = ϕ(t)−ϕ(s)

t−s |t− s|
for s 6= t, and equation (1.1) takes the form

v(t) =

∫ 1

0

(
A(t, s) log |t− s|+ B(t, s)

)
v(s) ds+ g(t), 0 ≤ t ≤ 1, (2.1)

where v(t) = u(ϕ(t)) is the new function we look for,

g(t) = f
(
ϕ(t)

)
, A(t, s) = a

(
ϕ(t), ϕ(s)

)
ϕ′(s),

B(t, s) =
[
a
(
ϕ(t), ϕ(s)

)
log
(
Φ(t, s)

)
+ b
(
ϕ(t), ϕ(s)

)]
ϕ′(s),

Φ(t, s) =

{
ϕ(t)−ϕ(s)

t−s , t 6= s

ϕ′(s), t = s

}
.

About the boundary behaviour of A(t, s), see [13]; together with estimates [13]
for Φ(t, s), also the boundary behaviour of B(t, s) is clear. In particular, the
following is true under conditions of Lemma 1: if r0, r1 ≥ 1 satisfy

r0 > 1/(1− λ0), r1 > 1/(1− λ1), (2.2)

then for (t, s) ∈ [0, 1]×(0, 1), with δ0 = (1−λ0)r0−1 > 0, δ1 = (1−λ1)r1−1 > 0,
it holds∣∣A(t, s)

∣∣ ≤ csδ0(1− s)δ1 ,
∣∣B(t, s)

∣∣ ≤ csδ0(1− s)δ1
∣∣log s(1− s)

∣∣. (2.3)

The following is true under conditions of Lemma 2: if r0, r1 ≥ 1 satisfy

r0 > m/(1− λ0), r1 > m/(1− λ1), (2.4)

then for (t, s) ∈ [0, 1]×(0, 1), with δ0 = (1−λ0)r0−m > 0, δ1 = (1−λ1)r1−m >
0, it holds ∣∣A(t, s)

∣∣ ≤ csm−1+δ0(1− s)m−1+δ1 , (2.5)∣∣B(t, s)
∣∣ ≤ csm−1+δ0(1− s)m−1+δ1

∣∣log s(1− s)
∣∣;

Math. Model. Anal., 17(5):696–714, 2012.

700 E. Vainikko and G. Vainikko

moreover, for u ∈ Cm? (0, 1), v(s) = u(ϕ(s)), with a constant c independent of u,∣∣∂ms [A(t, s)v(s)
]∣∣ ≤ cs−1+δ0(1− s)−1+δ1 ‖u‖Cm? (0,1) , (2.6)∣∣∂ms [B(t, s)v(s)
]∣∣ ≤ cs−1+δ0(1− s)−1+δ1

∣∣log s(1− s)
∣∣ ‖u‖Cm? (0,1) . (2.7)

About the boundary behaviour of v(t) = u(ϕ(t)) we have on the basis of
Lemma 3.1 of [13] the following result: if u ∈ Cm? (0, 1) then also v ∈ Cm? (0, 1);

for u ∈ Cm,λ0,λ1
? (0, 1), j = 1, . . . ,m, 0 < t < 1, it holds∣∣v(j)(t)∣∣ ≤ c‖u‖

C
m,λ0,λ1
? (0,1)

{
tr0−j , λ0 < 0

t(1−λ0)r0−j | log t|, 0 ≤ λ0 < 1

}
×
{

(1− t)r1−j , λ1 < 0

(1− t)(1−λ1)r1−j | log t|, 0 ≤ λ1 < 1

}
.

We see, in particular, that for λ0 < 0, λ1 < 0, r0 > m, r1 > m we have the
implication

u ∈ Cm,λ0,λ1
? (0, 1) =⇒ v ∈ Cm[0, 1],

v(j)(0) = v(j)(1) = 0, j = 1, . . . ,m. (2.8)

For 0 ≤ λ0 < 1, 0 ≤ λ1 < 1, (2.8) holds true under conditions (2.4).
We extend A(t, s) and B(t, s) with respect to s outside (0, 1) by the zero

value. Under conditions (2.2) we obtain continuous functions on [0, 1] × R,
see (2.3).

3 Interpolation and Quasi-Interpolation by Splines

3.1 The father B-spline

The father B-spline Bm of order m (or of degree m− 1) can be defined by the
formula

Bm(x) =
1

(m− 1)!

m∑
i=0

(−1)i
(
m

i

)
(x− i)m−1+ , x ∈ R, m ∈ N.

Here, as usual, 0! = 1, 00 := limx↓0 x
x = 1,(

m

i

)
=

m!

i! (m− i)!
, (x− i)m−1+ =

{
(x− i)m−1, x− i ≥ 0,

0, x− i < 0.

Let us recall some properties of Bm:

suppBm = [0,m], Bm(x) = Bm(m− x) > 0 for 0 < x < m, (3.1)

Bm ∈ C(m−2)(R),

B(m−1)
m (x) = (−1)l

(
m− 1

l

)
, for l < x < l + 1, l = 0, . . . ,m− 1, (3.2)∫

R

Bm(x) dx = 1,
∑
j∈Z

Bm(x− j) = 1, x ∈ R. (3.3)

Product Quasi-Interpolation in Logarithmically Singular Integral Equations701

3.2 Spline interpolation

Introduce in R the uniform grid hZ = {ih : i ∈ Z} of the step size h > 0.
Denote by Sh,m, m ∈ N, the space of (maximally smooth) splines of order m
(of degree m− 1) and defect 1 with the knot set hZ. It consists of all functions∑
j∈Z djBm(h−1x − j) where dj ∈ R or C. Further denote by BC (R) the

space of bounded continuous functions on R equipped with the norm ‖f‖∞ =
supx∈R |f(x)|. For v ∈ BC (R), the spline interpolant Qh,mv∈ Sh,m ∩BC (R) is
determined by the conditions

(Qh,mv)(x) =
∑
j∈Z

djBm
(
h−1x− j

)
,

(Qh,mv)
((
k +m/2

)
h
)

= v
((
k +m/2

)
h
)
, k ∈ Z. (3.4)

For m = 1 and m = 2, Qh,mv is the usual piecewise constant, respectively,
piecewise linear interpolant which can be determined on every subinterval
[ih, (i+ 1)h], i ∈ Z, independently of other subintervals. For m ≥ 3, the value
of Qh,mv at a given point x ∈ R depends on the values of f at all interpolation
knots (k+ m

2)h, k ∈ Z. It occurs (see [11]) that also for m ≥ 3 conditions (3.4)
uniquely determine dj , j ∈ Z, in the space of bounded bisequences, namely,

dj =
∑
k∈Z

αj−k,mv

((
k +

m

2

)
h

)
, j ∈ Z, αk,m =

m0∑
l=1

zm0−1
l,m

P ′m(zl,m)
z
|k|
l,m, k ∈ Z,

where

m0 =

{
(m− 2)/2 for even m,

(m− 1)/2 for odd m,

and zl,m ∈ (−1, 0), l = 1, . . . ,m0, are the roots of the polynomial Pm(z) =∑
|k|≤m0

Bm(k+m
2)zk+m0 of degree 2m0 (the remainingm0 roots are zl+m0,m =

1/zl,m ∈ (−∞,−1), l = 1, . . . ,m0).

Lemma 3 [see [4, 15]]. If v is m times differentiable in R and v(m) is bounded
then

‖v −Qh,mv‖∞ ≤ Φm+1π
−mhm

∥∥v(m)
∥∥
∞,

where Φm = 4
π

∑∞
k=0

(−1)km
(2k+1)m , m ∈ N, is the Favard constant.

3.3 Spline quasi-interpolation

For m ≥ 3, p ∈ N, we define the quasi-interpolant Q
(p)
h,mv ∈ Sh,m of v ∈ BC (R)

by (
Q

(p)
h,mv

)
(x) =

∑
j∈Z

d
(p)
j Bm

(
h−1x− j

)
, x ∈ R,

d
(p)
j =

∑
|k|≤p−1

α
(p)
k,mv

((
j − k +

m

2

)
h

)
,

Math. Model. Anal., 17(5):696–714, 2012.

702 E. Vainikko and G. Vainikko

where

α
(p)
k,m =

p−1∑
q=|k|

(−1)k+q
(

2q

k + q

)
γq,m, |k| ≤ p− 1, (3.5)

γ0,m = 1, γq,m =

m0∑
l=1

(1 + zl,m)zm0+q−1
l,m

(1− zl,m)2q+1P ′m(zl,m)
, q ≥ 1.

It occurs [6] that for v with uniformly continuous mth derivative v(m) and

2p > m, the quasi-interpolant Q
(p)
h,mv is asymptotically of the same accuracy

as the interpolant Qh,mv. It is reasonable to take the smallest p ∈ N for which
2p > m; denote it by m1,

m1 =

{
m/2 + 1 for even m

(m+ 1)/2 for odd m

}
= m−m0; (3.6)

denote also

Q′h,m := Q
(m1)
h,m , α′k,m := α

(m1)
k,m , |k| < m1. (3.7)

The quasi-interpolant Q′h,mv ∈ Sh,m can be constructed on every subinterval
[ih, (i+1)h], i ∈ Z, independently of other subintervals provided that v is given
on [(i−m+ 1)h, (i+m)h] ∩ {(j + m

2)h : j ∈ Z}.
We assumed that m ≥ 3. For m = 1 and m = 2 we may put Q′h,m = Qh,m.

Lemma 4 [see [6]]. For i ∈ Z, v ∈ Cm[(i−m+ 1)h, (i+m)h], it holds

max
ih≤x≤(i+1)h

∣∣v(x)− (Q′h,mv)(x)
∣∣ ≤ chm sup

(i−m+1)h≤x≤(i+m)h

∣∣v(m)(x)
∣∣,

where the constant c is independent of f , h and i (more about c see in [6]).

4 Product Quasi-Interpolation Method

Let h = 1/n, n ∈ N, n ≥ m. We approximate equation (2.1) by its discretized
version

vn(t)=

∫ 1

0

[(
log |t−s|

)
Q′h,m

(
A(t, s)vn(s)

)
+Q′h,m

(
B(t, s)vn(s)

)]
ds+g(t), (4.1)

where the quasi-interpolation operator Q′h,m is applied to products A(t, s)v(s)
and B(t, s)v(s) as functions of s. This can be done for v given on [0, 1]
since A(t, s) = B(t, s) = 0 for s ≤ 0 and for s ≥ 1; recall that under con-
ditions (2.2) it holds that A,B ∈ C([0, 1] × R). Since Q′h,m(A(t, s)vn(s))
and Q′h,m(B(t, s)vn(s)) depend on the function vn through its knot values
vn((k + m

2)h), we obtain a closed system to determine vn((k + m
2)h) by collo-

cating equation (4.1) at the points (i+ m
2)h. In this way, the following system

of equations can be derived (cf. [13]):

vi,n =

n−m1∑
k=−m0

τi,kvk,n + gi, i = −m0, . . . , n−m1, (4.2)

Product Quasi-Interpolation in Logarithmically Singular Integral Equations703

where

vi,n = vn
((
i+m/2

)
h
)
, gi = g

((
i+m/2

)
h
)
, i = −m0, . . . , n−m1, (4.3)

τi,k =

k+m1−1∑
j=k−m1+1

α′j−k,m
(
βi,jai,k + β0

j bi,k
)
, i, k = −m0, . . . , n−m1, (4.4)

ai,k = A
((
i+m/2

)
h,
(
k +m/2

)
h
)
,

bi,k = B
((
i+m/2

)
h,
(
k +m/2

)
h
)
,

i, k = −m0, . . . , n−m1, (4.5)

β0
j =

∫ 1

0

Bm(ns− j) ds, j = −m+ 1, . . . , n− 1, (4.6)

βi,j =

∫ 1

0

log
∣∣(i+m/2

)
h− s

∣∣Bm(ns− j) ds,

i = −m0, . . . , n−m1, j = −m+ 1, . . . , n− 1; (4.7)

recall also formulae (3.5)–(3.7) for α′k,m, m0 and m1. The dimension of sys-
tem (4.2) is n − 1 for even and n for odd n. Having the quantities α′k,m,

ai,k, bi,k, β0
j , βi,j in hand, the computation of the matrix elements τi,k, i, k =

−m0, . . . , n −m1 costs approximately 3mn2 flops. See [13] for a numerically
stable evaluation of the function Φ(t, s) occurring in the definition of B(t, s)
and for some other computational details, in particular, for the computation
of un(x) := vn(ϕ−1(x)), x ∈ [0, 1], the approximate solution to (1.1). The
evaluation of integrals (4.6) defining β0

j is elementary, in particular, β0
j = h

for j = 0, . . . , n −m, due to (3.3). It remains to explain how to evaluate the
integrals (4.7) defining βi,j . This is the most delicate part of the method. In
Section 5 we present two exact and one approximate algorithm to compute βi,j ;
each of algorithms has its advantages and disadvantages. Exploiting the sym-
metries, the number of different integrals reduces to O(n), and they can be
computed in O(n) flops. System (4.2) can be solved in O(n2 log n) flops by
GMRES (n2 flops per a matrix to vector multiplication, O(log n) iterations,
see [14]). Thus the complexity of the method is O(n2 log n) flops.

Having found the solution vi,n, i = −m0, . . . , n − m1, of system (4.2) we
can use (4.1) to define the Nystrom extension vn(t) of the grid solution for
any t ∈ [0, 1]; this is expensive. An essentially cheaper way is to construct the
quasi-interpolant ṽn = Qh,mvn of vn using the computed knot values vi,n =
vn((i + m

2)h), i = −m0, . . . , n −m1, completed by vi,n = v−m0,n for i < −m0

and vi,n = vn−m1,n for i > n−m1; recall that the construction is independent
for every subinterval [ih, (i+1)h], 0 ≤ i ≤ n−1. (A slightly more accurate way
is to compute vn(0) and vn(1) from (4.1) and put vi,n = vn(0) for i < −m0

and vi,n = vn(1) for i > n−m1.)

Theorem 2. (i) Let a and b satisfy the conditions of Lemma 1, N (I − T) =
{0}, f ∈ C[0, 1], and let r0 and r1 satisfy conditions (2.2). Then for sufficiently
large n, system (4.2) is uniquely solvable, equation (4.1) has a unique solution
vn ∈ C[0, 1], and

‖v − vn‖∞ := max
0≤t≤1

∣∣v(t)− vn(t)
∣∣→ 0, ‖v − ṽn‖∞ → 0 as n→∞,

Math. Model. Anal., 17(5):696–714, 2012.

704 E. Vainikko and G. Vainikko

where v ∈ C[0, 1] is the unique solution of equation (2.1).

(ii) Let a and b satisfy the conditions of Lemma 2, N (I − T) = {0}, f ∈
Cm? (0, 1), and let r0, r1 ≥ 1 satisfy conditions (2.4). Then

‖v − vn‖∞ ≤ ch
m ‖f‖Cm? (0,1) . (4.8)

(iii) Again, let a and b satisfy the conditions of Lemma 2, N (I −T) = {0},
but f ∈ Cm,λ0,λ1

∗ (0, 1); let r0 > m, r1 > m and let r0, r1 satisfy condi-
tions (2.4). Then

‖v − ṽn‖∞ ≤ chm ‖f‖Cm,λ0,λ1∗ (0,1)
, (4.9)

where ṽn is the quasi-interpolant constructed onto the solution of system (4.2).
Constant c in (4.8) and (4.9) is independent of n and f .

Proof. We obtain the claims of the theorem repeating the arguments of the
proofs of Theorems 4.1 and 4.2 in [13] but involving estimates (2.3) in the proof
of (i), (2.5)–(2.7) in the proof of (ii), and (2.5)–(2.8) in the proof
of (iii). ut

While having in mind the implementation of the proposed methods using
finite precision arithmetics, we observe that from the perspective on numerical
stability the main difficulty is the computation of quadrature coefficients βi,j
defined in (4.7). Therefore, we propose and analyse three different calcula-
tion schemes for βi,j in the next section with the numerical verification of the
proposed algorithms in Section 6.

5 Computation of βi,j

The condition number of system (4.2) is uniformly bounded in n, and small
perturbations ∆βij of βij cause the error |∆vh| ≤ cmaxi,j |∆βij | in the spline
collocation solution vn of (4.1), where the constant c is independent of n.

We elaborate on three different computation schemes for βi,j ; the first two of
them are based on exact arithmetics while the third one uses an approximate
method for calculation of underlying integrals. We will see that the exact
schemes compared with the inexact one behave differently for distinct values
of i and j, namely depending on the value of modulus |i− j|.

5.1 Exact algorithm 1

The integrals of type (4.7) can be evaluated exploiting the following result.

Lemma 5 [see [13]]. For w ∈ L1(0, 1), it holds∫ 1

0

w(s)Bm(ns− j) ds = h
(
Dm
h zm

)
(jh), h = 1/n, j ∈ Z,

Product Quasi-Interpolation in Logarithmically Singular Integral Equations705

where the difference operator Dm
h = (Dh)m is defined by

(Dhu)(x) = h−1
(
u(x+ h)− u(x)

)
,

(Dm
h u)(x) = h−m

m∑
k=0

(−1)m−k
(
m

k

)
u(x+ kh);

zm(s) =

w(−m)(s), 0 ≤ s ≤ 1,∑m−1
k=0

w(k−m)(0)
k! sk, s < 0,∑m−1

k=0
w(k−m)(1)

k! (s− 1)k, s > 1,

w(−m) ∈ Cm−1[0, 1] is an integral function of order m for w on [0, 1], i.e. in the
sense of distributions, (d/ds)mw(−m)(s) = w(s), 0 < s < 1, and w(k−m)(s) =
(d/ds)kw(−m)(s), 0 ≤ s ≤ 1, k = 0, . . . ,m− 1.

Lemma 6. Let t ∈ R be fixed. An integral function w
(−m)
t ∈ Cm−1[0, 1] of

order m for wt(s)=log |t− s|, 0 < s < 1, is given by

w
(−m)
t (s) =

1

m!

{
(−1)m(t− s)m [log(t− s)− cm] , 0 ≤ s ≤ min{1, t},
(s− t)m [log(s− t)− cm] , max{0, t} ≤ s ≤ 1,

where cm = 1 + 1
2 + · · ·+ 1

m .

Proof. This claim can be easily checked by induction in m. ut

Applying Lemmas 5 and 6 we obtain the (exact) formula

βi,j =
1

m!
h4mγi,j , i = −m0, . . . , n−m1, j = −m+ 1, . . . , n− 1, (5.1)

where 4γj = γj+1 − γj is the forward difference and

γi,j =

∑m−1
k=0 (−1)m−k

(
m
k

)
(i+ m

2
)m−k[log((i+ m

2
)h) − cm−k]jk, j < 0,

(−1)m(i+ m
2
− j)m[log((i+ m

2
− j)h) − cm], 0 ≤ j < i+ m

2
,

0, j = i+ m
2
,

(j − i− m
2

)m[log((j − i− m
2

)h) − cm], i+ m
2
< j ≤ n,∑m−1

k=0

(
m
k

)
(n− i− m

2
)m−k[log((n− i− m

2
)h) − cm−k](j − n)k, j > n

(5.2)

(the difference 4mγi,j is taken with respect to the argument j).
Exact formulae for βi,j are delicate. Formula (5.1)–(5.2) is suitable for

moderate values of |i − j + m
2 |. On the other hand, for great |i − j|, the

quantities γi,j are large in modulus (comparable with |i − j|m) in contrast
to their differences ∆mγi (which are comparable with m!), causing a loss of
accuracy in standard floating-point arithmetics such as IEEE single- or double-
precision floating-point format. Nevertheless, for |i − j|m/m! ≤ 108, using
double-precision arithmetics, we obtain seven correct decimal digits of γi,j by
(5.1)–(5.2), which is usually sufficient in engineer calculations. For instance,

Math. Model. Anal., 17(5):696–714, 2012.

706 E. Vainikko and G. Vainikko

in case m = 4 (cubic splines), seven correct digits of γi,j are obtained for
|i − j| ≤ 220; according to error estimates (4.8) and (4.9), m = 4, n ≈ 200
usually yields a sufficient accuracy of the approximate solution.

If more accurate approximation is needed, formulae (5.1)–(5.2) can be ap-
plied for all |i − j| only if a sufficiently high precision arithmetics is used;
in Section 6.1 we illustrate the situation numerically. Alternatively, for great
|i− j|, γi,j can be computed in a numerically stable way by quadratures using
standard arithmetics. The accuracy of quadratures rapidly grows as |i − j|
increases; see Section 5.3. The quadrature rules are based on another way for
an exact computation of βi,j described in Section 5.2.

5.2 Exact algorithm 2

In case of equation (1.1), βi,j can be evaluated exactly integrating by parts.
Since due to (3.1), Bm(ns− j) is supported on the interval [jh, (j + m)h], we
have for i = −m0, . . . , n−m1, j = −m+ 1, . . . , n− 1,

βi,j =

∫ 1

0

log

∣∣∣∣(i+
m

2

)
h− s

∣∣∣∣Bm(ns− j) ds

=

min{(j+m)h,1}∫
max{jh,0}

log

∣∣∣∣(i+
m

2

)
h− s

∣∣∣∣Bm(ns− j) ds (change x = ns− j)

= h

min{m,n−j}∫
max{0,−j}

log

∣∣∣∣(i− j +
m

2
− x
)
h

∣∣∣∣Bm(x) dx

= h

min{m,n−j}−1∑
`=max{0,−j}

∫ `+1

`

log

∣∣∣∣(i− j +
m

2
− x
)
h

∣∣∣∣Bm(x) dx. (5.3)

In the interval [`, `+1], 0 ≤ ` ≤ m−1, Bm(x) =: p`(x) is a polynomial of degree

m − 1, p`(s) =
∑m−1
k=0 ξk,`s

k with some known coefficients ξk,`. Introduce the
integral function

p
(−1)
`,i−j(x) =

∫ x

i−j+m/2
p`(s) ds =

m−1∑
k=0

ξk,`
k + 1

(
xk+1 −

(
i− j +

m

2

)k+1)
,

it is a polynomial of degree m. Integration by parts yields

βi,j = h

min{m,n−j}−1∑
`=max{0,−j}

{[
log

∣∣∣∣(i− j +
m

2
− x
)
h

∣∣∣∣p(−1)`,i−j(x)

]`+1

x=`

−
∫ `+1

`

p
(−1)
`,i−j(x) dx

x− (i− j + m
2)

}
. (5.4)

Product Quasi-Interpolation in Logarithmically Singular Integral Equations707

The integrals in (5.4) can be computed exactly since the integrands are poly-
nomials of degree m− 1:

p
(−1)
`,i−j(x)

x− (i− j + m
2)

=

m−1∑
k=0

ξk,`
k + 1

k∑
l=0

(
i− j +

m

2

)k−l
xl

=

m−1∑
l=0

(
m−1∑
k=l

ξk,`
k + 1

(i− j +
m

2
)k−l

)
xl,

`+1∫
`

p
(−1)
`,i−j(x) dx

x− (i− j + m
2)

=

m−1∑
l=0

(
m−1∑
k=l

ξk,`
k + 1

(i− j +
m

2
)k−l

)
(`+ 1)l+1 − `l+1

l + 1
.

(5.5)

Alternatively, omitting the division, the integrals in (5.4) can evaluated by an
exact µ-point Gauss quadrature formula, where 2µ ≥ m, i.e.

µ ≥
{
m/2 for even m,
(m+ 1)/2 for odd m.

For great |i− j + m
2 |, the intermediate quantities p

(−1)
`,i−j(`) and p

(−1)
`,i−j(`+ 1)

are great, and again a loss of accuracy takes place in standard arithmetics.

5.3 A numerically stable approximate algorithm

We obtain a numerically stable algorithm approximating the integrals in
(see (5.3))

βi,j = h

min{m,n−j}−1∑
`=max{0,−j}

∫ `+1

`

log

∣∣∣∣(i− j +
m

2
− x
)
h

∣∣∣∣Bm(x) dx (5.6)

by the µ-point Gauss quadrature, 2µ ≥ m. Fortunately, as we see below, the
accuracy of the quadrature increases as |i−j| increases, so we obtain a suitable
complement to the exact formulae for βi,j presented in Sections 5.1 and 5.2.

Recall that Bm(x) ≥ 0. For even m, also log |(i − j + m
2 − x)h| is sign-

constant for x ∈ (`, ` + 1), and the Gauss quadratures are stable numerically
for the integrals in (5.6). For odd m, the integrand changes its sign when
x = i − j + m

2 ± n = ` + 1
2 but there is still no danger for the numerical

instability.
Assume that |i − j| > m/2, i.e. either i − j + m

2 < 0, or i − j + m
2 > m.

Denote by I(µ)`,i−j the µ-point Gauss quadrature of the integral

I`,i−j =

∫ `+1

`

log
∣∣(i− j +m/2− x

)
h
∣∣Bm(x) dx.

As well known,

I`,i−j−I(µ)`,i−j =
(µ!)4

(2µ+ 1)! ((2µ)!)2

[(
d

dx

)2µ{
log

∣∣∣∣(i−j+m

2
−x
)
h

∣∣∣∣Bm(x)

}]
x=ξ

,

Math. Model. Anal., 17(5):696–714, 2012.

708 E. Vainikko and G. Vainikko

where ξ ∈ (`, `+ 1). Since∣∣∣∣(d

dx

)k
log

∣∣∣∣(i− j +
m

2
− x
)
h

∣∣∣∣∣∣∣∣ = (k − 1)!

∣∣∣∣i− j +
m

2
− x
∣∣∣∣−k, k ≥ 1,

and Bm is a polynomial of degree m− 1 on (`, `+ 1), we have∣∣∣∣(d

dx

)2µ{
log

∣∣∣∣(i− j +
m

2
− x
)
h

∣∣∣∣Bm(x)

}∣∣∣∣
≤

2µ∑
k=0

(
2µ

k

)∣∣∣∣(d

dx

)k
log

∣∣∣∣(i− j +
m

2
− x
)
h

∣∣∣∣∣∣∣∣∣∣B(2µ−k)
m (x)

∣∣
≤

2µ∑
k=2µ−m+1

(2µ)!

k! (2µ− k)!
(k − 1)!

∣∣∣∣i− j +
m

2
− x
∣∣∣∣−kc`,2µ−k

≤
2µ∑

k=2µ−m+1

(2µ)!

(2µ− k)! k

∣∣∣∣i− j +
m

2
− x`

∣∣∣∣−kc`,2µ−k,
where x` = ` for i− j + m

2 < 0 and x` = `+ 1 for i− j + m
2 > m, whereas

c`,k = max
`≤x≤`+1

∣∣B(k)
m (x)

∣∣.
This results to the estimates

∣∣I`,i−j − I(µ)`,i−j
∣∣ ≤ c` (µ!)4

(2µ+ 1)!(2µ)!

2µ∑
k=2µ−m+1

c`,2µ−k
(2µ− k)! k

∣∣∣∣i− j +
m

2
− x`

∣∣∣∣−k
and

∣∣βi,j − β(µ)
i,j

∣∣ ≤ h (µ!)4

(2µ+ 1)!(2µ)!

m−1∑
`=0

2µ∑
k=2µ−m+1

c`,2µ−k
(2µ− k)!k

∣∣∣∣i− j +
m

2
− x`

∣∣∣∣−k
= h

(µ!)4

(2µ+ 1)!(2µ)!
O
(
|i− j|−2µ+m−1

)
as |i− j| → ∞. (5.7)

We see that the accuracy rapidly increases as |i− j + m
2 | increases. Note also

the smallness of the coefficient in (5.7). For instance, (µ!)4

(2µ+1)!(2µ)! ≈ 3.6 · 10−10

for µ = 8.

The accuracy can be even raised if we treat Bm(x) in the integrals (5.6) as
a weight function and apply corresponding Gauss type quadrature. Unfortu-
nately, this way is labour consuming.

It is reasonable to compute βi,j by exact formulae (5.1)–(5.2) or (5.4)–(5.5)
for |i − j| ≤ m or perhaps for |i − j| ≤ 2m and to apply the eight point
Gauss quadrature in (5.6) for |i− j| > m, respectively, |i− j| > 2m, all in the
framework of a standard arithmetics.

Product Quasi-Interpolation in Logarithmically Singular Integral Equations709

6 Numerical Experiments

Here we are testing numerically the properties of the methods described above.
We start with investigating the calculation schemes for different ways of finding
βi,j for the choice of the best strategy from the three different methods. For
verifying the accuracy of the computed results of βi,j we use interval arithmetics
with a specified number of bits of precision. We start with testing numerical
properties of the exact calculation methods of βi,j (algorithms 1 and 2) in inter-
val arithmetics with variable number of bits in precision. The third algorithm,
namely the approximate integration method, is performed in standard double
precision arithmetics.

We demonstrate that for best numerical accuracy in the case of double pre-
cision arithmetics different given algorithms need to be combined. Thereafter
we set up a model problem with a known solution for which we observe, that
the best way of combining the exact and the approximate scheme, does not de-
pend only on i and j in calculation of βi,j , but also on the size of discretization
parameter n and spline rank m. Nevertheless, the rules of thumb formulated
in the end of Section 5 give quite acceptable accuracy.

6.1 Calculation of βi,j accuracy assessments using variable precision
interval arithmetics

Here we compare the three different methods given above, namely, the exact
method 1 (E1) for βi,j calculation described in Section 5.1, the exact method 2
(E2) given in Section 5.2 and the approximate integration method (AIM) out-
lined in Section 5.3. For testing the accuracy hypotheses given above, we per-
form cross-comparison tests with one of the methods in standard 53-bit interval
arithmetics (or double precision) and the other method calculated using higher
precision than normal, if needed, to achieve the maximal diameter of the result
in interval arithmetics less than 10−15. To reach this goal we gradually increase
the number of bits in the variable precision, starting from 53, until the goal is
achieved. Standard double precision numbers are represented with 53 bits (one
bit is reserved for the sign and 52 bits for the mantissa). While using interval
field for calculation, the worst possible influence of round-off errors is given by
the diameter of the calculated result. This makes it possible to numerically find
out the algorithm behavior in case of real calculations with given input data.
This technique is applied separately to all combinations of indexes i and j in
βi,j calculation resulting in method accuracy across different values of i and j
indicated with the minimum number of precision bits needed for the result to
achieve the needed accuracy. (Due to the large number of computations needed
for such calculations, we perform the tests only with moderate n.)

6.1.1 Exact method E1 for calculation of βi,j accuracy

First we calculate βE1
i,j (i ∈ [−m0, . . . , n −m1], j ∈ [−m + 1, n − 1]), n = 12,

m = 6, m0 = 2 , m1 = 4 in double precision arithmetics. In Fig. 1 we plot the

error of the result, which is calculated as distance from β
E2(1e−15)
i,j . Here, we

denote with E2(1e− 15) the algorithm E2, which has been calculated with the

Math. Model. Anal., 17(5):696–714, 2012.

710 E. Vainikko and G. Vainikko

Figure 1. Accuracy of method E1 compared with precise E2: |βE1
i,j − β

E2(1e−15)
i,j |,

i ∈ [−2, 8], j ∈ [−5, 11].

Table 1. The number of bits needed to achieve the given accuracy 10−15 for method
E1 (E1(1e− 15)).

i \ j −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11

−2 71 70 71 72 72 72 72 73 73 74 75 76 73 72 72 74 75
−1 73 71 70 71 72 72 72 72 73 73 74 75 72 70 72 72 74
0 74 73 71 70 71 72 72 72 72 73 73 74 70 69 70 72 72
1 75 74 73 71 70 71 72 72 72 72 73 73 70 67 68 70 72
2 76 75 74 73 71 70 71 72 72 72 72 73 69 66 66 68 70
3 76 76 75 74 73 71 70 71 72 72 72 72 68 65 64 66 68
4 77 76 76 75 74 73 71 70 71 72 72 72 67 65 63 64 66
5 78 77 76 76 75 74 73 71 70 71 72 72 68 64 62 61 64
6 79 78 77 76 76 75 74 73 71 70 71 72 67 64 61 59 60
7 79 79 78 77 76 76 75 74 73 71 70 71 67 64 61 57 54
8 80 79 79 78 77 76 76 75 74 73 71 70 66 64 60 58 53

warranty of 1e− 15 maximal diameter in the result. This is achieved through
gradually increasing the number of bits in precision of real interval field, that
results in diameter of the result being at most 1e − 15, starting over for each
combination of indexes i and j.

In addition, in Tab. 1 we give the minimum numbers of precision bits for
reducing the interval diameter of the resulting values to 10−15. As we can see,
the method is most accurate in the case i = j and worst accurate with highly
distinct values of i and j.

6.1.2 Exact method E2 for calculation of βi,j accuracy

Similarly, in Fig. 2 we present the results of the accuracy calculation for the
method E2. The corresponding numbers of precision bits needed for achieving
E2(1e− 15) are given in Tab. 2.

Product Quasi-Interpolation in Logarithmically Singular Integral Equations711

Figure 2. Accuracy of method E2 compared with precise E1: |βE2
i,j − β

E1(1e−15)
i,j |,

i ∈ [−2, 8], j ∈ [−5, 11].

Table 2. The number of bits needed to achieve the given accuracy 10−15 for method E2
(E2(1e− 15)).

i \ j −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11

−2 71 63 58 56 57 60 63 65 66 68 69 71 73 74 77 80 87
−1 73 66 62 58 56 57 60 63 65 66 68 69 71 73 75 79 85
0 75 68 64 61 58 55 57 60 63 65 66 68 70 72 74 77 84
1 77 70 66 63 61 57 55 57 60 63 65 66 68 70 72 76 83
2 79 72 68 65 63 60 57 55 57 60 63 65 67 69 71 75 82
3 80 73 69 67 65 63 60 57 55 57 60 63 65 67 69 73 80
4 82 75 71 69 67 65 63 60 57 55 57 60 63 65 68 72 79
5 83 76 72 70 68 66 65 63 60 57 55 57 61 63 66 70 77
6 84 77 74 72 70 68 66 65 63 60 57 55 58 61 64 68 75
7 85 79 75 73 71 69 68 66 65 63 60 57 56 58 62 66 73
8 87 80 77 74 73 71 69 68 66 65 63 60 57 56 58 63 71

6.1.3 Approximate integration method (AIM) accuracy

Here, we compare the result of AIM with E1(1e− 15). The result is shown in
Fig. 3. We observe that AIM behaves numerically very much in an opposite
manner to the exact methods given above.

While the methods E1 and E2 give the most accurate value for βi,j in cases
when indexes i and j are not too distinct from each other, AIM works best in
case of |i− j| being not too small. Due to better performance, we will perform
further experiments with E1 from the two exact methods.

Yet we do not know, what would be a reasonable size in |i− j| for switching
from one of the exact methods to AIM. This we are checking out together with
the overall method verification with the following model problem.

6.2 Model problem solution

Consider the following model equation. Let in (1.1) a(x, y) = y−λ0(1− y)−λ1 ,
b ≡ 0 and f(x) = xλ0(1 − x)λ1 − x log(x) − (1 − x) log(1 − x) + 1; i.e. we are
solving the equation

Math. Model. Anal., 17(5):696–714, 2012.

712 E. Vainikko and G. Vainikko

Figure 3. Accuracy of AIM compared with precise E1: |βAIM
i,j − βE1(1e−15)

i,j |, i ∈ [−2, 8],

j ∈ [−5, 11].

Table 3. The best distance of i and j for switching from E1 to AIM in βi,j calculation
when m = 4. The error is the distance of the calculated solution from known solution of the
problem.

n best k error (best k) error (k = 2) error (k = 4)

16 1 7.71473354e–03 7.74274830e–03 8.01993108e–03
32 1 4.89300912e–04 5.06240070e–04 6.26558931e–04
64 3 2.32888330e–05 9.72858080e–05 3.56107280e–05

128 83 1.70448045e–06 4.88493046e–05 1.70450322e–06
256 151 7.29076350e–08 2.44263173e–05 7.31555995e–08
512 386 1.49411690e–09 1.22125301e–05 2.92666990e–09

u(x) =

∫ 1

0

y−λ0(1− y)−λ1 log |x− y| dy + xλ0(1− x)λ1

−x log(x)− (1− x) log(1− x) + 1, 0 ≤ x ≤ 1. (6.1)

Integral equation (6.1) has a known solution u(x) = xλ0(1−x)λ1 , which we use
for verifying the method and testing the accuracy of the numerical schemes. In
our experiments we have performed tests with different values for λ0 and λ1
from the range [0.1, 0.9], but the properties of the resulting numerical solution
have been quite similar in all cases. The presented results below were calculated
with the case λ0 = λ1 = 0.5.

In the experiments we have calculated both β
(E1)
i,j and β

(AIM)
i,j and have

found the model problem solution with our method with combining

βi,j =

β
(E1)
i,j , |i− j| ≤ k,

β
(AIM)
i,j , |i− j| > k,

k = 0, 1, . . . , n− 1

for different values of k = 0, 1, . . . , n−1. We observe that, for instance, in case of
m = 4 (m0 = 1 and m1 = 3) the best solution is found in case of k as presented

Product Quasi-Interpolation in Logarithmically Singular Integral Equations713

Figure 4. Difference from the known solution with different values of k for switching from
the exact method E1 to AIM in βij calculations with m = 4: n = 16 (left), n = 64 (right).

in Tab. 3. As we can see, the strategy for choosing the switching value k
depends also on n. Two example plots of the error depending on k are presented
in Fig. 4. But if we use a higher order spline, say m = 8 (m0 = 3, m1 = 5),
we have found out that with n = 512 the minimal error 3.49446166e-13 is
achieved for k = 8. This means that if one really wants to achieve the absolutely
best calculation scheme by combining the given βi,j algorithms, it depends on
many parameters. Although, usually a general rule of choosing k somewhere
between m and 2m should give quite good results, it follows from the results
presented in Fig. 4, that the error is practically constant for k > m. Thus the
selection of k seems to be not a very sensitive step for controlling accuracy of
the proposed numerical algorithm, at least for moderate n.

From the numerical examples we discovered that the exact method E1
worked actually better than we were originally expecting.

For all the numerical experiments we used the sage worksheet environment
(see e.g. [12]) using numpy and scipy packages. The source code of the pro-
grams together with the test results with interactive graphics can be found at
http://www.ut.ee/∼eero/LogSingIntEq/.

7 Conclusion

We examined fully discrete methods for solving linear second kind integral equa-
tions containing boundary and logarithmic diagonal singularity in the kernel.
The methods are based on the smoothing change of variable and the product
quasi-interpolation by smooth splines of order m on the uniform grid of step
size h = 1/n. The methods are of optimal accuracy order O(hm). The matrix
form of the methods is given by (4.1)–(4.7). The main difficulty in the applica-
tion of the methods is the computation of quadrature coefficients βi,j defined
in (4.7). We presented a simple exact algorithm (5.1)–(5.2) for the computation
of βi,j , which due to some numerical instability can be recommended for small
and moderate |i − j|, say for |i − j| ≤ 2m. For greater |i − j| we we recom-
mended to use quadratures described in Section 5.3, although our numerical
example encourages us to recommend exact formula (5.1)–(5.2) also for much
greater |i− j| than 2m; the preciseness of quadratures rapidly grows as |i− j|
increases. In engineer computations with nm/m! ≤ 108, formulae (5.1)–(5.2)

Math. Model. Anal., 17(5):696–714, 2012.

http://www.ut.ee/~eero/LogSingIntEq/

714 E. Vainikko and G. Vainikko

can be recommended for all |i− j| using standard double precision arithmetics.

References

[1] K.E. Atkinson. The Numerical Solution of Integral Equations of the Second Kind.
Cambridge University Press, 1997.

[2] S. Chandrasekhar. Radiative Transfer. Courier Dover Publications, 1960.

[3] W. Hackbusch. Integral Equations: Theory and Numerical Treatment.
Birkhäuser, 1995.

[4] N.P. Korneichuk. Splines in Approximation Theory. Mir, Moscow, 1984. In
Russian

[5] R. Kress. Linear Integral Equations. Springer, 1999.

[6] E. Leetma and G. Vainikko. Quasi-interpolation by splines on the uniform knot
sets. Math. Model. Anal., 12:107–120, 2007.
http://dx.doi.org/10.3846/1392-6292.2007.12.107-120.

[7] G. Monegato and L. Scuderi. High order methods for weakly singular integral
equations with nonsmooth input functions. Math. Comp., 67(224):1493–1515,
1998. http://dx.doi.org/10.1090/S0025-5718-98-01005-9.

[8] A. Pedas and G. Vainikko. Smoothing transformation and piecewise polyno-
mial collocation for weakly singular Volterra integral equations. Computing,
73(3):271–293, 2004. http://dx.doi.org/10.1007/s00607-004-0088-9.

[9] A. Pedas and G. Vainikko. Integral equations with diagonal and boundary sin-
gularities of the kernel. J. Anal. Appl. (ZAA), 25(4):487, 2006.

[10] C. Schneider. Product integration for weakly singular integral equations. Math.
Comp., 36(153):207–213, 1981.
http://dx.doi.org/10.1090/S0025-5718-1981-0595053-0.

[11] S.B. Stechkin and Y.N. Subbotin. Splines in Numerical Mathematics. Nauka,
Moscow, 1976. In Russian

[12] W. Stein. Sage: Open Source Mathematics Software, (Version 4.5.3). The Sage
Group, 2011. Available from Internet: http://www.sagemath.org/.

[13] E. Vainikko and G. Vainikko. A spline product quasi-interpolation method
for weakly singular Fredholm integral equations. SIAM J. Numer. Anal.,
46(4):1799–1820, 2008. http://dx.doi.org/10.1137/070693308.

[14] G. Vainikko. GMRES and discrete approximation of operators. Proc. Estonian
Acad. Sci. Phys. Math., 53:124–131, 2004.

[15] G. Vainikko. Error estimates for the cardinal spline interpolation. J. Anal. Appl.
(ZAA), 28(2):205–222, 2009.

http://dx.doi.org/10.3846/1392-6292.2007.12.107-120
http://dx.doi.org/10.1090/S0025-5718-98-01005-9
http://dx.doi.org/10.1007/s00607-004-0088-9
http://dx.doi.org/10.1090/S0025-5718-1981-0595053-0
http://www.sagemath.org/
http://dx.doi.org/10.1137/070693308

