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Abstract. In this paper the controllable system whose behaviour is described by
a nonlinear Volterra integral equation, is studied. The set of admissible control func-
tions is the closed ball of the space Lp (p > 1) with radius µ0 and centered at the
origin. It is shown that the set of trajectories of the system is a bounded and pre-
compact subset of the space of continuous functions.
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1 Introduction

Nonlinear integral equations arise in many problems of theory and applications
(see, e.g. [1, 3, 6, 8, 9, 12]). It is known that many problems of nonlinear
mechanics lead to nonlinear integral equation (see, e.g. [6, 12]). The process
which is described by an integral equation can be under the influence of the
exterior forces. If these forces are under control, then system turns out to
be a controllable one. In general, control efforts are limited and therefore
they have various type of constraints. Control systems with integral constraint
on the controls arise in various fields of the control systems theory such as
control problems with bounded Lp norms on the controls, control problems
with prescribed bounded total energy and finance, and control problems with
design uncertainties (see, e.g. [4, 7, 10, 11]). For example, the motion of flying
objects with variable mass, is described in the form of controllable system,
where the control function has an integral constraint (see, e.g. [7, 11]). Control
system with integral constraint on the controls whose behaviour is described
by a nonlinear differential equation is studied in [4, 5]. In these papers, the
various topological properties and numerical construction methods of the set of
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trajectories and attainable sets of the control system with integral constraint
on the controls are studied where the behaviour of the system is described by
a nonlinear differential equation. In the present paper the control system with
integral constraint on the controls whose behaviour is described by a nonlinear
Volterra integral equation is considered. It is assumed that integral equation
is nonlinear with respect to the state and control vectors. The closed ball of
the space Lp (p > 1) with radius µ0 and centered at the origin, is chosen as
the set of admissible control functions. The set of trajectories of the system
generated by all admissible control functions is studied. The paper is organized
as follows:

In Section 2 the basic conditions are formulated which satisfy the system
(conditions 2.A, 2.B and 2.C). In Section 3 it is proved that under assumed
conditions every admissible control function generates unique trajectory of the
system (Theorem 1). In Section 4 the boundedness of the set of trajectories
is shown (Theorem 2). In Section 5 it is proved that the sections of the set of
trajectories depend on t continuously (Corollary 2) and the set of trajectories
is a precompact subset of the space of continuous functions (Theorem 3). It is
illustrated that the set of trajectories is not a closed subset of the space of the
continuous functions (Example 1).

2 Preliminaries

Consider the controllable system the behaviour of which is described by a
nonlinear Volterra type integral equation

x(t) = a
(
t, x(t)

)
+ λ

∫ t

t0

K
(
t, s, x(s), u(s)

)
ds, (2.1)

where x ∈ Rn is the state vector of the system, u ∈ Rm is the control vector,
t ∈ [t0, θ], λ > 0 is a real number.

For given p > 1 and µ0 > 0 we set

Up =
{
u(·) ∈ Lp

(
[t0, θ];Rm

)
:
∥∥u(·)

∥∥
p
≤ µ0

}
, (2.2)

where
∥∥u(·)

∥∥
p

=
( ∫ θ

t0

∥∥u(t)
∥∥p dt) 1

p

. The set Up ⊂ Lp([t0, θ],Rm) is called the set

of admissible control functions and every function u(·) ∈ Up is called admissible
control function.

It is assumed that the functions a(·) : [t0, θ] × Rn → Rn, K(·) : [t0, θ] ×
[t0, θ]× Rn × Rm → Rn and number λ ∈ (0,∞) given in equation (2.1) satisfy
the following conditions:

2.A. The functions a(·) : [t0, θ]×Rn → Rn and K(·) : [t0, θ]×Rn ×Rm → Rn
are continuous;

2.B. There exist L0 ∈ [0, 1), L1 ≥ 0, H1 ≥ 0, L2 ≥ 0, H2 ≥ 0, L3 ≥ 0 and
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H3 ≥ 0 such that∥∥a(t, x1)− a(t, x2)
∥∥ ≤ L0‖x1 − x2‖,∥∥K(t1, s, x1, u1)−K(t2, s, x2, u2)

∥∥ ≤ [L1 +H1

(
‖u1‖+ ‖u2‖

)]
|t1 − t2|

+
[
L2 +H2

(
‖u1‖+ ‖u2‖

)]
‖x1 − x2‖+

[
L3 +H3

(
‖x1‖+ ‖x2‖

)]
‖u1 − u2‖

for every (t1, s, x1, u1) ∈ [t0, θ] × [t0, θ] × Rn × Rm, (t2, s, x2, u2) ∈ [t0, θ] ×
[t0, θ]× Rn × Rm;

2.C. 0 ≤ λ(L2(θ − t0) + 2H2(θ − t0)
p−1
p µ0) < 1− L0.

If K(t, s, x, u) = ϕ(t, s, x) + B(t, s, x)u where the functions (t, x, s) →
ϕ(t, s, x) and (t, s, x) → B(t, s, x) are continuous with respect to (t, s, x) and
Lipschitz continuous with respect to (t, x), then the function K(·) : [t0, θ] ×
[t0, θ]× Rn × Rm → Rn satisfies the conditions 2.A and 2.B.

Now let us define the trajectory of the system (2.1) generated by an admis-
sible control function u(·) ∈ Up.

Let u∗(·) ∈ Up. A continuous function x∗(·) : [t0, θ] → Rn satisfying the
equation

x∗(t) = a
(
t, x∗(t)

)
+ λ

∫ t

t0

K
(
t, s, x∗(s), u∗(s)

)
ds, t ∈ [t0, θ]

is said to be a trajectory of the system (2.1) generated by the admissible control
function u∗(·) ∈ Up.

We denote by Xp the set of all trajectories of the system (2.1) generated
by all admissible control functions u(·) ∈ Up. The set Xp is called the set of
trajectories of the system (2.1).

It is obvious that Xp ⊂ C([t0, θ];Rn) where C([t0, θ];Rn) is the space of
continuous functions x(·) : [t0, θ]→ Rn with the norm∥∥x(·)

∥∥
C

= max
{∥∥x(t)

∥∥ : t ∈ [t0, θ]
}
.

For each fixed t ∈ [t0, θ] we set

Xp(t) =
{
x(t) : x(·) ∈ Xp

}
. (2.3)

According to the condition 2.B∥∥a(t, x1)− a(t, x2)
∥∥ ≤ L0‖x1 − x2‖

for every t ∈ [t0, θ] and x1 ∈ Rn, x2 ∈ Rn where L0 ∈ [0, 1). Then for each
fixed t ∈ [t0, θ] the function a(t, ·) : Rn → Rn has a unique fixed point, i.e. for
each fixed t ∈ [t0, θ] there exists a unique st ∈ Rn such that

st = a(t, st). (2.4)

Then (2.1) and (2.4) imply that x(t0) = a
(
t0, x(t0)

)
= st0 for every x(·) ∈ Xp.

So we obtain validity of the following proposition.

Proposition 1. The equality Xp(t0) = {st0} holds where st0 ∈ Rn is defined
by (2.4).
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3 Existence and Uniqueness of the Trajectories

Denote

L(λ) = L0 + λ
[
L2(θ − t0) + 2H2(θ − t0)

p−1
p µ0

]
. (3.1)

The following theorem characterizes the existence and uniqueness of the
trajectories of the system (2.1) generated by a given admissible control function.

Theorem 1. Let the functions a(·) : [t0, θ]× Rn → Rn, K(·) : [t0, θ]× [t0, θ]×
Rn × Rm → Rn and the number λ ∈ (0,∞) satisfy the conditions 2.A, 2.B
and 2.C. Then for each u∗(·) ∈ Up the system (2.1) has a unique trajec-
tory x∗(·).

Proof. For x(·) ∈ C([t0, θ];Rn) we set

F
(
x(·)

)
|(t) = a

(
t, x(t)

)
+ λ

∫ t

t0

K
(
t, s, x(s), u∗(s)

)
ds, t ∈ [t0, θ]. (3.2)

Since u∗(·) ∈ Up, x(·) ∈ C([t0, θ];Rn) then by virtue of condition 2.A the func-
tion t→ F (x(·))|(t), t ∈ [t0, θ], is continuous and hence F (·) : C([t0, θ];Rn)→
C([t0, θ];Rn).

Let us choose arbitrary x1(·) ∈ C([t0, θ];Rn) and x2(·) ∈ C([t0, θ];Rn).
Then applying condition 2.B we obtain∥∥F (x2(·)

)
|(t)− F

(
x1(·)

)
|(t)
∥∥ ≤ ∥∥a(t, x2(t)

)
− a
(
t, x1(t)

)∥∥
+ λ

∫ t

t0

∥∥K(t, s, x2(s), u∗(s)
)
−K

(
t, s, x1(s), u∗(s)

)∥∥ ds
≤ L0

∥∥x2(t)− x1(t)
∥∥+ λ

∫ t

t0

(
L2 + 2H2

∥∥u∗(s)∥∥)∥∥x2(s)− x1(s)
∥∥ ds

≤ L0

∥∥x2(·)− x1(·)
∥∥
C

+ λ

∫ t

t0

(
L2 + 2H2

∥∥u∗(s)∥∥)∥∥x2(·)− x1(·)
∥∥
C
ds

=

(
L0 + λL2(θ − t0) + 2λH2

∫ t

t0

∥∥u∗(s)∥∥ ds)∥∥x2(·)− x1(·)
∥∥
C

(3.3)

for every t ∈ [t0, θ] where∥∥x2(·)− x1(·)
∥∥
C

= max
{∥∥x2(t)− x1(t)

∥∥ : t ∈ [t0, θ]
}
.

Since u∗(·) ∈ Up then using Hölder’s inequality we have∫ t

t0

∥∥u∗(s)∥∥ ds ≤ (t− t0)
p−1
p

(∫ t

t0

∥∥u∗(s)∥∥p ds) 1
p

≤ (θ − t0)
p−1
p µ0. (3.4)

From (3.1), (3.3) and (3.4) it follows∥∥F (x2(·)
)
|(t)− F

(
x1(·)

)
|(t)
∥∥

≤
(
L0 + λL2(θ − t0) + 2λH2(θ − t0)

p−1
p µ0

)∥∥x2(·)− x1(·)
∥∥
C

= L(λ)
∥∥x2(·)− x1(·)

∥∥
C
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and hence ∥∥F (x2(·)
)
|(·)− F

(
x1(·)

)
|(·)
∥∥
C
≤ L(λ)

∥∥x2(·)− x1(·)
∥∥
C
, (3.5)

where L(λ) is defined by (3.1).
From condition 2.C we have L(λ) < 1. Then by virtue of (3.5) F (·) :

C([t0, θ];Rn)→ C([t0, θ];Rn) defined by (3.2) is a contractive map and conse-
quently it has a unique fixed point x∗(·) ∈ C([t0, θ];Rn). Thus

x∗(t) = a
(
t, x∗(t)

)
+ λ

∫ t

t0

K
(
t, s, x∗(s), u∗(s)

)
ds, t ∈ [t0, θ]

and the function x∗(·) : [t0, θ]→ Rn is a unique trajectory of the system (2.1)
generated by the admissible control function u∗(·) ∈ Up. ut

4 Boundedness of the Set of Trajectories

Let us give an auxiliary proposition which will be used in following arguments.
We set

γ0 = max
{∥∥a(t, 0)

∥∥ : t ∈ [t0, θ]
}
, (4.1)

γ1 = max
{∥∥K1(t, s, 0, 0)

∥∥ : (t, s) ∈ [t0, θ]× [t0, θ]
}
. (4.2)

Proposition 2. Let the functions a(·,·) : [t0, θ] × Rn → Rn and K(·, ·, ·, ·) :
[t0, θ]× [t0, θ]× Rn × Rm → Rn satisfy the conditions 2.A and 2.B. Then∥∥a(t, x)

∥∥ ≤ L0‖x‖+ γ0,∥∥K(t, s, x, u)
∥∥ ≤ [L2 + (H2 +H3)‖u‖

]
‖x‖+ L3‖u‖+ γ1

for every (t, s, x, u) ∈ [t0, θ]×[t0, θ]×Rn×Rm where L0, L2, L3, H2 and H3 are
defined in condition 2.B, γ0 and γ1 are defined by (4.1) and (4.2) respectively.

Proof. Let (t, s, x, u) ∈ [t0, θ] × [t0, θ] × Rn × Rm be an arbitrarily chosen.
Condition 2.B implies that∥∥K(t, s, x, u)−K(t, s, 0, 0)

∥∥ ≤ (L2 +H2‖u‖
)
‖x‖+

(
L3 +H3‖x‖

)
‖u‖

and hence∥∥K(t, s, x, u)
∥∥ ≤ (L2 +H2‖u‖

)
‖x‖+

(
L3 +H3‖x‖

)
‖u‖+

∥∥K(t, s, 0, 0)
∥∥

≤
[
L2 + (H2 +H3)‖u‖

]
‖x‖+ L3‖u‖+ γ1,

where γ1 is defined by (4.2).
The validity of inequality ‖a(t, x)‖ ≤ L0‖x‖ + γ0, (t, x) ∈ [t0, θ] × Rn, is

proved analogously. ut

Denote

ρ∗ =
(
γ0 + γ1(θ − t0)λ+ λL3(θ − t0)

p−1
p µ0

)
/(1− L0) , (4.3)

P (λ) = λ
(
L2(θ − t0) + (H2 +H3)(θ − t0)

p−1
p µ0

)
, (4.4)

r∗ = ρ∗ exp
[
P (λ)/(1− L0)

]
. (4.5)

The following theorem specifies boundedness of the set of trajectories.
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Theorem 2. For every x(·) ∈ Xp the inequality
∥∥x(·)

∥∥
C
≤ r∗ holds.

Proof. Let us choose an arbitrary x(·) ∈ Xp. Then there exists u(·) ∈ Up such
that

x(t) = a
(
t, x(t)

)
+ λ

∫ t

t0

K
(
t, s, x(s), u(s)

)
ds, t ∈ [t0, θ].

Proposition 2 implies that∥∥x(t)
∥∥ ≤ L0

∥∥x(t)
∥∥+ γ0

+ λ

∫ t

t0

([
L2 + (H2 +H3)

∥∥u(s)
∥∥]∥∥x(s)

∥∥+ L3

∥∥u(s)
∥∥+ γ1

)
ds

≤ L0

∥∥x(t)
∥∥+ γ0 + γ1(θ − t0)λ+ λL3(θ − t0)

p−1
p µ0

+ λ

∫ t

t0

[
L2 + (H2 +H3)

∥∥u(s)
∥∥]∥∥x(s)

∥∥ ds
for every t ∈ [t0, θ]. Since L0 ∈ [0, 1) then the last inequality and (4.3) yields∥∥x(t)

∥∥ ≤ (γ0 + γ1(θ − t0)λ+ λL3(θ − t0)
p−1
p µ0

)
/(1− L0)

+
λ

1− L0

∫ t

t0

[
L2 + (H2 +H3)

∥∥u(s)
∥∥]∥∥x(s)

∥∥ ds
= ρ∗ +

λ

1− L0

∫ t

t0

[
L2 + (H2 +H3)

∥∥u(s)
∥∥]∥∥x(s)

∥∥ ds (4.6)

for every t ∈ [t0, θ]. From (4.4), (4.5), (4.6) and Gronwall’s inequality we obtain

∥∥x(t)
∥∥ ≤ ρ∗ exp

[
λ

1− L0

∫ t

t0

(
L2 + (H2 +H3)

∥∥u(s)
∥∥) ds]

= ρ∗ exp

[
λ

1− L0

(
L2(t− t0) + (H2 +H3)

∫ t

t0

∥∥u(s)
∥∥ ds)]

≤ ρ∗ exp

[
λ

1− L0

(
L2(θ − t0) + (H2 +H3)(θ − t0)

p−1
p µ0

)]
= ρ∗ exp

[
P (λ)/(1− L0)

]
= r∗

for every t ∈ [t0, θ] which completes the proof. ut

Thus, from Theorem 2 we have that the set of trajectories Xp of the sys-
tem (2.1) is a bounded subset of the space C([t0, θ];Rn). In particular, from
Theorem 2 it follows the validity of the following corollary.

Corollary 1. The inclusion Xp(t) ⊂ Bn(r∗) holds for every t ∈ [t0, θ] where the
set Xp(t) is defined by (2.3), the number r∗ > 0 is defined by (4.5), Bn(r∗) =
{x ∈ Rn : ‖x‖ ≤ r∗}.

Math. Model. Anal., 17(5):686–695, 2012.
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5 Precompactness of the Set of Trajectories

In this section precompactness of the set of trajectories is studied.
Denote D1 = [t0, θ]×Bn(r∗),

ω0(∆) = max
{∥∥a(t2, x)− a(t1, x)

∥∥ : |t2 − t1| ≤ ∆,
(t1, x) ∈ D1, (t2, x) ∈ D1

}
, (5.1)

ϕ(∆) =
1

1− L0

{
ω0(∆) + λ

[
L1(θ − t0) + 2H1(θ − t0)

p−1
p µ0

]
∆

+ λ(L2r∗ + γ1)∆+ λµ0

[
(H2 +H3)r∗ + L3

]
∆

p−1
p

}
, (5.2)

where r∗ is defined by (4.5). By virtue of condition 2.A the function a(·) is
continuous. Then ω0(∆)→ 0, ϕ(∆)→ 0 as ∆→ 0+.

The Hausdorff distance between the sets U ⊂ Rn and V ⊂ Rn is denoted
by h(U, V ) and defined as

h(U, V ) = max
{

sup
u∈U

d(u, V ), sup
v∈V

d(v, U)
}
,

where d(u, V ) = inf{‖u− v‖ : v ∈ V }.

Proposition 3. For every x(·) ∈ Xp, t1 ∈ [t0, θ], t2 ∈ [t0, θ] the inequality∥∥x(t2)− x(t1)
∥∥ ≤ ϕ(|t2 − t1|)

holds and hence h
(
Xp(t2),Xp(t1)

)
≤ ϕ

(
|t2− t1|

)
, where Xp(t1) and Xp(t2) are

defined by (2.3).

Proof. Let x(·) ∈ Xp be an arbitrarily chosen trajectory of the system (2.1).
Then there exists u(·) ∈ Up such that

x(t) = a
(
t, x(t)

)
+ λ

∫ t

t0

K
(
t, s, x(s), u(s)

)
ds, t ∈ [t0, θ].

Now let t1 ∈ [t0, θ], t2 ∈ [t0, θ] and let t2 > t1. Then∥∥x(t2)− x(t1)
∥∥ ≤ ∥∥a(t2, x(t2)

)
− a
(
t1, x(t2)

)∥∥+
∥∥a(t1, x(t2)

)
− a
(
t1, x(t1)

)∥∥
+ λ

∫ t1

t0

∥∥K(t2, s, x(s), u(s)
)
−K

(
t1, s, x(s), u(s)

)∥∥ ds
+ λ

∫ t2

t1

∥∥K(t2, s, x(s), u(s)
)∥∥ ds. (5.3)

Since u(·) ∈ Up, then by virtue of condition 2.B we get∫ t1

t0

∥∥K(t2, s, x(s), u(s)
)
−K

(
t1, s, x(s), u(s)

)∥∥ ds
≤
∫ t1

t0

(
L1 + 2H1

∥∥u(s)
∥∥)(t2 − t1) ds

≤
[
L1(θ − t0) + 2H1(θ − t0)

p−1
p µ0

]
(t2 − t1). (5.4)
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Taking into consideration that u(·) ∈ Up, we obtain from Proposition 2 and
Theorem 2 that∫ t2

t1

∥∥K(t2, s, x(s), u(s)
)∥∥ ds

≤
∫ t2

t1

[(
L2 + (H2 +H3)

∥∥u(s)
∥∥)∥∥x(s)

∥∥+ L3

∥∥u(s)
∥∥+ γ1

]
ds

≤
∫ t2

t1

[(
L2 + (H2 +H3)

∥∥u(s)
∥∥)r∗ + L3

∥∥u(s)
∥∥+ γ1

]
ds

= (L2r∗ + γ1)(t2 − t1) +

∫ t2

t1

[
(H2 +H3)r∗ + L3

]∥∥u(s)
∥∥ ds

= (L2r∗ + γ1)(t2 − t1) +
[
(H2 +H3)r∗ + L3

] ∫ t2

t1

∥∥u(s)
∥∥ ds

≤ (L2r∗ + γ1)(t2 − t1) + µ0

[
(H2 +H3)r∗ + L3

]
(t2 − t1)

p−1
p . (5.5)

Condition 2.B implies∥∥a(t1, x(t2)
)
− a
(
t1, x(t1)

)∥∥ ≤ L0

∥∥x(t2)− x(t1)
∥∥, (5.6)

where L0 ∈ [0, 1).
Since (t, x(t)) ∈ D1 for every t ∈ [t0, θ], we get from (5.1) that∥∥a(t2, x(t2)

)
− a
(
t1, x(t2)

)∥∥ ≤ ω0

(
|t2 − t1|

)
. (5.7)

Now from (5.3)–(5.7) we conclude∥∥x(t2)− x(t1)
∥∥ ≤ L0

∥∥x(t2)− x(t1)
∥∥+ ω0

(
|t2 − t1|

)
+ λ
[
L1(θ − t0) + 2H1(θ − t0)

p−1
p µ0

]
(t2 − t1)

+ λ(L2r∗ + γ1)(t2 − t1) + λµ0

[
(H2 +H3)r∗ + L3

]
(t2 − t1)

p−1
p . (5.8)

Since L0 ∈ [0, 1), then (5.2) and (5.8) yield∥∥x(t2)− x(t1)
∥∥ ≤ 1

1− L0

{
ω0

(
|t2 − t1|

)
+ λ
[
L1(θ − t0) + 2H1(θ − t0)

p−1
p µ0

]
× (t2−t1) + λ(L2r∗ + γ1)(t2−t1) + λµ0

[
(H2 +H3)r∗ + L3

]
(t2−t1)

p−1
p

}
= ϕ

(
|t2 − t1|

)
. ut

Since ϕ(∆)→ 0 as ∆→ 0+ then we obtain from Proposition 3 the validity
of the following corollary.

Corollary 2. Set valued map t→ Xp(t), t ∈ [t0, θ], is continuous.

Proposition 3 also implies the validity of the following theorem.

Theorem 3. The set of trajectories Xp is a precompact subset of the space
C([t0, θ],Rn).

Math. Model. Anal., 17(5):686–695, 2012.
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Proof. According to the Theorem 2 the set of trajectories of the system
(2.1) with constraint (2.2), i.e. the set Xp is a bounded subset of the space
C([t0, θ],Rn).

Let us choose an arbitrary ε > 0. Since ϕ(∆) → 0 as ∆ → 0+, where the
function ϕ(·) : [0,∞) → [0,∞) is defined by (5.2), then for ε > 0 there exists
δ(ε) > 0 such that ϕ(∆) < ε for every ∆ < δ(ε).

Now let x(·) ∈ Xp be an arbitrarily chosen trajectory and t1 ∈ [t0, θ],
t2 ∈ [t0, θ] be such that |t2 − t1| < δ(ε). Then ϕ(|t2 − t1|) < ε and we obtain
from Proposition 3 that∥∥x(t2)− x(t1)

∥∥ ≤ ϕ(|t2 − t1|) < ε.

Thus the set of trajectories Xp is the set of equicontinuous functions. From
Arzela–Ascoli theorem we have the proof of the theorem. ut

Note that the set of trajectories Xp is not a closed subset of the space
C([t0, θ],Rn). To illustrate this assertion we use examples, given in [2] and [5].

Example 1. Consider the controllable system whose behaviour is described by
the integral equations

x(t) =

∫ t

0

[
−y2(s) + u2(s)

]
ds,

y(t) =

∫ t

0

u(s) ds,

(5.9)

where (x, y) ∈ R2 is the state vector, u ∈ R is a control vector, t ∈ [0, 1].

Every u(·) ∈ L2([0, 1],R) which satisfies the inequality
∫ 1

0
u2(t) dt ≤ 1 is called

an admissible control function. The set of all admissible control functions is
denoted by U∗2 . Then

U∗2 =
{
u(·) ∈ L2

(
[0, 1];R

)
:
∥∥u(·)

∥∥
2
≤ 1
}
.

The set of trajectories of the system (5.9) generated by all admissible control
functions u(·) ∈ U∗2 is denoted by X∗2.

The set of trajectories X∗2 is bounded (see [5]). Let the trajectory of the sys-
tem (5.9) (xk(·), yk(·)) ∈ X∗2 be generated by the admissible control functions
uk(·) ∈ U∗2 where

uk(t) =

{
1, t ∈ [ 2i2k ,

2i+1
2k ),

−1, t ∈ [ 2i+1
2k , 2i+2

2k ), i = 0, 1, . . . , k − 1

and k = 1, 2, . . . .
It is possible to verify that (xk(·), yk(·)) → (x∗(·), y∗(·)) as k → ∞ where

x∗(t) = t, y∗(t) = 0 for every t ∈ [0, 1], but (x∗(·), y∗(·)) 6∈ X∗2. Moreover,
(xk(1), yk(1)) → (1, 0) as k → ∞, but (1, 0) 6∈ X∗2(1) =

{
(x(1), y(1)) ∈ R2 :

(x(·), y(·)) ∈ X∗2
}

(see [2, 5]).
So, the set of trajectories of the system (5.9), i.e. the set X∗2 is not a closed

subset of the space C([0, 1],R2). The section of the set of trajectories, i.e. the
set X∗2(1) also is not a closed subset of the space R2.
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6 Conclusion

The existence of the optimal trajectories is one of the important problems of the
control systems theory. Under appropriate conditions, precompactness of the
set of trajectories allows to forecast the existence of the ε-optimal trajectories
of the control system. If the behaviour of the control system is described by a
nonlinear Volterra integral equation and it has continuous payoff functional and
limited control resources, which are exhausted by consuming, such as fuel or
money, then precompactness theorem guarantees the existence of the ε-optimal
trajectories.
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