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Abstract. We deal with a model equation for stochastic processes that results from
the action of a semi-Markov process on a system of ordinary differential equations.
The resulting stochastic process is deterministic in pieces, with random changes of the
motion at random time epochs. By using classical methods of probability calculus,
we first build and discuss the fundamental equation for the statistical analysis, i.e.
a Liouville Master Equation for the distribution functions, that is a system of hyper-
bolic PDE with non-local boundary conditions. Then, as the main contribute to this
paper, by using the characteristics’ method we recast it to a system of Volterra inte-
gral equations with space fluxes, and prove existence and uniqueness of the solution.
A numerical experiment for a case of practical application is performed.
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1 Introduction

Non-deterministic or stochastic modelling is nowadays one of the most active
research field of investigation for applied science, engineering and finance. Ran-
domness, or noise, can be included into modelling equations, roughly speaking,
in two different ways. First, for continuous time equations, a very popular
way is to sum a Wiener or Gaussian noise to deterministic differential equa-
tions, so that the randomness affects the state variables by overlapping the
motion at every instant time of its evolution. The number of examples is
enormous, a classical one from physics is the Langevin equation. The main
analysis tools for the treatment of this class of stochastic equation are pro-
vided by the well established Itô calculus, as well as the Fokker–Planck equa-
tion.

The second category of noise modelling is by “point processes”, where the
randomness affects the deterministic motion only at some random “epochs”.
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Historically, they find application to queues and renewal processes. For these
cases there are specific techniques of calculus and analysis. Not so long time
ago, the modelling field of “point processes” was extended to the motion al-
lowed to assume a certain number of deterministic states that can switch ran-
domly at random times [14]. Nowadays this model framework has potentially
a huge number of practical applications. This very wide class of stochastic
process is named Piecewise Deterministic Processes (PDP) [14, 15]. Within
this category, here we focus on processes that switch randomly between de-
terministic states driven by a semi-Markov process S(t), that is a discrete
stochastic jump process where the influence of the past is erased at the epochs
of jumps. Early work was made in [23] for the action of a Markov pro-
cess.

The equation model is a first order system of differential equation, where
the known driving vector function is affected by a semi-Markov process. The
state function X(t), X : [t0,∞[→ Ω, Ω ⊂ Rd, is described by:

a) It satisfies the equation:

Ẋ(t) = ĀS(t)(X), t ∈ [t0,∞[ (1.1)

where S(t) : [t0,∞[→ S is a semi-Markov process (defined by c) and d))
with set of discrete states S = {1, . . . , S} and, correspondingly, given
s ∈ S we say that the dynamics is in the (deterministic) state s, driven
by the function Ās : Ω → Rd, that is one of a set of {Ā1, . . . , ĀS} known
functions (or controllers). We require that all Ās(·), s ∈ S, be Lipschitz
continuous, so that, for fixed s, X(t) exists, is unique and non-explosive
solution.

b) It satisfies the initial condition settled by the Cauchy problem to Eq. (1.1),
i.e. X(t0) = X0 ∈ Ω, and by the initial state s0 = S(t0) of the same
equation.

c) S(t) is characterized by a probability density function (p.d.f.) ψs : R+ →
R+, of transition events:

ψs(t) ∈ L1
(
R+
)
, with

∫ ∞
0

ψs(t) dt = 1 (1.2)

for each state s ∈ S. In other words it is the p.d.f. for the time holds in
the state s.

d) S(t) is also characterized by the stochastic transition probability matrix
(or transition measure) q̂ := {qij}:

0 ≤ qij ≤ 1,

S∑
i=1

qij = 1 ∀i, j ∈ S. (1.3)

When a transition event occurs, the dynamics switches instantaneously
from a state s ∈ S, i.e. Ās, randomly to a new state s′ ∈ S, i.e. Ās′ . We
note that the stochastic matrix q̂ has spectral radius ρ(q̂) = ‖q̂‖1 = 1.
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Virtual transitions from the state s to itself, i.e. no true transition, are
allowed for this model, this means that can be qss > 0. The position X(t)
of the process is not affected when the state switches, because it happens
instantaneously, so that the process is continuous.

Both c) and d) define the semi-Markov process S(t), that generates a temporal
sequence of transition events (t0, t1, . . . , tk, tk+1, . . .). It is said that d) defines
the embedded discrete Markov chain of the process S(t), while c) defines a
continuous time process for the epochs where the Markov chain changes state.
Usually a semi-Markov process is defined by a matrix of distribution functions
for the sojourn time between two states of the Markov chain, but it can be
redefined, as in the present case, as a vector {ψ1(t), . . . , ψS(t)} of holding time
p.d.f. for each state [17]. Later, we will see that this is connected with the
important concept of memory. We note that both X(t) and S(t) are non-
Markov, but the joint (hybrid) process (X,S) is Markov.

PDP’s are known by researchers working in probability calculus and op-
eration research, stochastic hybrid systems and reliability analysis (e.g. see
[8, 10, 12, 9]), but they are not very popular between those working in applied
sciences, nevertheless they unknowingly use it, at least in a simplified form.
This kind of modelling can be used for phenomenas where a deterministic mo-
tion is interrupted by a fast interaction that produces randomization of the
motion for a small amount of time compared to the deterministic time scale of
the process. For applications, the models including ‘dichotomic noise’, ‘random
telegraph process’, ‘binary noise’, and so on, as driving terms for determinis-
tic equations, fit in the PDP category. As examples of potential applications,
we can quote: reacting-diffusing systems [20], biological dispersal [19], non-
Maxwellian equilibriums [1, 5, 18], filtered telegraph signals [25].

From its definition we can guess that X(t) is mostly locally determinis-
tic, but the whole trajectory is not: it represents a random sample path of
a probability space, so that the meaningful informations can be described by
the marginal distribution functions for each state of the system. The equation
for such distributions is the analogous of the Fokker–Planck equation for the
diffusive stochastic Itô equation. More precisely, it is a forward Kolmogorov
equation that in the present case we prefer to name Liouville-Master Equation
(LME), because of the joint origin of deterministic, in the case of Hamiltonian
system, and stochastic jumps motion of the semi-Markov process. Sometime
it is also referred as a generalized Fokker–Planck equation. We note that here
the LME is not the same as that known in Open Quantum Systems [7, 22], but
in a broad sense it is conceptually related to it.

The LME is a system of hyperbolic partial differential equations with non-
local boundary conditions. This is a non-classical boundary condition, like
Dirichlet or Neumann, where the value at the boundary of the domain depends
on the integral of the unknown function over the interior of domain. From
the mathematical point of view PDE’s with non-local boundary conditions are
a less investigated subject, but interest is growing [21]. A numerical scheme,
based on Courant-Isaacson-Rees jointly to a direct quadrature, for the solution
of the LME was investigated in [2, 3], where convergence, positivity and conser-
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vativity was proved under a Courant–Friederichs–Lèvy-like conditions. Finite
volume schemes for the approximation of probability measures for a system of
hyperbolic PDEs arising in dynamics reliability of a system have been studied
in [11, 16].

In this paper we provide an analytical and modelling discussion about the
LME. As above mentioned the model equation studied here does not cover all
the cases of the general theory of PDPs [14], although it is enough to model
many cases of practical application. As we will see also for this reduced formu-
lation, when all the model parameters and functions are given explicitly, the
equation for the statistical description, i.e. the LME, can result into a little
tricky model equation. Hence, the choice of the discrete semi-Markov process
as source of randomness for deterministic motion seems to be a fair compromise
between generality of the model and practicality of the explicit model equation.

In the introductory Section 2 we show first the derivation of the LME for
the one-dimensional case, with simple classical arguments, then extend it to
processes in multi-dimensional space states. We show various cases that are
distinguished by the presence of memory or not, and for distributions or den-
sities. Section 3 is devoted to recast the LME to a Volterra Integral Equation
(VIE) with space maps, and to prove both an existence and uniqueness the-
orem. Finally, in Section 4 we will show a numerical result from a model of
practical application by using the numerical scheme proposed in [6]. A section
of conclusion completes the paper.

2 Building the Basic Equation

In this section we show how to build the LME, starting from the Chapman-
Kolmogorov-Smoluchowski equation for a process in one dimension, d = 1;
details of the basic theory can be found in any textbooks of stochastic processes
(e.g. [13]).

In terms of probability theory the configurational parameters can be de-
scribed according to the marginal density distribution functions:

ρs(x, y, t) dx dy = P(x ≤ X(t) < x+ dx; y ≤ Y (t) < y + dy; S(t) = s),

x ∈ Ω ⊂ R, t > tk > t0, y ≥ 0, that is ρs(x, y, t) is the p.d.f. that at time t, the
configurational variables are close to the value x, and that they are in the state
s and having spent there the time y = t− tk from the last event tk generated
by the semi-Markov process S(t). Y (t) is a random variable representing the
“memory” of the time spent from the last switching event tk. The normalizing
condition is:

S∑
s=1

∫
Ω

dx

∫ ∞
0

ρs(x, y, t) dy = 1 ∀t ≥ t0.

We are assuming that the probability measure is absolutely continuous. Indeed,
for some stochastic processes also a discrete measure should be included, so that
for the completeness of the description, the Lebesgue–Stieltjes measure should
be used. The typical problem is to calculate ρs(x, y, t) at every time, when

ρ
(0)
s (x, y) is known at the time t0.

Math. Model. Anal., 17(5):650–672, 2012.
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The evolution is described in terms of the transport equation:

ρs(x, y, t) =
∑
j

∫
Ω

∫ ∞
0

psj(x, y, t;x0, y0, t0)ρ
(0)
j (x0, y0) dy0 dx0,

ρj(x, y, t0) = ρ
(0)
j (x, y), t > t0, y ∈ ]0,∞[, (2.1)

where psj(x, y, t;x0, y0, t0) (y0 > 0) is the transition probability density distri-
bution from the state (x0, y0, t0, j) ∈ Ω × [0,∞[ × ]−∞,∞[ × S to (x, y, t, s)
defined as:

psj(x, y, t;x0, y0, t0) := P
(
x ≤ X(t) < x+ dx; y ≤ Y (t) < y + dy; S(t) = s

∣∣
X(t0) = x0; Y (t0) = y0; S(t0) = j

)
.

The r.h.s. is the conditional probability to find the process X(t) close to x, in
the state s having spent the time y since the last switching event, given the
process X(t0) at x0, in the state j, having spent the time y0 in the state j. The
transition p.d.f. owns the property:

psj(x, y, t0;x0, y0, t0) = δsjδ(x− x0)δ(y − y0),

where δ(x) is the δ-Dirac and δij the Kronecker symbol, and it gives us the
complete information on the stochastic process. The basic method to obtain
it is by solving a Chapman-Kolmogorov-Smoluchowski equation that connects
the transition p.d.f’.s at different times of the process. However, solving such
an equation for the probability transition function is not useful in practice
because its general solution is difficult to find as the Green function of a partial
differential equation. Therefore usually one searches for solution to Eq. (2.1).
The main goal is to find the evolution equation to this p.d.f. according to the
dynamical law (1.1).

Now we build an equation for the marginal distributions

Fs(x, y, t)=

∫ x

−∞

∫ ∞
0

∫
Ω

∑
j∈S

psj(x
′, y, t;x0, y0, t0)ρ

(0)
j (x0, y0) dx0 dy0 dx

′ (2.2)

for y ≥ 0. Here and in what follows we will set sometime the lower limit of
integrals to −∞ rather than the lower value of Ω, because we suppose that
the density of probability is vanishing outside Ω. Note that Fs(x, y, t) is a
distribution for x, but a density with respect to y. The initial state (x0, y0, t0)
is omitted.

An important function of the model is the hazard function [13]

λs(y) := ψs(y)/

∫ ∞
y

ψs(y
′) dy′, y ≥ 0 (2.3)

related to ψs(t) of Eq. (1.2). It represents the density probability per unit of
time that an event of S(t) appears for S(t), having spent the time (memory) y
in the state s. It easy to see from its definition that the hazard function λs(y)
not necessarily is L1 or even continuous. In the most general case it could
be L1

loc , however we will not investigate its properties here.
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To build the LME let consider the motion of the process in small time
steps of size ∆t. There are two cases. In absence of events, the motion is
deterministic, so that for a small interval of time ∆t and displacement ∆x, the
change of distribution is

Fs(x+∆x, y +∆t, t+∆t) ' (1− λs(y)∆t)Fs(x, y, t).

The right hand side is the probability that the time event does not appear and
the equation follows a deterministic law. By approximating with differentials,
considering the first order terms and using the right continuity of Fs, we obtain:

∂tFs(x, y, t) = −As(x, t) ∂xFs(x, y, t)− ∂yFs(x, y, t)− λs(y)Fs(x, y, t), (2.4)

for t > t0, y > 0. The r.h.s. is the infinitesimal generator of the process. This
equation is valid as longer as there is no a switching event.

In the other case, when an event occurs within the time interval ∆t, we
have:

Fs(x, 0, t) =

S∑
j=1

qsj

∫ ∞
0

Fj(x, y, t)λj(y) dy, t > t0, (2.5)

that is the distribution function of the state when the process is just entered
in, i.e. y = 0. It results as the sum over all the probability from the previous
states. The single contribution takes in account of all the memory states y
spent in the state j: λj(y)∆t is the probability that an event occurs after the
sojourn time y in that state, and Fj(x, y, t) is that of the system, hence the
product is the joint probability, that have to be integrated over all the time
spent in j. In order to Eq. (2.5) be meaningful, we assume that integrals on
the r.h.s. be finite. Eq. (2.5) acts as a non-local boundary condition for the
Eq. (2.4).

The equation model is completed by the Cauchy initial conditions:

Fs(x, y, t0) = F0,s(x, y) =

∫ x

−∞
ρ0,s(x

′, y) dx′, x, x′ ∈ Ω, y ∈ [0,∞[. (2.6)

The distribution function of x at time t regardless the memory state is

Fs(x, t) =

∫ ∞
0

Fs(x, y, t) dy. (2.7)

Finally, there are boundary conditions related to the conservation of the prob-
ability:

lim
x→∞

∑
s

Fs(x, t) = 1, lim
x→−∞

∑
s

Fs(x, t) = 0. (2.8)

We note that the PDE (2.4) has boundary conditions for (y ≥ 0, t = t0) of
Eq. (2.6), and (y = 0, t > t0) of Eq. (2.5). According to the “nature” of
the hyperbolic equation, the values at the boundaries are “transported” along
the characteristics lines y = t − t∗, for (t > t∗, y > 0). This means that the
initial condition (2.6) influences the region of the solution domain y ≥ t − t0,

Math. Model. Anal., 17(5):650–672, 2012.
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while the nonlocal condition of Eq. (2.5) the region (0 ≤ y < t − t0, t > t0).
Further, we note that due to (2.5), in general the limt→t+0

Fs(x, 0, t) 6= F0,s(x, 0)

because of F0,s is an arbitrarily assigned function, and F (x, 0, t) depends on
the setting of the model. Therefore, this discontinuity propagates along y =
t− t0, hence limy→(t−t0)+ Fs(x, y, t) 6= Fs(x, t− t0, t). As a result, with smooth
enough conditions for Eq. (2.4), the solution Fs(x, y, t) can be continuous in
two separate regions and, as we will see in Section 3, it is defined in two pieces:

Fs(x, y, t) := F+
s (x, y, t)(1−H(y − (t− t0))) + F ∗s (x, y, t)H(y − (t− t0)),

where H(y) is the step function H(y) = 1 for y ≥ 0, H(y) = 0 for y < 0. If we
consider an absolute continuous measure of Fs(x, y, t) with respect to x, the
equation for the density probability ps(x, y, t) = ∂xFs(x, y, t) reads as:

∂tps(x, y, t) + ∂x
[
As(x, t)ps(x, y, t)

]
+ ∂yps(x, y, t) = −λ(y)ps(x, y, t)

for t > t0, y > 0 and the boundary conditions:

ps(x, 0, t) =

S∑
j=1

qsj

∫ ∞
0

pj(x, y, t)λj(y) dy, t > t0, (2.9)

with Cauchy’s condition ps(x, y, t0) = p
(0)
s (x, y), y ≥ 0.

An important point is the determination of the set Ω for which if X =
Φ(t;X0, t0) denotes the flux (or continuous map) for X(t), t ≥ t0, it is required

that both X0(t0) ∈ Ω Φ−→ X(t) ∈ Ω and X(t) ∈ Ω Φ−1

−−→ X0(t0) ∈ Ω, where
X0 = Φ−1(t0;X, t) is the backward flux, so that p.d.f’s are defined in the set
Ω for which ∑

s∈S

∫
Ω

∫ ∞
0

ps(x, y, t) dy dx = 1 ∀t ≥ t0.

We will assume that Ω it is known a priori and is a simply connected set,
indeed it results from a non-trivial combination of the state spaces of each
individual dynamical state s ∈ S of the system.

In what follows we show the formulation of the LME for some different cases
in many-dimension, and with the presence or not of memory.

Memoryless multi-dimensional. This is the case of switching events
distributed according to the Poisson statistics ψs(t) = λse

−λst, so that the
driving stochastic process S(t) is Markov.

Let pl(x̄, t), x̄ ∈ D ∈ Rd for all t ∈ [t0,∞[ be the p.d.f. of the process at
time t. If Dt is a subset of D, it is subject to evolution according to Eq. (1.1),
then Dt+∆t is the set Dt “evolved” after the time ∆t.

In absence of transition events, from the conservation probability

(1− λ∆t)
∫
Dt

p(x̄, t) dx̄ =

∫
Dt+∆t

p(x̄′, t+∆t) dx̄′.

By using the continuity equation (see textbooks of fluid mechanics or statistical
physics), at the first approximation order, from the r.h.s., we get:∫
Dt+∆t

p(x̄′, t+∆t) dx̄′ '
∫
Dt

[
p(x̄, t)+Ā(x̄)∇p(x̄, t)∆t+∂tp(x̄, t)∆t

]
|I+∆t∇Ā| dx̄,
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where I is the identity matrix and |I + ∆t∇Ā| is the approximation of the
Jacobian’s matrix for the change of variable. It follows

∂tpl(x̄, t) + div
(
Āl(x̄)pl(x̄, t)

)
= −λlpl(x̄, t).

If we consider the contribute from the other states and introduce the probability
that in case of an event the transition occurs according to the stochastic matrix
{qls}, we write:

∂tpl(x̄, t) + div
(
Āl(x̄)pl(x̄, t)

)
=
∑
s

Qlsps(x̄, t), (2.10)

where Qls = (qls−δls)λs. This equation is a continuity equation with a Master
Equation for the Markov process. For non-autonomous systems we can write
Āl(x̄, t). Dependence on space x in λs can be included without modifications
on the equation.

Formulation with distribution functions. Eq. (2.10) can be written
for distribution functions defined as:

Fl(x̄, t) :=

∫ x1

−∞
· · ·
∫ xd

−∞
pl(x̄

′, t) dx′1 . . . dx
′
d,

x̄ := (x1, . . . , xd). By integrating with respect to x1, x2, . . . , xd, Eq. (2.10), we
get:

∂tFl(x̄, t) +

d∑
j=1

x̄ 6=j∫
· · ·
∫

−∞

A
(j)
l (x̄′)pl(x̄

′, t) dx̄′6=j =
∑
s

QlsFs(x̄, t), (2.11)

where we used the vanishing conditions limxj→−∞A
(j)
l pl = 0 (j = 1, . . . , d).

The symbol x̄ 6=j ∈ Rd−1 means “exclude the component xj”, x̄ 6=j :=
(x1, . . . , xj−1, xj+1, . . . , xd), and the multiple integral is calculated to a (d−1)-
dimensional space.

If we use the Lebesgue–Stieltjes integral, for the definition of the marginal
distribution function:

Fl(x̄, t) =

∫ x1

−∞
· · ·
∫ xd

−∞
Fl(dx̄

′, t),

Eq. (2.11) turns into:

∂tFl(x̄, t) +

d∑
j=1

∂xj

∫ x1

−∞
. . .

∫ xd

−∞
A

(j)
l (x̄′)Fl(dx̄

′, t) =
∑
s

QlsFs(x̄, t).

As an example when d = 2:

∂tFl(x̄, t) + ∂x1

∫ x1

−∞

∫ x2

−∞
A

(1)
l (x′1, x

′
2)Fl(dx

′
1, dx

′
2, t)

+ ∂x2

∫ x1

−∞

∫ x2

−∞
A

(2)
l (x′1, x

′
2)Fl(dx

′
1, dx

′
2, t) =

∑
s

QlsFs(x1, x2, t).

Math. Model. Anal., 17(5):650–672, 2012.
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Multi-dimensional case with memory. In this case the statistics of
transition events described by ψl(t) is generic, non-Markovian. Let x̄ ∈ D,
where D ⊂ Rd is compact, for all t ∈ [t0,∞[, and ˙̄x = Ā(x̄) with Ā := D → Rd.
In absence of transitions, from the probability conservation:(

1− λ(y)∆t
) ∫

Dt

p(x̄, y, t) dx̄ =

∫
Dt+∆t

p(x̄′, y +∆t, t+∆t) dx̄′.

At the first order approximation, from the r.h.s. we get:∫
Dt+∆t

p(x̄′, y +∆t, t+∆t) dx̄′ '
∫
Dt

p
(
x̄+ Ā(x̄)∆t, y +∆t, t+∆t

)
|I +∆t∇Ā| dx̄

the term before the differential is the approximation of the Jacobian’s matrix
for the change of variable. By considering the first order terms only, we get:

∂tpl(x̄, y, t) + ∇̄x
(
Āl(x̄)pl(x̄, y, t)

)
+ ∂ypl(x̄, y, t) = −λl(y)pl(x̄, y, t). (2.12)

As from Eq. (2.9), complete the equation the non-local boundary condition:

pl(x̄, 0, t) =

S∑
j=1

qlj

∫ ∞
0

pj(x̄, y, t)λj(y) dy, (2.13)

and the Cauchy initial condition:

pl(x̄, y, t0) = p
(0)
l (x̄, y). (2.14)

Formulation with distribution functions. The formulation with dis-
tribution functions is similar to the case without memory:

∂tFl(x̄, y, t) + ∂yFl(x̄, y, t) +

d∑
j=1

x̄ 6=j∫
· · ·
∫

−∞

A
(j)
l (x̄′)pl(x̄

′, y, t) dx̄′6=j

= −λl(y)Fl(x̄, y, t). (2.15)

The non-local boundary condition is:

Fl(x̄, 0, t) =
∑
j

qlj

∫ ∞
0

Fj(x̄, y, t)λj(y) dy,

and the Cauchy condition is:

Fl(x̄, y, t0) = F
(0)
l (x̄, y).

As an example, in two dimensions the Eq. (2.15) read as:

∂tFl(x1, x2, y, t) + ∂yFl(x1, x2, y, t) + ∂x1

∫ x1

−∞

∫ x2

−∞
A

(1)
l (x′1, x

′
2)Fl(dx

′
1, dx

′
2, y, t)

+ ∂x2

∫ x1

−∞

∫ x2

−∞
A

(2)
l (x′1, x

′
2)Fl(dx

′
1, dx

′
2, y, t) = −λl(y)Fl(x1, x2, y, t).
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Hamiltonian Systems. In this paragraph we write the LME for an Hamil-
tonian system subject to a Markov process:{

q̇ = ∂pHS(t)(q,p),

ṗ = −∂qHS(t)(q,p)
(2.16)

for l = 1 . . . S Hamiltonian states Hl(q,p, t) for a vector of position q and
momentum p variables. Let ρl(q,p, t) the space phase density distribution,
from Eq. (2.10) we get:

∂tρl +∇q,p

(
(∂pHl,−∂qHl)ρl

)
=

S∑
j=1

Qljρj

that is:

∂tρl + (∂pHl)(∂qρ)− (∂qHl)(∂pρ) =

S∑
j=1

Qljρj ,

where we used ∇p∂qHl = ∇q∂pHl just as in the Liouville’s theorem. By
defining the Poissoin’s brackets:

{Hl, ρl} :=

d∑
k=1

(
∂Hl

∂pk

∂ρl
∂qk
− ∂Hl

∂qk

∂ρl
∂pk

)
,

it reads as:

∂tρl + {Hl, ρl} =

S∑
j=1

Qljρj ,

that represents the LME for the stochastic Hamiltonian system of Eq. (2.16).
The initial distribution is ρl(q,p, t0) = ρ0,l(q,p). By summing on the Markov
states:

S∑
l=1

(
∂tρl + {Hl, ρl}

)
= 0

we found just the Liouville’s equation.
As an example, let consider the motion of a massive point particle into

a potential US(t)(q) that is subject to a 2 states Markov process S(t) with
stochastic matrix q11 = q22 = 0, q12 = q21 = 1 and Poissoin’s transition

rates λ1,2. The Hamiltonian is HS(t)(q,p) = p2

2m + US(t)(q), and the LME
reads as: 

∂tρ1 − U ′1(q)∂pρ1 +
p

m
∂qρ1 = −λ1ρ1 + λ2ρ2,

∂tρ2 − U ′2(q)∂pρ2 +
p

m
∂qρ2 = +λ1ρ1 − λ2ρ2.

Hamiltonian case with memory. When the statistics of the switching
events is not Poissonian, then S(t) is a semi-Markov process and the phase
space density, associated to (2.16), depends also on the memory y: ρl(q,p, y, t),

Math. Model. Anal., 17(5):650–672, 2012.
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p,q ∈ Rd. According to Eqs. (2.12) and (2.13) the Liouville Master Equation
with memory reads as:

∂tρl(q,p, y, t) + ∂yρl(q,p, y, t) + {Hl, ρl} = −λl(y)ρl(q,p, y, t),

ρl(q,p, 0, t) =

S∑
j=1

qlj

∫ ∞
0

ρj(q,p, y, t)λj(y) dy,

ρl(q,p, y, t0) = ρ0,l(q,p, y).

The initial condition ρ0,l(q,p, y) has the special meaning that for the initial
state of the system, the initial state of memory should be assigned or prepared.
An initial state prepared without past memory is proportional to δ(y). The
former example, with hazard functions λ1,2(y), becomes:

∂tρ1 + ∂yρ1 − U ′1(q)∂pρ1 +
p

m
∂qρ1 = −λ1(y)ρ1,

∂tρ2 + ∂yρ2 − U ′2(q)∂pρ2 +
p

m
∂qρ2 = −λ2(y)ρ2,

ρ1(q,p, 0, t) =

∫ ∞
0

ρ2(q,p, y, t)λ2(y) dy,

ρ2(q,p, 0, t) =

∫ ∞
0

ρ1(q,p, y, t)λ1(y) dy,

ρ1(q,p, y, t0) = ρ0,1(q,p, y), ρ2(q,p, y, t0) = ρ0,2(q,p, y).

3 Recasting to Integral Equation

Eq. (2.4) is a PDE, in this section we recast it in the form of Integral equation
for d = 1, with Ω = [a, b]. An advantage of this formulation is that the proof
of the existence and uniqueness theorem for the solution, can be obtained by
using the standard technique of the contraction theorem. Moreover, it would
be possible use numerical schemes for the solution of integral equation rather
than for PDE.

The recasting procedure is based on the characteristics’ method for hyper-
bolic PDE. It is shown in the following paragraphs, step by step.

Change of function. The change of function

Fs(x, y, t) = Gs(x, y, t)e
−

∫ y
0
λs(τ) dτ , t > t0, (3.1)

makes the Eq. (2.4) as(
As(x, t)∂x + ∂t + ∂y

)
Gs(x, y, t) = 0

(
t > t0, y > 0, x ∈ Ω ≡ [a, b]

)
. (3.2)

From Eq. (2.5) we have:

Gs(x, 0, t) =

S∑
j=1

qsj

∫ ∞
0

Gj(x, y, t)λj(y)e−
∫ y
0
λj(τ) dτ dy, t > t0,
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and by using the equations:

e−
∫ y
0
λj(τ)dτ =

∫ ∞
y

ψj(τ) dτ and ψj(y) = λj(y)e−
∫ y
0
λj(τ) dτ , (3.3)

that can be directly verified from the definition of hazard function, we obtain:

Fs(x, 0, t) = Gs(x, 0, t) =

S∑
j=1

qsj

∫ ∞
0

Gj(x, y, t)ψj(y) dy (t > t0). (3.4)

The Cauchy condition (2.6) becomes:

Gs(x, y, t0;x0, y0, t0) = G0,s(x, y) = F0,s(x, y)e
∫ y
0
λs(τ) dτ . (3.5)

Eqs. (3.2), (3.4) and (3.5) is the problem we treat with the characteristics’
method.

Characteristics’ method analysis

In order to simplify Eq. (3.2), we use the characteristics’ method. The bound-
ary and Cauchy conditions are given on the following curves:

γ1(u1, u2)≡

x = u1,
y = u2 for y ≥ 0,
t = t0,

γ2(u1, u2)≡

x = u1,
y = 0,
t = u2 for t > t0

(3.6)

for u1 ∈ [a, b], for the non local boundary condition. The values on these curves
are

Gs(x, y, t0) = G0,s(x, y) on γ1, (3.7)

φs(x, t) := Fs(x, 0, t) = Gs(x, 0, t) on γ2 (3.8)

where φs(x, t) is a new unknown, that has the properties: φs(x, t) = φs(b, t)
if x ≥ b, and φs(x, t) = 0 if x ≤ a. As we discussed in Section 2 there is no
continuous limit of the solution to y = 0 memory value of the initial condition,
i.e. limt→t+0

φs(x, t) 6= G0,s(x, 0). From now we drop the indexes of the discrete
states.

According to the characteristic’s method, we search for a change of coordi-
nates:

x = β1(v, u1, u2), y = β2(v, u1, u2), t = β3(v, u1, u2) (3.9)

established by the following equations:{
β1v = A

(
β1(v, u1, u2), β2(. . .), β3(. . .)

)
,

β2v = 1, β3v = 1
(3.10)

with the Cauchy initial conditions βs(0, u1, u2) = β0,s(u1, u2) given for v = 0.
With this choice Eq. (3.2) becomes:{

gv(v, u1, u2) = 0,

g(0, u1, u2) = G|γ1,γ2
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whose solution is trivial:

g(v, u1, u2) = g(0, u1, u2) = G|γ1,γ2

and the solution in terms of coordinates (x, y, t) is given by inversion of the
change of coordinates (3.9):

G(x, y, t) = g
(
0, u1(x, y, t), u2(x, y, t)

)
, (3.11)

calculated both on γ1 and γ2. We have to solve Eq. (3.10). Let Φ̂A(v, u1, u2)
be the solution to the first equation of (3.10) when the initial condition γ1 and
γ2 are given. Now we have:


x = Φ̂A(v, u1, u2),

y = v + α2(u1, u2),

t = v + α3(u1, u2) (t > t0),

x ∈ [a, b], (3.12)

where αi have to be determined. We have two cases according to the curves
γ1, γ2.

Initial condition y ≥ t−t0. From the γ1 condition (3.6) and (3.12) we have:


β1(0, u1, u2) = u1

β2(0, u1, u2) = u2

β3(0, u1, u2) = t0

=⇒


β1 = ΦA(v;u1, 0),

β2 = v + u2,

β3 = v + t0.

(3.13)

From the first equation of (3.6) and (3.12), we see that β1(0, u1, u2) =
Φ̂A(0, u1, u2) = u1 that means the initial data of coordinates (u1, 0) is mapped
to (x, v) by a function of u1 only. Hence, it exists a map x = ΦA(v;u1, 0) solu-
tion to the first equation of (3.10). For the second equation it is β2(0, u1, u2) =
α2(u1, u2) = u1 and for the third: β3(0, u1, u2) = α3(u1, u2) = t0. By using
Eq. (3.9) and inverting Eq. (3.13), we find:

u1 = Φ
−1

A (0;x, t− t0), x ∈ [a, b],
u2 = y − t+ t0,
v = t− t0,

where Φ
−1

means to extract u1. We remind the important condition that the

codomain of Φ
−1

must be equal to the domain, that is in Eq. (3.9) if x ∈ [a, b]
then u1 ∈ [a, b]. Finally, from Eqs. (3.7) and (3.11) we get:

G(x, y, t) = G|γ1 = G0

(
Φ
−1

A (0;x, t− t0), y − t+ t0
)

(y ≥ t− t0). (3.14)
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Boundary condition 0 < y < t− t0, t > t0. For the γ2 condition (3.6) and
(3.12) we have:

β1(0, u1, u2) = u1

β2(0, u1, u2) = 0

β3(0, u1, u2) = u2

=⇒


β1 = ΦA(v;u1, 0)

β2 = v

β3 = v + u2

=⇒


u1 = Φ

−1

A (0;x, v)|v=y

v = y

u2 = t− y for t− y > t0.

(3.15)

The first equation is treated as in the previous case. For the second it is
α2(u1, u2) = 0 due to the second equation of Cauchy condition in (3.6) and for
the third is α3(u1, u2) = u2. Therefore from Eq. (3.7) and (3.11):

G(x, y, t) = G|γ2 = φ
(
Φ
−1

A (0;x, y), t− y
) (

t− t0 > y, x ∈ [a, b]
)
. (3.16)

The dynamical mapping

Now we have to find the mapping ΦA. It is related to the dynamical equation
(1.1) whose solution can be written as a map x = Φ∗A(t;x0, t0) that transforms
the initial point (x0, t0) to the point x at time t, with the initial condition
x0 = Φ∗A(t0;x0, t0). In this case the initial condition is β0,1(u1, u2) = u1, given
for v = 0 for both γ1 and γ2 (see (3.13) and (3.15)).

This means that, if y ≥ t− t0 we see from Eq. (3.13) that the map connects
the initial (u1, t0) to the final point (x, t) (with v = t− t0) as x = Φ∗A(t;u1, t0)
and its inverse is:

u1 = Φ∗−1
A (t0;x, t). (3.17)

If y ≤ t− t0, from Eq. (3.15) the map connects the initial (u1, u2) = (u1, t− y)
to the final point (x, t) (with v = y), so that:

x = Φ∗A(t;u1, t− y) for t > t0 and u1 = Φ∗−1
A (t− y;x, t).

Since the codomain must be equal to the domain, the maps have to be subject
to restriction:

Φ−1
A (η;x, t) := min

(
b,max

(
a, Φ∗−1

A (η;x, t)
))
. (3.18)

The integral equation

Now we insert the information obtained by the characteristics’ method into
Eq. (3.4). The integral over y is splitted in two parts, according to the values
of t− t0:

Gs(x, 0, t) = φs(x, t) =

S∑
j=1

qsj

(∫ t−t0

0

φj
(
Φ−1
Aj

(t− y;x, t), t− y
)
ψj(y) dy

+

∫ ∞
t−t0

G0,j

(
Φ−1
Aj

(t0;x, t), y − t+ t0
)
ψj(y) dy

)
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and by using Eq. (3.5) and (3.3):

Fs(x, 0, t) = φs(x, t)

=

S∑
j=1

qsj

(
αj(x, t; t0) +

∫ t−t0

0

φj
(
Φ−1
Aj

(t− y;x, t), t− y
)
ψj(y) dy

)
, (3.19)

where

αj(x, t; t0) :=

∫ ∞
t−t0
F0,j

(
Φ−1
Aj

(t0;x, t), y − t+ t0
)
ψj(y)e

∫ y−t+t0
0 λj(τ) dτdy (3.20)

that are both valid for t > t0. We note that Eq. (3.19) is a system of Volterra
Integral Equations of the II kind, with space fluxes (or maps) inside the un-
knowns φj , and that is not a weak formulation of the PDE’s (2.4). When
φs(x, t) is found, the unknown Fs(x, y, t) can be determined. From Eq. (3.16)
and Eq. (3.1) we get:

Fs(x, y, t) = φs
(
Φ−1
As

(t− y;x, t), t− y
)
e−

∫ y
0
λs(τ) dτ , 0 < y < t− t0. (3.21)

We note that if y ' 0 then Φ−1(t;x, t) ' x→ F (x, 0, t) ' φ(x, t).
The solution for memory y ≥ t − t0 can be obtained from Eq. (3.14),

Eq. (3.5) and Eq. (3.18):

G(x, y, t) = F0

(
Φ−1
As

(t0;x, t), y − (t− t0)
)
e
∫ y−t+t0
0 λs(τ) dτ

so that by using Eq. (3.1), we get:
Fs(x, y, t) = F0,s

(
Φ−1
s (t0;x, t), y − (t− t0)

)
e
−

∫ y
y−(t−t0)

λs(τ) dτ
,

y ≥ t− t0 > 0,

Fs(x, y, t0) = F0,s(x, y), y ≥ 0.

(3.22)

Summary

Here we summarize the procedure to get the solution to the LME from the
Volterra integral equation:

1. Determine the set of the space states Ω. It results from a non trivial
combination of the space states of each deterministic dynamics. Ω can be
found heuristically by evaluating the dynamics of the resulting stochastic
process X(t).

2. From Eq. (1.1) for each j ∈ S, find the solution map x = Φ∗Aj (t;x0, t0)

numerically or analytically if possible. It relates an initial point (x0, t0)
to final (x, t), for x0, x ∈ Ω, t > t0.

3. Find the inverse of the maps x0 = Φ∗−1
Aj

(t0;x, t) that connect the final
point to the initial, analytically if possible or numerically.

4. Define the restricted map by Eq. (3.18), so that the codomain is equal
to the domain.
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5. From the p.d.f. of the switching events ψs(t) defined in Eq. (1.2) and by
using the Eq. (2.3), write the hazard functions λj(y).

6. By using the initial condition of Eq (2.6) and Eq. (3.20), write the system
of integral equation (3.19) and solve it for φs(x, t), s ∈ S.

7. By using Eq. (3.21) write the marginal distribution functions with mem-
ory as F+

s (x, y, t), for y ∈ ]0, t− t0[.

8. By using Eq. (3.22) write the marginal distribution functions with mem-
ory as F ∗s (x, y, t), for y ≥ t− t0.

9. At this point the solution is written as the sum of two pieces of functions
Fs(x, y, t) := F+

s (x, y, t)(1−H(y− (t− t0))) + F ∗s (x, y, t)H(y− (t− t0)),
where H(·) is the unit step function.

10. If we are not interested in the memory states, we can integrate over it
with Eq. (2.7) and find Fs(x, t).

11. The total memoryless distribution function that includes all states of
the semi-Markov process is the sum of the marginal distribution func-
tion F̃T (x, t) =

∑S
s=1 Fs(x, t), and the density is its derivative P̃(x, t) =

∂xF̃T (x, t).

3.1 Existence and uniqueness theorem

Now we give a proof for the existence and uniqueness for the solution of the
system of integral equation (3.19). It will be proved by using the standard tech-
nique of the contraction theorem. We note that the presence of the continuous
maps Φ−1

s does not substantially affect the standard proof. We define the norm

‖φ‖1,∞ :=
∑S
j=1 maxx,t |φj(x, t)| and the distance d1,∞(φ̄, φ̃) := ‖φ̄− φ̃‖1,∞ for

the space of continuous functions C0(Ω × [t0, t1]). In that norm we prove that
the integral operator defined by the right hand side of Eq. (3.19) is a contrac-
tion, then there exists a unique continuous vector solution φj(x, t).

Theorem 1. Let Φ−1
Aj

(η;x, t) be a set of continuous maps from Eq. (3.18)

solution of (1.1) for x ∈ Ω ⊂ R and t ∈ [t0, t1], j, s ∈ S, λs(τ) a set of
continuous hazard functions of Eq. (2.3), F0,s(x, y) a set of continuous known
functions from Eq. (2.6) and {qsj} the stochastic transition matrix (1.3) of a
semi-Markov process. Then the system of integral equations (3.19) has a unique
continuous solution φs(x, t) for (x, t) ∈ Ω × [t0, t1], s ∈ S.

Proof. Set y = t− η in Eqs. (3.19) and (3.20), and define the integral opera-
tors Tj :

(Tjφj)(x, t) :=

∫ t

t0

φj
(
Φ−1
Aj

(η;x, t), η
)
ψj(t− η) dη + αj(x, t; t0), j ∈ S (3.23)

where

αj(x, t; t0) :=

∫ t0

−∞
F0,j

(
Φ−1
Aj

(t0;x, t), t0 − η
)
ψj(t− η)e

∫ t0−η
0 λj(τ) dτ dη
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is a known set of functions. We stress that the maps Φ−1
Aj

are supposed known
and to be part of the definition of the integral operators, that transform the
functions φj(x, t). By defining also the matrix operator Q that symbolically

includes the action of the stochastic matrix φs =
∑S
j=1 qsj(Tjφj), then the

Eq. (3.23) reads as: φ = Qφ. If Q acts as a contraction in the norm ‖ · ‖1,∞,
then the above equation has a unique solution.

We begin by evaluating the norm of the difference of two transformed func-
tion samples φ̄, φ̃:

‖Qφ̄−Qφ̃‖1,∞ =
∑
s

max
x,t

∣∣∣∣ S∑
j=1

qsj(Tj φ̄j − Tj φ̃j)
∣∣∣∣

≤
∑
s

max
x,t

S∑
j=1

qsj
∣∣(Tj φ̄j − Tj φ̃j)∣∣

≤
∑
s

max
x,t

S∑
j=1

qsj

∫ t

t0

∣∣φ̄j(ξ, η)− φ̃j(ξ, η)
∣∣
ξ=Φ−1

Aj
(x,t)

ψj(t− η) dη

where we have used qsj ≥ 0. We see that the continuous map Φ−1
Aj

(x, t) does

not affect the maximum of the difference from φ̄ and φ̃, since ξ ∈ Ω, so that:

‖Qφ̄−Qφ̃‖1,∞ ≤
∑
s

max
x,t

S∑
j=1

qsjMjd∞(φ̄j , φ̃j)(t− t0)

=

S∑
j=1

∑
s

qsjMjd∞(φ̄j , φ̃j)(t− t0) = (t− t0)

S∑
j=1

Mjd∞(φ̄j , φ̃j)

= (t− t0)Md1,∞(φ̄, φ̃)

where Mj =
∫ t
t0
ψj(t − η) dη ≤ 1, M =

∑S
j=1Mj . When the operator Q is

applied twice, we get:

∥∥Q2φ̄−Q2φ̃
∥∥

1,∞ ≤
∑
s

max
x,t

S∑
j=1

qsj

∫ t

t0

|Qφ̄−Qφ̃|ψj(t− η) dη

≤
∑
s

max
x,t

S∑
j=1

qsjMj

∫ t

t0

∣∣∣∣∑
k

qjk(Tkφ̄k − Tkφ̃k)

∣∣∣∣ dη
≤
∑
s

max
x,t

S∑
j=1

qsjMj

∑
k

qjk

∫ t

t0

|Tkφ̄k − Tkφ̃k| dη

≤
∑
s

max
x,t

S∑
j=1

qsjMj

∑
k

qjkMkd∞(φ̄k, φ̃k)

∫ t

t0

(η − t0) dη

=
∑
s

max
x,t

S∑
j=1

qsjMj

∑
k

qjkMkd∞(φ̄k, φ̃k)
(t− t0)2

2
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=

S∑
j=1

Mj

∑
k

qjkMkd∞(φ̄k, φ̃k)
(t− t0)2

2

≤ (t− t0)2

2
M2d1,∞(φ̄, φ̃).

When the operator Q is applied n-times, the following estimation for the norm
is obtained:∥∥Qnφ̄−Qnφ̃∥∥

1,∞

≤
∑
s

∑
k1

qsk1Mk1

∑
k2

qk1k2Mk2 . . .
∑
kn

qkn−1knMknd∞(φ̄kn , φ̃kn)
(t− t0)n

n!

and in matrix notation:∥∥(QM)nd∞
∥∥

1

(t− t0)n

n!
=
∥∥MnQnd∞∥∥1

(t− t0)n

n!

where M = diag(M1, . . . ,MS). This shows that when n is large enough, the
operator Qn is a contraction, and this prove the thesis. Moreover, we note that
‖MnQn‖1 ≤ 1, so that the semi-Markov process, does not affect the contraction
at all. ut

Normalization verify

In this paragraph we verify, not in the general case, that the marginal distribu-
tions obtained by solving the integral equation (3.19), with the transformations
(3.21) and (3.22), satisfy the total conservation of Eq. (2.8), between the initial
time t0 and t0 + ε. As an example, we set the initial condition that the particle
is known to stay at the position x0 with probability 1, with a memory state
concentrated to y = 0, that is:

F0,s(x, y, 0) = fsH(x− x0)δ(y),
∑
s

fs = 1. (3.24)

Let t− t0 = ε ≈ 0, from Eqs. (3.19) and (3.20), we get:

φs(x, t0 + ε) =

S∑
j=1

qsj
[
εφj(x, t0 + ε)ψj(0) + fjH(ξ − x0)λj(ε) + o

(
ε2
)]
,

where ξ = Φ−1
s (t0;x, t0 + ε). From Eq. (3.21)∫ ε

0

Fs(x, y, t) dy = εφs(x, t) + o
(
ε2
)
,

by substituting in the previous∫ ε

0

Fs(x, y, t) dy = ε

S∑
j=1

qsj
[
εφj(x, t)ψj(0) + fjH(ξ − x0)λj(ε) + o

(
ε2
)]

+ o
(
ε2
)
.
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From Eq. (3.22)∫ ∞
ε

Fs(x, y, t) dy = fsH(ξ − x0)
(
1− ελs(ξ) + o

(
ε2
))
.

By summing these last two equations and over all discrete states, we get:

S∑
j=1

∞∫
0

Fj(x, y, t0 + ε) =

S∑
j=1

fjH(ξ − x0) + ε2
S∑
j=1

φj(x, t0 + ε)ψj(0) + o
(
ε3
)

from what we see that if the solutions φj are regular enough for x → ∞
and ε → 0, the conservation of the total probability is verified, because of∑S
j=1 fj = 1.

4 A Practical Application Example

As an example of application, we set the deterministic initial condition (3.24),
with f1 = f2, hence the integral equation (3.19) becomes:

φs(x, t) =

S∑
j=1

qsj

( ∫ t

t0

φj
(
Φ−1
Aj

(η;x, t), η
)
ψj(t− η) dη

+ fjH
(
Φ−1
Aj

(t0;x, t)− x0

)
ψj(t− t0)

)
, (4.1)

that is of the following form:

φs(x, t) =

S∑
j=1

qsj

(∫ t

0

φj
(
gj(η;x, t), η

)
ψj(t− η) dη + αj(x, t)

)
, s ∈ S,

for (x, t) ∈ Ω × [0, T ].

Numerical scheme. This equation can be discretized as in [6, 4], and then
solved numerically. Briefly, let ΠM := {x1, . . . , xM} an uniform grid of size h

on the domain Ω, and Pj(ξ, η) =
∑l2
l=l1

Ll(ξ)φj(xl, η) the Lagrange based
interpolating polynomial approximation of the solutions φj . Therefore, the
semidiscrete equation of the previous equation, reads as:

φs,m(t) =

S∑
j=1

qsj

(
αj,m(t) +

∫ t

0

ψj(t− η)
∑
l

Ll
(
gj(η;xm, t)

)
φj,l(η) dη

)
,

s = 1, . . . , S, where αj,m(t) = αj(xm, t) and φs,m(t) ≈ φs(xm, t). Discretization
in time is performed on the uniform grid ΠN := {t0 = 0, t1, . . . , tN = T} of
mesh size τ on the interval [0, T ], by using a r-step quadrature formula:

φs,m,n =

S∑
j=1

qsj

(
αj,m,n + τ

n∑
k=0

wn,kψj(tn − tk)
∑
l

Ll
(
gj(tk;xm, tn)

)
φj,l,k

)
,
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for n ≥ r. By ordering all indexes of φs,m,n, that equation can be written in
the system of equation form:

ϕn = A+

n∑
k=0

Kjϕk,

for the unknown ϕn that includes also the states of the process. The normal-
ized kernel scheme [4] guarantees the asymptotic convergence of the numerical
method. After which the discrete distribution functions can be evaluated by
the discrete version of the points 7–11 of the Summary.

In the following example we use trapezoidal method for quadrature and
linear interpolation.

Filtered telegraph signal. We study the relaxation process

Ẋ(t) = −γsX +Ws, X(t0) = X0, s = 1, 2,

with W1 = W , W2 = −W , γ1,2 = γ. It is easy to see that the domain of the
process is Ω := [−W/γ,+W/γ]. The forward map solution is:

Φ∗s(t;x0, t0) = (x0 −Ws/γs) e
−γs(t−t0) +Ws/γs

and the backward is:

Φ∗−1
s (t0;x, t) = (x−Ws/γs) e

γs(t−t0) +Ws/γs.

From the forward map we see that X(t) ∈ Ω if the initial data is into the same
domain X0 ∈ Ω. Since the codomain must be equal to the domain, from the
backward maps according Eq. (3.18), we define:

g1,2(η;x, t) = min
(
W/γ,max

(
−W/γ,Φ∗−1

1,2 (η;x, t)
))
.

The semi-Markov process is set by the stochastic matrix q11 = q22 = 0, q12 =
q21 = 1, and by the switching time distributions ψ1,2(t) = ψ(t) specified from
the model example. For convenience we set t0 = 0, so that Eq. (4.1) reads as:

φ1(x, t) =

∫ t

0

φ2

(
g2(η;x, t), η

)
ψ2(t− η) dη + f2H

(
g2(0;x, t)− x0

)
ψ2(t),

φ2(x, t) =

∫ t

0

φ1

(
g1(η;x, t), η

)
ψ1(t− η) dη + f1H

(
g1(0;x, t)− x0

)
ψ1(t).

(4.2)

When the solution of this system of integral equation is found, then the
marginal probability functions are determined by Eq. (3.21):{

F1(x, y, t) = φ1

(
g1(t− y;x, t), t− y

)
e−

∫ y
0
λ(τ) dτ ,

F2(x, y, t) = φ2

(
g2(t− y;x, t), t− y

)
e−

∫ y
0
λ(τ) dτ ,

0 < y < t,

then that one regardless the memory of Eq. (2.7) Fs(x, t) =
∫ t

0
Fs(x, y, t) dy or

its density Ps(x, t) = ∂xFs(x, t) are found.
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Figure 1. Numerical solution of the integral formulation
for the McFadden interval distribution at quasi-equilibrium (solid line), and the exact

solution at equilibrium (dashed line).

We solve numerically Eq. (4.2) with McFadden settings [24], that is switch-
ing time distribution ψ(t) = 3e−t(1− e−t)2, with Ws = 1, γs = 1, Ω = [−1, 1].
Space mesh size is h ' 0.066, time mesh size is τ = 0.01. The calculated den-
sity distribution function P(x, t) = P1(x, t) + P2(x, t), at the time T = 7, is
plotted with solid line in Fig. 1. Dashed line shows the asymptotic distribution
limt→∞ P(x, t) = 3(7 + x2)/44.

5 Conclusions

In this paper we studied the modelling of a stochastic process that results
from the action of a semi-Markov process on a system of ordinary differential
equation. ODE’s are the basic mathematical tools for the description of de-
terministic physical systems based on the material point approximation. The
insertion of semi-Markov process is a modern and not yet fully explored way
to model randomness, also as alternative to Gaussian noise based modelling.
Potentially this model has huge practical applications in many fields of applied
and theoretical research. We stress that the concept of memory is used in ad-
vanced modelling, that finds the natural description with this kind of stochastic
processes and related equations. We provided a discussion about this modelling
and write the basic equation for the statistical analysis, the LME, in the form
of Volterra renewal integral equation. We shown that this form is a valid
alternative to the formulation in PDE differential form, and an existence and
uniqueness theorem for the solution was proved. A numerical test to a practical
application problem confirmed the validity of the new formulation.
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