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Abstract. In this paper, we use some Fourier analysis techniques to find an exact

solution to the Cauchy problem for the n-dimensional biwave equation in the upper
half-space R™ x [0, +00).

Keywords: biwave equation, Fourier transform, Cauchy problem.

AMS Subject Classification: 35G05; 35G10.

1 Introduction

The Cauchy initial value problem for the n-dimensional biwave equation con-
sists in finding a scalar function u € C*(R™ x [0, +00)) such that for (z,t) €
R™ x (0,400) then

6—2—2A 8—2—19% (z,t) = f(x,t), a®>>b*>0 (1.1)
oz “ o umt) = rint), e 7 :
together with the initial conditions
ou 0%u u
U(.’L‘,O)Zgb()(l'), E(‘Q%O):(bl(x% ﬁ($70) :¢2($)7 ﬁ(xao):¢3(w)a

(1.2)

for (z,t) € R™ x {0}.
The biwave equation has been studied in some models related to the math-
ematical theory of elasticity. Let us consider the mathematical formulation for
the displacement equation of a homogeneous isotropic elastic body. Remark
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that, the Newton’s second law leads to the Cauchy’s motion equation of an
elastic body, which takes the form

V.o +f=pu, (1.3)

where o is the Cauchy stress tensor field, u is the displacement vector field, f
is the vector field of body force per unit volume and p is the mass density.
The infinitesimal strain tensor field is given by the equation

[Vu+ (Vu)']. (1.4)

N =

E =
Moreover, the Hooke’s law for homogeneous isotropic bodies has the form
o = Mtrace(e)I + 2ue, (1.5)

where A, i > 0 are Lamé’s parameters and I is the second-order identity tensor.
Substituting the strain-displacement equation (1.4) and the Hooke’s equation
(1.5) into the equilibrium equation (1.3), we obtain the Navier’s elastodynamic
wave equation

(A+ p)Vdiv(u) + pAu +f = pir. (1.6)

This equation in the Cartesian coordinates has the form

0 - Ou; B 8%uy, B
()\-FM)M(;ax)-FMAuk‘ka—patz, k=1,...,n.

J

Let us denote a® = (A + 2u)/p, b> = 1u/p, then (1.6) can be rewritten as

_ 82 2 2 2 : f_
£:<8t2_b A)u—(a —b)lev(u)—;—O. (L.7)

It is easy to show that the equation (1.7) has a solution in the following form

u= <§:2 — aZA) w + (a® — b?)V div(w), (1.8)

where w is a solution to the biwave equation

0? 0? f

This formula is called as Cauchy—Kovalevski-Somigliana solution to the elasto-
dynamic wave equation. Indeed, substituting (1.8)—(1.9) to the left-hand side
of (1.7), we have

L= (g; — bQA) <(§; — a2A> w+ (a® — b*)V div(w))

— (a® = *)V ((g; — a2A> div(w) + (a® — b*)A div(w)) - E :
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Note that

(g; - a2A> div(w) + (a® — b*)Adiv(w) = (g; - bzA) div(w).

Therefore, we get
0 2 0 2 s o [0 2 .
L= <8t2_b A) ((‘91&2_@ A)w—i—(a —b )<8t2_b A)lev(w)

(- )V (‘92 _ b?A) div(w) — L =0
ot? p '

For more explanations about physical context, we refer the reader to [5,
8, 10]. Actually, there are not many mathematical papers related to biwave
equations because it gets more difficult when studying high-order PDEs. In
some recent researches, the symmetry analysis of biwave equations is consid-
ered and exact solutions are obtained by Fushchych, Roman and Zhdanov [3];
the existence and uniqueness of the solution to Cauchy initial value problem,
bounded valued problem are given by Korzyuk, Cheb and Konopelko [6, 7]; the
finite element methods for approximations of biwave equation are developed by
Feng and Neilan [1, 2]. In our present work, the main result is to show the ex-
act classical solution to the Cauchy initial value problem for the n-dimensional
biwave equation by using some techniques of Fourier analysis.

Returning to the Cauchy problem for the biwave equation (1.1), we suppose
that ¢g, ¢1, P2, ¢3, and f are elements in Schwartz space S(R™) of rapidly
decreasing functions on R™. Remark that, an indefinitely differentiable function
¢ is called rapidly decreasing when ¢ and all its derivatives are required to

satisfy that
o B

for every multi-index o« and 8. The Fourier transform of Schwartz function
¢ € S(R™) is defined by

FllE©) =) = / () da

1¢lla,s = sup
TER™

The convolution of two integrable functions ¢ and v is written as ¢ x . It is
defined as the integral of the product of the two functions after one is reversed
and shifted. As such, it is a particular kind of integral transform:

=)0 = [ 6@t

In the Euclidean space R", the spherical mean of an integrable function ¢
around a point z is the average of all values of that function on a sphere of
radius R centered at that point, i.e. it is defined by the formula

Me@)@) = s [ oo = [ ola+ Ry doly).

dB(x,R) naB(O,l)

where w,, is the surface area of the n-dimensional unit ball and o is the spherical
measure area.
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2 Main Results

The Cauchy problem for the homogeneous biwave equation in R™ x [0, 4+00)
that we will be studying in this section, reads as follows

2 2
<§t2 - a2A> @tg - b2Au> =0, a®>b>0, (2.1)

with the initial conditions

3u

S =6, 22)

t=0

= ¢2 (:17)7

t=0

u|t=0 = 9o (.T), ar

where ¢g, ¢1, ¢2, ¢3 are Schwartz functions.
The equation (2.1) can be rewritten as a fourth-order PDE, which has the
following form

Ot 02
ﬁ — (a2 + bz)@Au + a2b2A2U = 0 (23)

Taking Fourier transform to the both sides of the equation (2.3), we obtain

2
BE 1) + (a2 + )IEP ogi(E, 1)+ oWl i 1) = 0.

84
ot

This fourth ODE has the general solution, which takes the form
u (&, t) = Cqcos(al|t) + Cosin (al€|t) + Cs cos (bE]t) + Cysin (bE|t) ,

where parameters C7, Cs, C3, Cy are determined from the initial conditions:

_ ou _
u (& t)l—o = C1+ C3 =0 (£), “g’t) = aCyl¢| 4+ bCyl¢] = ¢ (€),
t=0
0% (€,0 ~
e I )
0" (€,0 ~
S| = —au —pair = G o).

Solving above system of equations, we easily get the image of solution wu(z,t)
via Fourier transform given by

BT — S —
(6.0 = - IR cos ale) - PSS s i)
a?[€60 (€) + 62 (€) @*[€P61 (€) + 65 (6)
+ (CL2 — b2) |§|2 COS (b|§|t) + (a2b — b3) |£‘3 S (b|£|t)7

Math. Model. Anal., 17(5):630-641, 2012.



634 V. Korzyuk, N.V. Vinh and N.T. Minh

or by the rewritten form

2~ 2

(€, 1) = = =500 () cos (alg]t) + ——560 (&) cos (bl¢]1)
b? — . sin (a|]t) a>  —~,  sin(b¢]t)

a@ O g T m» © g
@@)memwmmwuq

el T R R
B2 (€) [cos(blelt)  cos (ale]t)
+ﬁ_@[ FEE } 24

In the next sequence, we will find the inverse formula of (2.4) and obtain an
exact solution to the equation (2.1).

Theorem 1. The Cauchy problem for the homogeneous biwave equation in R x
[0, +00) has the following solution

1 r+at . z+bt
u(z,t) = 2ab(—b2){ bg/ ¢1(y )dera“/%bt ¢1(y) dy

xz+at Yy
— ab/ / ¢o(u) dudy + ab / oo (u) du dy
r—at x+bt 0

z+at Yy T z+bt y T
+b / //(;53 Ydwdrdy — a / //¢3 ) dw dT dy (2.5)
z—at 0 z—bt 0

—ab®¢g (z + at) — ab®¢o (v — at) + a®bdo (v + bt) + a*bo (z — bt)|.

Proof. We have that

1al&|t —ial&|t 1al&|t —ial&|t
cos alélt) = S i afegy = S
sin (alé|t) _ etalélt _ g—ialg]t 1 /“t LlEl0 gg
q 2l .
cos (alélt)  ellslt 4 e—ialélt
R

1 at Yy 1 at y ) 1
= _7/ / el du dy — f/ / e~ du, dy + L
2Jo Jo €l

at 'y T

: ialg|t _ 7iaft

s (a|€|t) = € ‘ ‘ € ‘ ‘ /// 7“5‘“‘ dudey+ |§‘2
7at 0

9K 2i¢[°

Moreover,

~ +oo '
§(z—at) = / e MEl2§ (1 — at) da = e"@IEl,
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where ¢ (z) is the Dirac delta function. Hence, by the property of Dirac’s delta
function, we note that

gtalelt 4 g—ialglt\ x + at) * g (x x —at) * g (x
( +2 )%(5)_7:[(5( + at) ¢())]42r-7:[(5( t) ¢())]7

a(ﬁ)(;/at i“’d@) / F[0(x+40)* 1 ()] db
sl [ v L [eoa)

at

:_;<//y]-'[5(x+u)*¢2 dudy+/
00 0

0/}" x—u) >«<¢>2()]aludy>7

?3 (€) 7/yjei|€|“dud7dy> = 7i/f[5(x+u)*¢3 (2)] dudr dy.
at 0 O —at 0 O

Substituting the above identities into the formula (2.4), we obtain that

- _ b F[0(x+at)* o (z)] + F 8 (¢ — at) * ¢ (2)]
u(gvt)*_<a2_b2) ° 92 >

a?  F[6(x+bt)x o (x)] + F[§(x—bt)* ¢pg ()]
(a2 — b?) 2

b2 1 [
- a2 /_ t]—'[& (z +60) * ¢y ()] dO
a? 1 [

e ( // FI5 o+ ) + 62 ()] du dy
_,/ /F[é(w—u)*gbg(x)]dudy)

v (5 [ [ o ws s wia
_2/0“/0 f[é(x—u)*gbg(:z:)]dudy)
+3_1ab21/Z/y/Tm(Hu)*¢3<x)]dud7dy
_aQb—b3 / //}' (& + ) * 63 (2)] dudr dy.

Consequently, we get the inverse formula of @ given by

w(t) = b2 (5 (z+at)* ¢g () + (6 (x — at) * ¢ (7))
=2 5

_|_
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a®  (0(z+bt)* o (x)) + (6 (x —bt) * do (7))
(a? — b2) 2

2 at
- ﬁ%/ (6 (z +0) * ¢y (x))db

—at

+

a2

bt
g G0 o @)

_az_b2( // (¢ + ) * 62 (v)) dudy
= /0<6<m—u>*¢2<x>>dudy)
+M(—;/Obt/oy(é(x—ku)*qﬁg(x))dudy
—i/obt/oyw(x—u)mg(x)) dudy)

N ale/tt/y/T(é(”“)*‘ﬁ?’(x)) du dr dy
_a2b_b3 /// w) * dg (x)) dudr dy.

The last formula is equivalent to the one given at (2.5), so the theorem is
proved. O

For the generalized case, we will use the following result:

—3 and 0 < k < m then

R
. 1 /1 0\
islél P2 _ m—k - Y —uf
/e (R? —s*)" Fds = 57 (R8R> (W = / do(x )

“R dB(0,R)

Lemma 1. For an odd number n > 3, m = n

For the proof, we refer the reader to Torchinsky’s paper in [12]. Note that,
in the case k = m, it follows that

sin(al]t) 1 /at islé|
— e ds
‘5' 2 —at

1 1 0\™ 1 ,
— - v —ix.£
2m+lm) (aQt 8t> <wn_1at / € da(x)). (2:6)

8B(0,at)

Differentiating with respect to ¢, then

1 a9 /10\"( 1 o
COS(a|£|t):2m+1m!aﬁt<a2tat> <wn_1at / e gda(x)) (2.7)

8B(0,at)
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On the other hand, we have

cos(blélt)  cos(alglt) _ [ sin(ske]) Jrlel g g
€2 €2 L G At/ T

at
1 10\™ 1 ;
= - | = —ix.£
/2m+1m! <s 83) (wn—18 / e do(x)) ds. (2.8)

bt 9B(0,s)

Integrating the above formula with respect to t, it implies that

1sin(blé[t) 1sin(a \§|t / / / €]
- - = el dr ds dv
b ¢ a [¢f b Jos

//2m+1ml< as>m (wnlls / e_iz'gda(x))dsdu. (2.9)

0B(0,s)

Moreover, for each function § € S(R™), we also have

sin(alé|t) B 1 1 o\" 1
/nm“@@—WHw<2mJ T

1 0
—ix.£
/ / 0(8) d¢ do(z) = Wlm,<aztat> W — 1at /9 ot

0B(0,at) R™ B(0,at)

Therefore, we conclude that

st (i) (s [ aeo) 0=

8B(0,at)

By the Fourier inversion and convolution formulas, we obtain the identity

1 - Sln( ‘5“) 1543:
T / O e e

1 1 0\™ 1
= gmiy) (cﬂt@t) (wn_lat / $1(y) dU(?/))

OB(z,at)

W (1‘9>m ((ah)" 2 May(61) ()

- 2mt+lmlw, 1 \ a2t Ot

o () (@ Ma(o)@).

Applying the same way for the expressions (2.7)—(2.9) and substituting the
obtained identities into the formula (2.4), we have found an exact solution to
the n-dimensional biwave equation, where n > 3 is an odd number:

Math. Model. Anal., 17(5):630-641, 2012.
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Theorem 2. The Cauchy initial value problem for the homogeneous n-dimen-
sional biwave equation, where n > 3 is an odd number, has the following solu-
tion

a9 I
ulat) = (n— 2)!!1(a2 —b?) {bf)t <bit8t) (60" Mo (o))

2o 19\ . (1 9\7
T Lo (a2t@t> ((at) 2Mat(¢0)($)>+b(b2tat)

n—3

< (00 Mo @) - () (@0 Maalon)0)

a \a*t ot

- : (15) ()™M, (2)(x) ds

t

i /ot /b;w <i§9> - ((5)" "2 M(¢3)(x)) ds du} .

Now we consider the case when n is an even number. The Hadamard’s
method of descent (see e.g. [4]) is useful to connect with the case in the odd
dimensional space R™*!. For fixed T > 0, we choose a Schwartz function
n € S(R), such that n(zy4+1) =1 for all |z, 1] < nT. Let us denote

@(.ﬁl,ﬂ?z, e 7mn7$n+1) = (bi(xlvaa e axn)n(xn+1)7 1= Oa 17273'

It is easy to see that ¢; € S(R™™!). For |z,41] < T, t < T, the solution
u(x1, T, ..., Tny1,t) to the Cauchy problem for (n + 1)-dimensional biwave
equation with initial valued functions ¢;, i = 0, 1,2, 3 does not depend on z,, ;1.
In particular,

u(xy, o, ..., Ty, t) =a(x1, T2, ..., Tp,0,t)

is the solution to the n-dimensional wave equation for all |t| < T. Since T
is arbitrary, so u is the solution to the Cauchy problem in even dimensional
space R".

Lemma 2. Given a function f : R — R, which does not depend on the last

variable, i.e. f(x1,22,...,Tnt1) = g(x1,22,...,2y), then
2 g(xz +tz)
M z,0) = —— dz.
() (e.0) = = —
B, (0,1)

Proof. Observe that, for £ = (z,0) and ¥ = (¥, Yn+1), we have

M (f)(F) = —

wnJrl

/ 1@ +17) do (7).

6B”+1 (0,1)

We use the spherical coordinates given by

Y1 = Sin g sin g - - - sin @, o sin @, 1 sin @y,
Yo = SIN 7 sin g - - - SN Y, 2 SIN Y, 1 COS Yy,
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Y3 = sin 1 sin @9 - - - SN Y, —2 COS Yy —1 COS Py,

Yn = SIN Q] COS P2, Yny1 = COS Y1,
where 0 < p, <7, k=1,2,...,n—1and 0 < ¢, < 27. The Jacobian of this
transformation is calculated as

con—1 son—2 .
J = sin (1 sin oSN, _1.

1 T T 27
/ / / glx +ty)Jdpidps .. .dp,
Wn+1 Jo o Jo

Let us give r = sin ¢, and

Therefore

_/\/lt<f)(3;‘,0) =

Z1 = TrsinEsy - - - Sin @y, 1 SN Yy,
Zo = TSN Qs - - - SN Yy _1 COS Py,

Zp, = T COS Q3.

The Jacobian of above transformation is calculated by the formula

1
/
J = n—3

r=1sin™"2 o sin™ 3 g - - - sin@n_1

Finally, we obtain that

92 s s 27 1
. xr+tz
W7L+1 / / / / g( )
2m
/ / / / (x +tz) Jdrdg@...dgpn
Wnt1 \z|2
27 1
/ / / / (z +t2) JJ’dzldzg...dzn
Wn+1 ‘ |2

t
_ / gz tty)
Wn+1 JB,(0,1) /1= [2]?

So the lemma is proved. 0O

Mi(f)(,0) Jdrdcpg...dgpn

We use the notation Mvt(f)(z) = %M an(O,l) \f/(%dz for a modified

spherical mean of f (see e.g. [9, 11]). Applying the result of Lemma 2, we obtain
the formula of the solution to the biwave equation in the even dimensional space
R™:

Theorem 3. The Cauchy initial value problem for the homogeneous n-dimen-
sional biwave equation, where n > 2 is an even number, has the following
solution

unt) = s 1)!!1(a2 ) [13 (bitgt> N ((bt)" " My (o) ()
29 o\ T
() (@

Math. Model. Anal., 17(5):630-641, 2012.
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()T (o Fone) - () N

a \ a?tot

(e Tt + [ (A 2) (0 ) @)

//by (883) ((S)n_lﬂs(éb?»)(x))dsdu}

By a similar idea with the Duhamel principle for wave equations, the solu-

tion of the Cauchy problem for the nonhomogeneous biwave equation will be
given at the next theorem

Theorem 4. The solution of the equation (1.1)=(1.2) takes the form u = u+wv,
where @ is the solution of the equation (2.1)—(2.2) and

¢
v(x,t):/ w (z,t, ) dr,
0

where w (z,t,7) is the solution of the homogeneous biwave equation

2
(2-0) (55 0s) -0 o

with the initial conditions

9w
ot |,

0%w
b0,

o
oot

w|t:7' = 07

= f(x,7).

t=r1

Proof. We start with the observation that
0t

0?
w — ( —+ b2) ﬁA’U + a2b2A2’U = f ($,t)

t0w oy O 272 A2
—I—/O (é)t‘*_( +b)ﬁAw+abA )dT:f(x,t).
Then, the above identity follows that

ot 0?
a—tz — (a®* 4+ b%) WAU +a®V?* Ay = f(x,1).

Moreover,

u|t:0 = mt:o + U‘t:O = ¢o (x) +0 = ¢g (),

ou ou v
atzoi575:04>at:O742)1(17)4>()7q251(x)7
0%u 0%u 520
ar|,_, o2 t:o+ a2 |,_, =¢2 () +0=¢2 (),
u 03u 93w
ot |,y O, O

So the theorem is proved. O
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3 Example

Let us give an example demonstrating Theorem 1. Consider the equation

0? 0? 0? 192
<o) (Lot 2o (3.1)
ot2  0x? ot 4 0x2
with the initial conditions
ou . 0%y 93
ul,_y =0, A =sinz, =5 i =cosz, 3 s =0. (3.2)

The solution of the equation (3.1)—(3.2) is given by the formula

1 t t
u(z,t) = 3 (4COS (2> cosx —4costcosx — (—SSin (2> + sint) sinx) .
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