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Abstract. In this article we introduce the notion of ideal acceleration convergence
of sequences of fuzzy real numbers. We have proved a decomposition theorem for ideal
acceleration convergence of sequences as well as for subsequence transformations and
studied different types of acceleration convergence of fuzzy real valued sequence.
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1 Introduction

Faster convergence of sequences particularly the acceleration of convergence
of sequence of partial sums of series via linear and nonlinear transformations
are widely used in finding solutions of mathematical as well as different sci-
entific and engineering problems. The problem of acceleration convergence of-
ten occurs in numerical analysis. To accelerate the convergence, the standard
interpolation and extrapolation methods of numerical mathematics are quite
helpful. It is useful to study about the acceleration of convergence methods,
which transform a slowly converging sequence into a new sequence, converging
to the same limit faster than the original sequence. Here we are interested in
studying some properties for sequences of fuzzy real numbers in the process
of acceleration convergence. The speed of convergence of sequences is of the
central importance in the theory of sequence transformation.

A sequence transformation T is a function T : (xk) → (x∗k) which maps a
slowly convergent sequence to another sequence with better numerical proper-
ties. If limk→∞ xk = x and limk→∞ x∗k = x∗ with rn and r∗n as the truncated
errors. Then we have xk = x + rk, x∗k = x∗ + r∗k. We say that the sequence
(xk) converge more rapidly than the sequence (x∗k) if

lim
k→∞

x∗k − x∗

xk − x
= lim
k→∞

r∗k
rk

= 0.
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Classically the convergence rate of a sequence is defined as follows.
Let (xk) be a real valued sequence with limit x. Then the convergence rate

of (xk) is characterized by ρ = limk→∞
xk+1−xk

xk−x , which closely resembles the

ratio test in the theory of infinite series. If 0 < |ρ| < 1, then (xk) is said
to be linearly convergent. If ρ = 1, then (xk) is said to be logarithmically
convergent, if ρ = 0 then (xk) is said to converge hyper-linearly and obviously
|ρ| > 1 stands for divergence of the sequence.

Typical examples of linearly convergent sequences are the partial sums of a
geometric series (power series with a nonzero, but finite radius of convergence)

sn(z) =

∞∑
k=0

zk =
1− zn+1

1− z
, 0 < |z| < 1.

In contrast, the partial sums
∑n
ν=0(ν + 1)−z of the Dirichlet series for ζ(z)

converge logarithmically.
Let x = (xk) and y = (yk) be two sequences with limits σ and λ respectively.

Then the sequence x is said to converge more rapidly than the sequence y, if
limk→∞

xk−σ
yk−λ = 0, provided yk − λ 6= 0 for all k ∈ N and it is denoted by

(xk) < (yk). If the sequences converge to the same limit λ, then (xk) < (yk), if
limk→∞

xk−λ
yk−λ = 0. If the knowledge of the limit λ is not known, sometimes it

would be desirable to write it as

lim
k→∞

xk+1 − xk
yk+1 − yk

= lim
k→∞

∆xk
∆yk

= 0.

Let x = (xn) and y = (yn) be two sequences with limits σ and λ respectively.
Then the sequence x is said to be converge weakly faster than the sequence y
if there exists a constant K such that |xn − σ| ≤ K|yn − λ|, for all n.

The sequence transformation T : x→ y is said to

(a) accelerate the convergence of the sequence x if y converges faster than x,

(b) weakly accelerate the convergence of the sequence x if y converges weakly
faster than x.

At the initial stage, works on acceleration convergence was done by Smith
and Ford [14], Keagy and Ford [11], Salzer [13], Dawson [9], Brezinski, Delahaye
and Gesmain-Borne [7], Brezinski [6], Tripathy and Sen [27], Tripathy and Ma-
hanta [24] and many others. In this article we have studied the I-acceleration
convergence of sequences of fuzzy real numbers.

Different classes of sequence of fuzzy numbers have been introduced and
their different properties have been investigated by Altinok, Colak and Et. [4],
Altinok and Mursaleen [5], Altin, Mursaleen and Altinok [3], Colak, Altin and
Mursaleen [8], Altin, Et., Basarir [1], Altin, Et. and Colak [2], Tripathy and
Baruah [16, 17], Tripathy and Borgohain [15],Tripathy and Dutta [18, 19],
Tripathy and Sarma [25, 26] and many others.

A fuzzy real number X is a fuzzy set on R i.e. a mapping X : R → I(=
[0, 1]), associating each real number t, with its grade of membership X(t).
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The α-level set of a fuzzy real number X is denoted by [X]α, 0 < α ≤ 1,
where [X]α = {t ∈ R : X(t) ≥ α}. The 0-level set is the closure of strong 0-cut
i.e. cl({t ∈ R : X(t) > 0}).

A fuzzy real number X is said to be upper-semi-continuous if for each
ε > 0, X−1([0, a + ε)), for all a ∈ I is open in the usual topology of R.
If there exists t ∈ R such that X(t) = 1, then the fuzzy real number X
is called normal. A fuzzy real number X is said to be convex, if X(t) ≥
X(s) ∧X(r) = min(X(s), X(r)), where s < t < r. The class of all upper semi-
continuous, normal and convex fuzzy real numbers is denoted by R(I).The set
of real numbers R can be embedded in R(I), since each r ∈ R can be regarded
as a fuzzy number defined by

r̄(t) =

{
1, for t = r,

0 otherwise.

The additive identity and multiplicative identity of R(I) are denoted by 0̄ and 1̄
respectively. The set EF of sequence of fuzzy real numbers is closed under the
addition and scalar multiplication defined as follows:

For (Xk), (Yk) ∈ EF , r ∈ R

(Xk) + (Yk) = (Xk + Yk) ∈ EF , r(Xk) = (rXk) ∈ EF ,

where

rXk(t) =

{
Xk(r−1t) if r 6= 0,

0̄ if r = 0.

Let X,Y ∈ R(I) and α-level set be X = [Xα
1 , X

α
2 ] and Y = [Y α1 , Y

α
2 ], α ∈ [0, 1].

Some arithmetic operations on R(I) × R(I) in terms of α-level sets are
defined as follows:

[X + Y ]α =
[
Xα

1 + Y α1 , X
α
2 + Y α2

]
, [X − Y ]α =

[
Xα

1 − Y α2 , Xα
2 − Y α1

]
,

[kX]α =

{
[kXα

1 , kX
α
2 ] if k ≥ 0,

[kXα
2 , kX

α
1 ] otherwise.

[X ⊗ Y ]α =
[

min
i,j∈{1,2}

aαi b
α
j , max
i,j∈{1,2}

aαi b
α
j

]
,
[
X−1

]α
=
[(
Xα

2

)−1
,
(
Xα

1

)−1]
Consider the metric d̄ : R(I)×R(I)→ R defined by

d̄(X,Y ) = sup
0≤α<1

{
max

(∣∣Xα
1 − Y α1

∣∣, ∣∣Xα
2 − Y α2

∣∣)},
where X = [Xα

1 , X
α
2 ] and Y = [Y α1 , Y

α
2 ].

Clearly R(I) is complete with respect to d̄.

2 Definitions and Background

The notion of I-convergence was studied by Kostyrko, Macaj and Salat [12].
Later on the notion was further investigated from different aspects and linked
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with summability theory by Demrici [10], Tripathy and Hazarika [20, 21, 22, 23]
and many others. If X is a non-empty set, then a non-void class I ⊆ 2X is
called an ideal if I is additive (i.e. A,B ∈ I ⇒ A ∪ B ∈ I) and hereditary
(i.e. A ∈ I and B ⊆ A ⇒ B ∈ I). An ideal I ⊆ 2X is said to be non-trivial if
I 6= 2X . A non empty family of sets = ⊆ 2X is a filter on X if ∅ /∈ = and for
each A,B ∈ =, A ∩B and A ∈ =, B ⊃ A ⇒ B ∈ =.

A sequence (Xn) of fuzzy real numbers is said to be I-convergent to a fuzzy
real number L if for every ε > 0, {n ∈ N0 : d̄(Xn, L) ≥ ε} ∈ I. We write it as,
I-limXn = L. A subset E of N is said to have asymptotic density δ(E) if

δ(E) = lim
n→∞

1

n

n∑
k=1

χE(k)

exists, where χE is the characteristic function of E. Clearly all finite subsets
of N have zero asymptotic density and δ(Ec) = δ(N\E) = 1− δ(E).

A sequence (xk) is said to be statistically convergent to L if for every ε > 0,

δ(k ∈ N : |xk − L| ≥ ε) = 0. We write st-limxk = L or xk
st→ L.

A subset E of N is said to have logarithmic density d(E) if d(E) =
limn→∞

1
sn

∑n
k=1 χE(k)/k exists, where sn =

∑n
k=1 1/k, for all n ∈ N . Clearly

all finite subsets of N have zero logarithmic density and d(Ec) = d(N\E) =
1−d(E). Since

∑n
k=1 1/k = log n+γ+O(1/n), where γ is the Euler constant,

if d(E) exists, then it is equal to limn→∞
1

logn

∑n
k=1 χE(k)/k.

Let T = (tnk) be a regular non-negative matrix. Then for E ⊂ N , if
dT (E) = limn→∞

∑∞
k=1 tnkχE(k) exists, called the T -density of E. From the

regularity of T it follows that limn→∞
∑∞
k=1 tnk = 1 and from this and non-

negativity of T it follows that dT (E) ∈ [0, 1]. Clearly the asymptotic density
and logarithmic density can be obtained as the particular cases of T -density.
If we consider tnk = 1/n, for k ≤ n and tnk = 0 otherwise, then dT (E) = δ(E).
If we consider tnk = 1/ksn, for k ≤ n and tnk = 0 otherwise, then one will get
dT (E) = d(E).

The uniform density of a subset E of N is defined as follows: For integers
t ≥ 0 and s ≥ 1, let E(t + 1, s + 1) = Card{n ∈ E : t + 1 ≤ n ≤ t + s}. Let
βs = lim-inft→∞E(t + 1, t + s) and βs = lim-supt→∞E(t + 1, t + s). Then
u(E) = lims→∞ βs/s and u(E) = lims→∞ βs/s exist. If u(E) = u(E), then we
say that the uniform density of E exists and u(E) = u(E) = u(E).

For a fuzzy real valued sequence X = (Xk) consider the sets AFX and BFX
defined by AFX = {λ ∈ R(I) : {k ∈ N : Xk > λ} /∈ I} and BFX = {µ ∈
R(I) : {k ∈ N : Xk < µ} /∈ I}. For a sequence X = (Xk) of fuzzy real numbers,
the I-limit-superior and I-limit-inferior are defined as follows:

I-lim-supX =

{
supAX for AX 6= ∅,
−∞̄ if AX = ∅

and

I-lim-inf X =

{
supBX for BX 6= ∅,
∞̄ if BX = ∅.
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For I = Iδ and I = Id it denotes the cases of statistical and logarithmic
limit superior and limit inferior respectively.

We introduced the following definitions for fuzzy real-valued sequences.

Definition 1. The sequence (Xk) converges to L, faster than the sequence

(Yk) converges to M , written as (Xk) < (Yk) if, limk→∞
d̄(Xk,L)

d̄(Yk,M)
= 0 provided

d̄(Yk,M) 6= 0 for all k ∈ N .

Definition 2. Let I-limXk = L and I-limYk = M . Then the sequence

(Xk) converge I-faster than the sequence (Yk) written as (Xk)
I
< (Yk) if

I-limk→∞
d̄(Xk,L)

d̄(Yk,M)
= 0.

Definition 3. Let I-limXk = L and I-limYk = M . The sequence (Xk) con-
verges to L at the same rate as the sequence (Yk) converges to M , written as

(Xk)
I
≈ (Yk) if

0 < I-lim-inf
d̄(Xk, L)

d̄(Yk,M)
≤ I-lim-sup

d̄(Xk, L)

d̄(Yk,M)
<∞.

Definition 4. For the sequences (Xk) and (Yk), Xk
I
= Yk for almost all k

related to I (in short a.a.k.r.I), if (n ∈ N : Xk 6= Yk) ∈ I.

Let A = (ank) be an infinite matrix. For a sequence X = (Xk), the A
transform of X is defined as AX = (AnX), where AnX =

∑∞
k=1 ankXk, for all

n ∈ N.
The matrix A = (ank) is said to accelerates the convergence of the se-

quence X, if AX
I
< X. The acceleration field of A is given by {X : AX

I
< X}.

A subsequence (Xk(i)) of X can be represented as a regular matrix trans-
formation A times X with ai,n(i) = 1 and apq = 0 otherwise. It is clear that a
subsequence can never converge slower than the original sequence. Some subse-
quences converge at the same rate and some converge faster than the sequence,

but in every case limi
d̄(Xk(i),0̄)

d̄(Xi,0̄)
< 1.

Throughout (cI0)F , cIF and (mI
0)F will represent I-null, I-convergent and

bounded I-null sequences of fuzzy real numbers respectively, (S0)I and (SI0 )F
denote subsets of (cI0)F and (mI

0)F respectively with non zero terms.

3 Main Results

Theorem 1. Let (Xk), (Yk) ∈ (SI0 )F , then the following are equivalent.

(i) (Xk)
I
< (Yk).

(ii) There exists ´(Xk), ´(Yk) ∈ (S0)F such that Xk
I
= X́k for a.a.k.r.I, Yk

I
= Ýk

for a.a.k.r.I and ´(Xk) < ´(Yk).

(iii) There exists a subsets K = {ki, i ∈ N} of N such that K ∈ G and
(Xk) < (Yk) on K.

Math. Model. Anal., 17(4):549–557, 2012.
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Proof. (i) ⇒ (ii): Let (Xk), (Yk) ∈ (SI0 )F then there exist A,B ∈ = such that

limkXk = 0̄ over A and limk Yk = 0̄ over B. Let (Xk)
I
< (Yk) then there

exist C ⊆ = such that limk
d̄(Xk,0̄)

d̄(Yk,0̄)
= 0 over C. Take D = A ∩ B ∩ C, clearly

D ⊆ =. Consider the subsequences ´(Xk), ´(Yk) ∈ (S0)F defined over D such

that Xk
I
= X́k for a.a.k.r.I and Yk

I
= Ýk for a.a.k.r.I Clearly limk

d̄(X́k,0̄)

d̄(Ýk,0̄)
= 0,

which imply ´(Xk) < ´(Yk).

(ii) ⇒ (iii): Let ´(Xk), ´(Yk) ∈ (S0)F , be such that Xk
I
= X́k for a.a.k.r.I

over E ∈ = and Yk = Ýk for a.a.k.r.I over H ∈ = with ´(Xk) < ´(Yk). Consider

K = E ∩H and K = {ki : i ∈ N}, then K ∈ =. Clearly Xki
I
= X́ki ∈ (S0)F ,

Yki
I
= Ýk ∈ (S0)F and

d̄(Xki
,0̄)

d̄(Yki
,0̄)

=
d̄(X́ki

,0̄)

d̄( ´Yki
,0̄)

= 0 as i→∞. Thus ´(Xki) <
´(Yki).

(iii) ⇒ (i): For K = {ki, i ∈ N} of N,K ⊆ = and ´(Xki) <
´(Yki). This

imply
d̄(X́ki

,0̄)

d̄( ´Yki
,0̄)

= 0 as i→∞. Therefore I-limk→∞
d̄(Xk,0̄)

d̄(Yk,0̄)
= 0, over K. Hence

(Xk)
I
< (Yk). ut

Theorem 2. Let (Xk) and (Yk) be sequences of fuzzy real numbers such that

(Xk)
I
< (Yk) and (Yk)

I
≈ (Zk). Then (Xk)

I
< (Zk).

Proof. Consider the fuzzy real valued sequences (Xk), (Yk) and (Zk).

Let (Xk)
I
< (Yk) and (Yk)

I
≈ (Zk). We get I-lim d̄(Xk,0̄)

d̄(Yk,0̄)
= 0 and 0 <

I-lim-inf d̄(Xk,0̄)

d̄(Yk,0̄)
< I-lim-sup d̄(Xk,0̄)

d̄(Yk,0̄)
<∞. Now we can write(

I- lim
k→∞

d̄(Xk, 0̄)

d̄(Yk, 0̄)

)(
I- lim
k→∞

d̄(Yk, 0̄)

d̄(Zk, 0̄)

)
= 0

⇒ I-

(
lim
k→∞

d̄(Xk, 0̄)

d̄(Yk, 0̄)
· d̄(Yk, 0̄)

d̄(Zk, 0̄)

)
= 0 ⇒ I-

(
lim
k→∞

d̄(Xk, 0̄)

d̄(Zk, 0̄)

)
= 0.

This implies that (Xk)
I
< (Zk). ut

Theorem 3. Let (Xk), (Yk) ∈ (SI0 )F be such that (Xk)
I
< (Yk). Then there

exist a sequence (Zk) ∈ (SI0 )F such that (Xk)
I
< (Zk)

I
< (Yk).

Proof. Consider the sequences (Xk), (Yk) and (Zk) taken from (SI0 )F such

that (Xk)
I
< (Yk) and define (Zk) as Zk = (Xk)2/3 · (Yk)1/3. It is clear that

(Zk) ∈ (SI0 )F . We observe that

d̄(Xk, 0̄)

d̄(Zk, 0̄)
=

d̄(Xk, 0̄)

(d̄(Xk, 0̄))2/3 · (d̄(Yk, 0̄))1/3
=

(
d̄(Xk, 0̄)

d̄(Yk, 0̄)

)1/3

and
d̄(Zk, 0̄)

d̄(Yk, 0̄)
=

(d̄(Xk, 0̄))2/3 · (d̄(Yk, 0̄))1/3

d̄(Yk, 0̄)
=

(
d̄(Xk, 0̄)

d̄(Yk, 0̄)

)2/3

.
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Therefore it follows that I-limk→∞
d̄(Xk,0̄)

d̄(Yk,0̄)
= 0 and I-limk→∞

d̄(Zk,0̄)

d̄(Yk,0̄)
= 0. Thus

we conclude that (Xk)
I
< (Zk)

I
< (Yk). ut

Theorem 4. If A is a subsequence transformation that accelerates (Xk) with

respect to I and (Yk) is a sequence in (SI0 )F such that (Xk)
I
= (Yk). Then A

accelerates (Yk).

Proof. Let (Xk) ∈ (SI0 )F then there exists E ⊂ N with E ∈ = such that
limkXk = 0̄ over E. Consider (Xk(i)) ∈ (SI0 )F , then there exists a B ⊂ N with
B ∈ = such that limkXk(i) = 0̄ over B. Since A accelerate (Xk) with respect

to I, so it imply I-lim
d̄(Xk(i),0̄)

d̄(Xi,0̄)
= 0. Therefore there exists a subset D of N

with D ∈ = such that limi
d̄(Xk(i),0̄)

d̄(Xi,0̄)
= 0 over D. Consider (Yk) ∈ (SI0 )F such

that (Xk)
I
= (Yk). We can write

d̄(Yk(i), 0̄)

d̄(Yi, 0̄)
=
d̄(Yk(i), 0̄)

d̄(Xk(i), 0̄)
· d̄(Xi, 0̄)

d̄(Yi, 0̄)
·
d̄(Xk(i), 0̄)

d̄(Xi, 0̄)
.

Clearly I-lim
d̄(Yk(i),0̄)

d̄(Yi,0̄)
= 0. This completes the proof. ut

Theorem 5. If A is a subsequence transformation that accelerates (Xk) ∈
(SI0 )F such that AX

I
< X, then there exist a sequence (Yk) ∈ (SI0 )F such

that (Xk)
I
< (Yk) and A accelerates (Yk).

Proof. Easy, in view of the proof of Theorem 4, so it is omitted. ut

Theorem 6. Let (Xk) ∈ (SI0 )F and A be a subsequence transformation. Then
the following are equivalent.

(i) A accelerate (Xk) with respect to I.

(ii) There exist a subsets D = {ki; i ∈ N} of N such that D ∈ = and A
accelerates (Xnk

).

Proof. (i) ⇒ (ii): Let (Xk) ∈ (SI0 )F , then there exist a subset B of N with
B ∈ = such that limkXk = 0̄, over B. Since A accelerate (Xk) with respect
to I, then (Xnk

) ∈ (SI0 )F so that there exists a subset C of N with C ∈ = such

that limkXnk
= 0̄ and I-lim

d̄(Xnk
,0̄)

d̄(Xk,0̄)
= 0. Let D = B ∩C, then clearly D ∈ =.

Since D ⊂ N , we can take D = {ki; i ∈ N}.
(ii) ⇒ (i): The proof follows directly from the definition. ut
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