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Abstract. The aim of the present paper is to describe the method that is capable
of adjusting the parameters of a dynamical system so that the trajectories gain cer-
tain specified properties. Three problems are considered: (i) learning fixed points,
(ii) learning to periodic trajectories, (iii) restrictions on the trajectories. An error
function, which measures the discrepancy between the actual and desired trajectories
is introduced. Numerical results of several examples, which illustrate the efficiency of
the method, are presented.
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1 Introduction

A goal of dynamical systems theory is to modify the system so that its trajec-
tories get certain properties. There are different possibilities for solving this
problem. For instance, systems can be regularized by a special-purpose con-
troller. The solution was proposed in [13] by Ott et al. for controlling chaos
and has been developed further in numerous papers. A detailed analysis of the
method is beyond the scope of this work.

Another approach to system modification is to adjust the parameters of the
system minimizing the error function, which measures the discrepancy between
the actual and desired trajectories. In most papers, this is realized using the
gradient descent method. For instance, in [2] by Baldi, the parameter adaption
method was applied for learning fixed points. Paper [19] by Toomarian and
Barhen is dedicated to trajectory learning (two types of trajectories, a circle and
figure eight are discussed). Zeng and Singh [20] controlled chaos of the Lorenz
system by adapting its parameters. Oysal [14] solved the problem with the
aid of dynamic wavelet network. Neural networks were also applied in [18] by
Tomasiello for investigating the Duffing equation; the amplitude and frequency
of the forcing term were adjusted with the purpose to avoid chaotic behaviour of
the system. A novel approach was described by Li et al. in [9] where parameter
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identification was accomplished by analogy with a chaotic ant swarm. Different
methods for adaptive parameter estimation based on the synchronization of
coupled chaotic systems were proposed in [10, 11, 17]. The problems discussed
in this paper also could be solved by the optimal control theory, but generally
the course of solution is more complicated. This approach is applied in [6].
As an example the forced Duffing equation is solved. For the control function
the external force is taken. We have to find such a control which brings the
system to a given point in the minimal time. In [6] by means of the optimal
control theory it is shown that a solution to this problem exists only if the
force is discontinuous (of the “bang–bang” type). Hirasawa et al. [7, 8] applied
the Universal Learning networks for chaos control; for training the parameters
the Lyapunov exponents were used (the parameters must be adjusted so that
the maximum Lyapunov exponent is non-positive). In [1] an efficient method
based on the ensemble Kalman filter is proposed. Making use of the Lyapunov
functions Parlitz [15] and Chen et al. [3] applied synchronization method to
estimate parameters of chaotic systems. Guan et al [5] used the unknown
parameter observer method for this purpose.

For adjusting parameters with the aid of gradient descent methods it is
expedient to calculate the sensitivity matrix [4, 16].

The conventional gradient descent method has some other shortcomings:

(i) Usually the error function has several minima and the gradient method
may bring us to some local minimum. To find the global minimum some
special techniques (e.g. random search method) must be applied.

(ii) The gradient method gives us a single-valued solution. In the real case
the solution may be non-unique, whilst the error function may be zero
for some regions of the parameters space.

(iii) The diagram of the error function may be presented by a non-smooth
curve (or surface). In this case the gradient method is not applicable.

By these reasons we suggest an alternative approach. Here the error func-
tion is put together via integrating numerically the equations of motion for
many combinations of the adjustable parameters. Due to rapid algorithms
for solving differential equations this process – in spite of the great number
of equations – is not very time-consuming for contemporary computers. An
advantage of this “direct method” is also the fact that we do not need to put
together the sensitivity matrix, which is a time-consuming process. Practically
application of this approach is justified if the number of adjustable parameters
is small (one ot two).

In this paper second order systems are considered. Here we have two main
possibilities: (i) If the system has fixed points then after adjusting the param-
eters the motion converges to some of the fixed points. (ii) If the system does
not have the fixed points then the motion of the adjusted system turns to a
periodic motion.

The paper is organized as follows. In Section 2 the problem statement
which is based mainly to the Baldi’s paper [2], is given. The problem of learn-
ing trajectories to fixed points is discussed in Section 3. In Section 4 it is
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demonstrated how nonregular motion may be converted into a periodic one.
For solving this problem a new method based on the analysis of the Poincare
points is suggested. In Section 6 trajectories with restrictions are discussed.
Results of five numerical examples are presented. The gradient approach was
used for solving Examples 2 and 5. Examples 1, 3 and 4 were solved by the
“direct method”.

2 Problem Statement

Consider a dynamical system

du

dt
= F (t, u,W ), t ∈ [t0, tf ] (2.1)

with the initial condition u(t0) = u0. Here u(t) is theN -dimensional row vector,
which represents the state variables of the system, W is the J-dimensional array
of adjustable time-invariant parameters. Let us denote by W0 the vector of
nominal parameters. It is assumed that the system (2.1) follows the prescribed
trajectory ũ∗(t) over a certain interval. This trajectory is not usually defined
for all u values and over the whole period; ũ∗ ∈ u is a Γ -dimensional subset of
the prescribed state variables and Γ ∈ N .

The error function

E =

∫ tf

t0

e
[
u(t),W, ũ∗(t)

]
dt, (2.2)

measures the discrepancy between the trajectories u(t) and the desired val-
ues ũ∗(t). For calculating (2.2), local error function e must be specified; pa-
rameter W obtains the values, where E = min. The concrete form of function E
is specified later on.

For calculating the minimum of E, the gradient learning and back-propagation
methods [2] are applied. At first, the gradient

∂E

∂W

∣∣∣∣
W0

=

∫ tf

t0

∂e

∂u

∂u

∂W

∣∣∣∣
W0

dt =

∫ tf

t0

∂e

∂u
p dt (2.3)

is computed. Here (p = ∂u/∂W )W0
denotes the trajectory sensitivity ma-

trix [4]; it is N × J matrix; ∂e/∂u is the N -dimensional and (∂E/∂W )W0
a

J-dimensional vector. The approximation of the last integral depends on the
character of the problem. In the case of learning fixed points (Example 2), the
approximation is given in detail. Differentiating matrix p, we obtain

dp

dt
=

du̇

dW

∣∣∣∣
W0

=
∂F

∂W

∣∣∣∣
W0

+
∂F

∂u

∣∣∣∣
W0

p. (2.4)

Introducing matrix

L =
∂F

∂u

∣∣∣∣
W0

, (2.5)
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formula (2.4) can be put into the form

dp

dt
= Lp+

∂F

∂W

∣∣∣∣
W0

. (2.6)

Equation (2.6) can be integrated using different techniques (consult e.g. [2]).
In this paper, we assume that time step ∆t is very small and calculate dp/dt
using the following formula:

dp

dt
≈ 1

∆t

[
p(t+ ∆t)− p(t)

]
.

Next, p(t) is calculated from (2.6). New values for W are found from

Wnew = Wold − α
(
∂E

∂W

)
old

, (2.7)

where α is the learning rate. This procedure is repeated until the desired
accuracy is reached. It is important to note that the gradient descent procedure
may bring the system to some local minimum.

3 Learning Fixed Points

In this section, the case ∂F/∂t = 0 is considered. It is assumed that the
system (2.1) has some fixed point u∗, for which F (u∗,W ) = 0. From the
equality, a few parameters can be evaluated. The remained parameters are to
be learned so that the system would converge to value u∗.

If we denote uf = u(tf ), the error function e is defined as

e = 0.5(uf − u∗)2. (3.1)

In the present case, function E takes the form of E = e(tf − t0); quantity
p = ∂uf/∂W does not depend on time or ṗ = 0. From (2.6), we get that

p = −L−1 ∂F

∂W

∣∣∣∣
W0

, (3.2)

where L−1 denotes the inverse matrix of L. According to (2.3), we obtain

∂e

∂W

∣∣∣∣
W0

= (uf − u∗)p. (3.3)

Computer simulations were carried out for the following two examples.

Example 1. Consider the Lorenz system:

ẋ = −σ(x− y),

ẏ = rx− y − xz,
ż = xy − bz. (3.4)

Here, u1 = x, u2 = y, u3 = z are state variables and parameters σ, r, b have
real positive values.
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Let x∗, y∗, z∗ denote the coordinates of the desired fixed point. According
to (3.4), the condition ẋ = 0 is satisfied if (i) x∗ = y∗ or (ii) σ = 0 and x∗ 6= y∗.
Since σ is an essential parameter of the system (3.4) (the Prandtl number), we
leave the second case as it is and assume that x∗ = y∗. Fulfilling conditions
ẏ = ż = 0 for the fixed point, we find that r = 1 + z∗, b = x2∗/z∗.

We see that parameters r, b are prescribed and we can adjust only parameter
σ. Hence, the error function (3.1) obtains the following form

e(σ) =
1

2

[(
xf (σ)− x∗

)2
+
(
yf (σ)− y∗

)2
+
(
zf (σ)− z∗

)2]
. (3.5)

Since there is only one parameter to be adjusted, it is simpler to calculate
function e(σ) directly without calculation of matrix p.
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Figure 1. Lorenz system; error estimate (3.5) as a function of parameter σ.

The computer simulations were carried out for σ = 10, r = 28, b = 8/3,
x(0) = y(0) = z(0) = 2. This is a chaotic case. For the desired fixed point,
we take x∗ = y∗ = 3, z∗ = 5. The system was integrated by the fourth order
Runge–Kutta method (with the precision 10−7). Error function e(σ) is plotted
in Fig. 1. As it follows from the diagram, the trajectories practically converge
to the desired point if σ > 15 and E(15) = 1.11 × 10−5. Simulation results of
time history for σ = 15 are shown in Fig. 2.

Example 2. Consider the modified Duffing equation:

ẋ = y,

ẏ = −ay − bx− cx3 − dx5. (3.6)

In the fixed point ẋ = ẏ = 0 and according to (3.6), we have y∗ = 0. Parameter
vector W contains four elements W = (a, b, c, d). According to (2.5), matrix L
takes the following form:

L =

(
∂F

∂u

)∣∣∣∣
t=tf

=

(
0 1,
−∆ −a

)
, ∆ = b+ 3cx2f + 5dx4f .

Next, we calculate matrix ∂F
∂W :

∂F

∂W

∣∣∣∣
t=tf

=

(
0 0 0 0,

−yf −xf −x3f −x5f

)
.

Math. Model. Anal., 17(4):519–531, 2012.
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Figure 2. Time response of the Lorenz system for σ = 15.

Sensitivity matrix p is calculated according to (3.2):

p = − 1

∆

(
yf xf x3f x5f
0 0 0 0

)
.

The gradient approximation matrix is approximated with the aid of (2.3)
and (3.3):

∂E

∂W

∣∣∣∣
t=tf

= − (tf − t0) ∗ (xf − x∗)

∆

(
yf , xf , x

3
f , x

5
f

)
. (3.7)

The parameter adjustment is performed according to the following algo-
rithm:

Step 1: Assume vector of initial parameters W0 = (a0, b0, c0, d0), time in-
terval is (t0, tf ) and learning rate α are the initial conditions for the system.

Step 2: Integrate the system (3.6), calculate the error function (3.1) and
get quantities xf , yf .

Step 3: Calculate ∂E
∂W according to (3.7) and adjust the parameters accord-

ing to (2.7).
Step 4: Repeat steps 2 and 3 until the error E satisfies the prescribed

precision.
The computer simulation was carried out for a0 = −0.1, b0 = 4.0, c0 = −5.0,

d0 = 1.0, x(0) = 0, y(0) = 1. Values x∗ = 2, y∗ = 0 were taken for the desired
fixed point. The learning rate was equal to 0.2 and the error precision 10−6,
respectively. The parameter values after the gradient descent learning were
a = 4.8660, b = −4.6069, c = −14.1378 and d = 3.8262. The time response of
the system for the values is demonstrated in Fig. 3.
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Figure 3. Time response of the Duffing system after gradient learning.

4 Converting the Motion into Periodic Trajectories by
Adjusting the Parameters

The trajectories of the system (2.1) are generally non-periodic. Our aim is
to adjust parameters W so that the trajectory is periodic or close enough
to a periodic trajectory. To solve the problem, a method which is based on
the Poincare sections is proposed. A Poincare section is obtained when an
N -dimensional trajectory is cut by several µ-dimensional hyperplanes where
µ < N . Due to the section, a set of points in the hyperplane is derived. We
shall call these points the Poincare points. For a periodic motion, the set
consists of a single point. Hence, in order to make the trajectory periodic, the
dispersion of the Poincare points should be minimized. This can be done in
the following way.

Let us denote the coordinates of the Poincare points by Ulm, where 1 ≤
l ≤ K, 1 ≤ m ≤ µ (index l denotes the number of the point, m – the number of
the coordinate; K is the total number of the Poincare points). It is reasonable
to give some time to the system for adaptation and leave the first ν points out.
Therefore, the mean and dispersion of the Poincare points are

Mm =
1

K − ν

K∑
l=ν

Ulm, D =
1

K − ν − 1

K∑
l=ν

µ∑
m=1

(Ulm −Mm)2.

Dispersion D can be interpreted as an error function. Hereof, the values of the
parameters should be found where D = min. If the minimal value of D is not
close enough to zero, it is not possible to find periodic trajectories to the given
problem.

Example 3. Let us examine the Roessler system:

ẋ = −y − z,
ẏ = x+ ay, t ∈ [0, 200],

ż = b+ xz − cz

for x(0) = 2.5, y(0) = −2.5, z(0) = 0.5, a = 0.4, b = 2 and c = 4. The
three-dimensional phase diagram of the Lorenz system for the current case is
plotted in Fig. 4a. The motion is clearly non-periodic.

Math. Model. Anal., 17(4):519–531, 2012.
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Figure 4. Results for the Roessler system: a) the three-dimensional phase diagram for
a = 0.4, b) adapted Roessler system a = 0.25.

We assume that parameters b and c are prescribed and only a is an ad-
justable parameter. The Poincare section is carried out with plain x = x(0).
The coordinates of Poincare points are denoted Y (j), Z(j), j = 1, 2, . . . ,K.
The computer simulation was executed for ν = 10. The system was integrated
by the Runge–Kutta method for different values of parameter a. The dispersion
D(a) was calculated from the formulae

Ym =
1

K − ν

K∑
l=ν

Y (l), Zm =
1

K − ν

K∑
l=ν

Z(l),

D =
1

K − ν − 1

K∑
l=ν

µ∑
m=1

[(
Y (l)− Ym

)2
+
(
Z(l)− Zm

)2]
. (4.1)

According to the computations, the number of the Poincare points was
K = 32. The diagram D = D(a) is plotted in Fig. 5.

0.3 0.32 0.34 0.36 0.38 0.4
0

0.4

0.8

1.2

a

E

Figure 5. Error function D(a) for the Roessler system.

As it follows from Fig. 5, the dispersion for a < 0.3 is very small: D(0.25) =
4.92 × 10−9, D(0.3) = 1.83 × 10−7, but D(0.4) = 0.83. Therefore, for a < 0.3
the system can be regarded as periodic. This assertion is confirmed by Fig. 4b,
where the three-dimensional phase diagram of the modified system is pre-
sented.
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Example 4. Consider the forced Duffing equation:

ẋ = y,

ẏ = −ay − bx− cx3 + f cos t, t ∈ [0, 300] (4.2)

for x(0) = 0 and y(0) = 1. For a = 0.25, b = −1, c = 1, f = 0.3, the motion is
chaotic (Fig. 6). The upper and lower diagrams present the time history and
the phase diagram, respectively. Our aim is to adjust parameter a so that the
motion becomes periodic.
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xFigure 6. Chaotic motion of the Duffing system for a = 0.25.
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Figure 7. The Duffing system; error estimate (4.1) as a function of parameter a.

Let us consider the Poincare section x = 0. The formulae (4.1) holds
if we replace Z(l) = Zm = 0. Computations were carried out for ν = 5;
function D(a) is plotted in Fig. 7. According to the diagram, D ≈ 0 if a <
0.17. The computer simulation showed that D(0.17) = 5.91 × 10−7; however,
D(0.174) = 0.115; in the latter case, the motion is chaotic. The results for the

Math. Model. Anal., 17(4):519–531, 2012.
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Figure 8. Adapted Duffing system (a = 0.17).

adapted value a = 0.17 are plotted in Fig. 8 (time history and phase diagram).
The local minimum exists at a = 0.213, where D = 3.24 × 10−10. The area
for the minimum is quite restricted since D(0.211) = 0.030 and D(0.215) =
0.008.

In Fig. 7, curve D(a) has a very complicated form (several local minima).
Therefore, it can be assumed that the gradient descent method does not work
well in the current case.

5 Restrictions for the Trajectories

Let us discuss the case where the trajectories of the problem (2.1) are closed
between two limit curves

u−γ (t) ≤ uγ(t) ≤ u+γ (t), t ∈ [t0, tf ]. (5.1)

Here, γ denotes the number of the state variable u for which the restriction
(5.1) is imposed. If u−γ (t) = u+γ (t), we get the case where the system (2.1)
follows the prescribed trajectory over the time interval; the case was discussed
in [10]. We perturb the parameters W until inequalities (5.1) are satisfied. For
that purpose, function ϕγ is introduced

ϕγ(t) =


uγ(t)− u+γ (t), if uγ(t) > u+γ (t),

uγ(t)− u−γ (t), if uγ(t) < u−γ (t),

0, elsewhere.

(5.2)



Learning Trajectories of Dynamical Systems 529

The error function is taken in the form of

E =

∫ tf

t0

e(t) dt =
1

2

∑
γ

∫ tf

t0

ϕ2
γ(t) dt.

The summation is carried out only for such values γ that occur in the inequal-
ities (5.1). Since

∂e

∂uγ
= γγ

∂ϕγ
∂uγ

= ϕγ ,

Equation (2.3) obtains the form of

∂E

∂W
=

∫ tf

t0

ϕγp dt, (5.3)

where sensitivity matrix p is calculated according to (2.6).
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Figure 9. Time response of the Duffing system in the case of restrictions (5.4); (a) before
learning, (b) after learning.

Example 5. Let us solve (4.2) for c = 0 and x(0) = 0, y(0) = 1, t ∈ [0, 30]. The
restrictions (5.2) are taken in the form

ϕ1(t) =


x(t)− 50, if x > 50,

x(t) + 50, if x < −50,

0, elsewhere.

(5.4)

The solution for a = 0.1, b = 1, f = 15 is plotted in Fig. 9(a). Since the
restrictions (5.4) are violated, we must adjust these parameters.

According to (5.3), we have

∂E

∂a
=

∫ tf

t0

ϕ(t)p11(t) dt,
∂E

∂b
=

∫ tf

t0

ϕ(t)p12(t) dt,
∂E

∂f
=

∫ tf

t0

ϕ(t)p13(t) dt.

(5.5)

Math. Model. Anal., 17(4):519–531, 2012.
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For evaluation integrals (5.3) and (5.5), the Simpson’s rule was applied. A
computer simulation gave the following values for the adjusted parameter: a =
0.298, b = 1.030, f = 15.00. The time history after learning is presented in
Fig. 9(b).

6 Discussion

In order to obtain the trajectories with certain properties, the parameters of
a dynamic system should be assigned such values that would minimize the
local error e or the integral error E. This can be done by the traditional
gradient descent method. The approach was realized in Examples 2 and 5. It
should be mentioned that the approach has some shortcomings. First, we must
put together and integrate the sensitivity matrix which is a time-consuming
procedure. Secondly, the gradient descent algorithm gives us a single-valued
solution, whilst in real cases the error function can be zero for some regions of
the parameters to be adjusted (see Figs. 1, 5, 7). Thirdly, the error function
E may have many local minima which are characterized by non-smooth curve
(consult Fig. 7). In such a case, the gradient descent is not applicable.

If the number of the parameters to be adjusted is small (one or two), the
gradient method should be set aside; it is suggested to evaluate the error func-
tion directly. Here, we integrated the system of dynamical equations for many
combinations of the adjustable parameters. In this way, the error function was
composed. Since nowadays many fast subprograms exist based on the Runge–
Kutta method, the computing time for the operation is relatively small. Using
one of these, Examples 1, 3, 4 were solved: the intervals of the parameters,
for which the desired solution holds, were calculated (consult Figs. 1, 5, 7).
Finally, a few different algorithms and computer programs for defining peri-
odic orbits can be found in [12], but as a rule they require significantly more
computing time.
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