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Abstract. The split common fixed point problem has been investigated recently,
which is a generalization of the split feasibility problem and of the convex feasibility
problem. We construct a cyclic algorithm to approximate a solution of the split
common fixed point problem for the demicontractive mappings in a Hilbert space.
Our results improve and extend previously discussed related problems and algorithms.
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1 Introduction

LetH be a real Hilbert space with inner product 〈·,·〉 and norm ‖·‖, respectively.
Recall that the convex feasibility problem (CFP) is formulated as follows: If⋂n
i=1 Ci 6= ∅,

Find a point x∗ ∈
n⋂
i=1

Ci, (1.1)

where n ≥ 1 is an integer, and each Ci is a nonempty closed convex subset of
H. It has been proved that the convex feasibility problem has great applicabil-
ity in many areas, such as image reconstruction in computerized tomography,
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radiation therapy treatment planning, electron microscopy and signal process-
ing etc. A complete and exhaustive study on algorithms and applications for
solving convex feasibility problem can be found in [1].

The split feasibility problem (SFP, for short) was introduced by Censor and
Elfving[4] which is defined as follows:

Find x ∈ C such that Ax ∈ Q, (1.2)

where C and Q are nonempty closed convex sets in RN and RM , A is an M×N
real matrix.

Let A−1(Q) = {x | Ax ∈ Q}, then the split feasibility problem is equivalent
to the convex feasibility problem:

Find x ∈ F := C ∩A−1(Q).

So the (SFP) can be viewed as a particular case of (CFP). Censor and Elfving [4]
used multidistance method to obtain iterative algorithms for solving the (SFP).
Their algorithms involved matrix inverses at each step. Byrne[3] proposed
an iterative method called CQ algorithm that involves only the orthogonal
projections onto C and Q and does not need to compute the matrix inverse to
solve the (SFP). The CQ algorithm is defined as follows:{

x0 be arbitrary,

xn+1 = PC(xn + γAT (PQ − I)Axn), n ≥ 0,
(1.3)

where γ ∈ (0, 2
L ) and L denotes the largest eigenvalue of the matrix ATA.

Later, Yang [18] proposed a relaxed CQ algorithm for solving the (SFP) in
which the orthogonal projections PC and PQ are replaced by PCn

and PQn
,

respectively, i.e., the orthogonal projections onto two halfspaces Cn and Qn,
see also [13, 21]. Both the CQ algorithm and the relaxed CQ algorithm used
a fixed stepsize related to the largest eigenvalue of the matrix ATA, which
sometimes affects convergence of the algorithms. Qu and Xiu [11] developed the
CQ algorithm and the relaxed CQ algorithm by adopting Armijo-like searches.
In the modified algorithms there is no need to compute the matrix inverses
and the largest eigenvalue of the matrix ATA, and a sufficient decrease of the
objective function is done at each iteration. Some other related results can be
found in [6, 9, 12, 14, 15, 16, 17, 19, 20] and references therein.

The multiple-set split feasibility problem (MSSFP) which finds application
in intensity modulated radiation therapy was proposed in [5] and is formulated
as:

Find a point x∗ ∈
N⋂
i=1

Ci, such that Ax ∈
M⋂
j=1

Qj , (1.4)

where N,M ≥ 1 are integers, {Ci}Ni=1 are closed convex subsets of a Hilbert
space H1, {Qj}Mj=1 are closed convex subsets of a Hilbert space H2 and
A : H1 → H2 is a bounded linear operator. If N = M = 1, then the (MSSFP)
reduces to the (SFP). Some projection algorithms for solving the (MSSFP) can
be found in [8, 9, 16].
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The problems (1.2) and (1.4) are all special cases of the so-called split
common fixed point problem (SCFP) which is formulated as follow:

Find a point x∗ ∈
p⋂
i=1

Fix (Ui), such that Ax∗ ∈
r⋂
j=1

Fix (Tj), (1.5)

where p, r ≥ 1 are integers, Fix (T ) denotes the fixed point set of T , A : H1 →
H2 is a bounded linear operator, {Ui}pi=1 : H1 → H1, {Tj}rj=1 : H2 → H2

are nonlinear operators. In particular, if p = r = 1, then (1.5) reduces to the
following

Find a point x∗ ∈ Fix (U), such that Ax∗ ∈ Fix (T ), (1.6)

which is usually called the solution set of the two-sets of (SCFP).
Censor and Segal [7] constructed the following algorithms to solve the two

sets of (SCFP) for directed operators (the definition is given by Definition 2).

Algorithm. Let x0 ∈ H1 be arbitrary, the sequence {xn} defined by:

xn+1 = U
(
xn − γA∗(I − T )Axn

)
, n ≥ 0,

where γ ∈ (0, 2
λ ) with λ being the spectral radius of the operator A∗A. Accord-

ing to this algorithm and using the product space technique, they introduced
another algorithm to solve the (SCFP) as follows:

xn+1 = xn + γ

[ p∑
i=1

αi
(
Ui(xn)− xn

)
+

r∑
j=1

βjA
∗(Tj − I)Axn

]
, n ≥ 0,

where 0 < γ < 2
L with L =

∑p
i=1 αi + ‖A‖2

∑r
j=1 βj .

Recently, Moudafi [10] proposed an algorithm to solve the solution set of
the two-sets of (SCFP) when the operators U and T are demicontractive. The
class of demicontractive operators is fundamental because many common types
of operators arising in optimization belong to this class (see Remark 2 below).
He proved that the sequence {xn} generated by Algorithm 1 converges weakly
to the solution of (1.6).

Algorithm 1. [10] Let x0 ∈ H1 be arbitrary, the sequence {xn} defined by:

xn+1 = (1− αn)un + αnU(un), n ≥ 0,

where un = xn+γA∗(T − I)Axn, γ ∈ (0, 1−µλ ) with λ being the spectral radius
of the operator A∗A and {αn} ⊂ (0, 1).

Theorem 1. [10] Given a bounded linear operator A : H1 → H2, let U : H1 →
H1 and T : H2 → H2 be demicontractive (with constants β, µ respectively) with
nonempty Fix (U) and Fix (T ). Assume that U − I and T − I are demiclosed
at 0. If the two sets of SCFP (1.6) is nonempty, then any sequence {xn}
generated by Algorithm 1 converges to a split common fixed point x∗ of (1.6),
provided γ ∈ (0, 1−µλ ) and αn ∈ (δ, 1− β − δ) for a small enough δ > 0.

Math. Model. Anal., 17(4):457–466, 2012.
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Inspired and motivated by the above works, we propose a cyclic algorithm to
solve the (SCFP). Then we prove that the sequence generated by the proposed
algorithm converges weakly to the solution of (SCFP). Our work is extending
the results of Moudafi [10], Censor and Segal [7] and others.

Algorithm 2. Let x0 ∈ H1 be arbitrary, for n ≥ 0, calculate

xn+1 = (1− αn)un + αnUi(n)(un), n ≥ 0,

where un = xn + γA∗(Tj(n) − I)Axn, i(n) = n(mod p) + 1 and j(n) =

n(mod r) + 1. γ ∈ (0, 1−µλ ) with λ being the spectral radius of the opera-
tor A∗A and {αn} ⊂ (0, 1).

Remark 1. Let us consider the particular case p = r = 1, then our Algorithm 2
reduces to Algorithm 1 proposed by Moudafi [10].

2 Preliminaries

In this section, we collect some important definitions and prove some useful
lemmas which will be used in the following section. We use the following
notations:

(i) Ω the solution set of SCFP (1.5).

(ii) ωw(xn) = {x : ∃xnj
⇀ x} denotes the weak ω-limit set of {xn}.

(iii) ⇀ for weak convergence and → for strong convergence.

(iv) 4 := {1, 2, . . . , p}, 5 := {1, 2, . . . , r}.

Definition 1. [10] An operator T : H → H is called k-demicontractive, if
there exists a constant k ∈ (0, 1) such that ‖Tx− q‖2 ≤ ‖x− q‖2 +k‖x−Tx‖2,
for all x ∈ H and q ∈ Fix (T ).

The following definitions are well known.

Definition 2. Assume that T : H → H is an operator with Fix (T ) 6= ∅,

(i) T is said nonexpansive, if ‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ H.

(ii) T is said quasi-nonexpansive, if ‖Tx − q‖ ≤ ‖x − q‖, for all x ∈ H,
q ∈ Fix (T ).

(iii) T is said strictly pseudocontractive, if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k
∥∥(I − T )x− (I − T )y

∥∥2,
for all x, y ∈ H, and some k ∈ (0, 1).

(iv) I − T is called demiclosed at origin, if for any sequence {xn} ⊂ H and
x ∈ H, we have xn ⇀ x and xn − Txn → 0, then x ∈ Fix (T ).
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We recall the definition of directed operator, and one can find its properties
in [7] and [2].

Definition 3. [7] T is a directed operator, if

〈q − Tx, x− Tx〉 ≤ 0,

for all x ∈ H and q ∈ Fix (T ).

Two equivalent definition of demicontractive operator is given by the fol-
lowing lemma.

Lemma 1. Let T : H → H be k-demicontractive operator such that Fix (T ) 6=
∅. Then it is equivalent to the following inequalities:

(i) 〈x− Tx, x− q〉 ≥ 1−k
2 ‖x− Tx‖

2, q ∈ Fix (T ), x ∈ H;

(ii) 〈x− Tx, q − Tx〉 ≤ 1+k
2 ‖x− Tx‖

2, q ∈ Fix (T ), x ∈ H.

Proof. (i) Since T is k-demicontractive, then there exists a constant k ∈ [0, 1)
such that

‖Tx− q‖2 ≤ ‖x− q‖2 + k‖x− Tx‖2, q ∈ Fix (T ), x ∈ H.

Then

〈x− Tx, x− q〉 = 〈x− q + q − Tx, x− q〉 = ‖x− q‖2 + 〈q − Tx, x− q〉
≥ ‖Tx− q‖2 − k‖x− Tx‖2 + 〈q − Tx, x− q〉
= 〈Tx− q, Tx− x〉 − k‖x− Tx‖2

= 〈Tx− x+ x− q, Tx− x〉 − k‖x− Tx‖2

= (1− k)‖x− Tx‖2 − 〈x− q, x− Tx〉,

which implies that

〈x− Tx, x− q〉 ≥ 1− k
2
‖x− Tx‖2.

(ii) By the following

〈x− Tx, q − Tx〉 = 〈x− q + q − Tx, q − Tx〉 = 〈x− q, q − Tx〉+ ‖Tx− q‖2

≤ 〈x− q, q − Tx〉+ ‖x− q‖2 + k‖x− Tx‖2

= 〈x− q, x− Tx〉+ k‖x− Tx‖2

= 〈x− Tx+ Tx− q, x− Tx〉+ k‖x− Tx‖2

= ‖x− Tx‖2 − 〈x− Tx, q − Tx〉+ k‖x− Tx‖2,

which leads to

〈x− Tx, q − Tx〉 ≤ 1 + k

2
‖x− Tx‖2.

If either inequality (i) or inequality (ii) holds, then T must be k-demicon-
tractive. The proof is just inverse proof of above. So it is omitted. This
completes the proof. ut

Math. Model. Anal., 17(4):457–466, 2012.
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Remark 2. It is easy to see that the demicontractive maps contain the quasi-
nonexpansive maps and the strictly pseudocontractive maps with fixed points.
From Lemma 1(ii), we can conclude that a directed operator must be demicon-
tractive.

The following lemma appears implicitly in [10].

Lemma 2. [10] Let T be a k-demicontractive self mapping on H with Fix (T ) 6=
∅ and set Tα := (1− α)I + αT , for α ∈ (0, 1]. Then, Tα is quasi-nonexpansive
provided that α ∈ [0, 1− k] and

‖Tαx− q‖2 ≤ ‖x− q‖2 − α(1− k − α)‖Tx− x‖2, x ∈ H, q ∈ Fix (T ).

Remark 3. It is easy to check that Fix (T ) = Fix (Tα). Hence, Fix (T ) is a
closed convex subset of H, as the fixed point set of a quasi-nonexpansive map-
ping.

Definition 4. Let C be a nonempty closed convex subset of H and {xn} is a
sequence in H. The sequence {xn} is called Féjer-monotone with respect to C,
if ‖xn+1 − z‖ ≤ ‖xn − z‖, n ≥ 0, z ∈ C.

Lemma 3. [1] If a sequence {xn} is Féjer-monotone respect to a closed subset
of C, then xn ⇀ x∗ ∈ C if and only if ωw(xn) ⊂ C.

3 Main Results

In this section, we consider a finite family of demicontractive mappings of
{Ui}pi=1 and {Tj}rj=1, i.e., there exists {βi}pi=1 ⊂ (0, 1) and {µj}rj=1 ⊂ (0, 1),
such that

‖Uix− q‖2 ≤ ‖x− q‖2 + βi‖x− Uix‖2, x ∈ H, q ∈ Fix (Ui), i ∈ 4,
‖Tjx− p‖2 ≤ ‖x− p‖2 + µj‖x− Tjx‖2, x ∈ H, p ∈ Fix (Tj), j ∈ 5.

Let β = max1≤i≤p{βi}, µ = max1≤j≤r{µj}, then we have

‖Uix− q‖2 ≤ ‖x− q‖2 + β‖x− Uix‖2, for all x ∈ H, q ∈ Fix (Ui), i ∈ 4,
‖Tjx− p‖2 ≤ ‖x− p‖2 + µ‖x− Tjx‖2, for all x ∈ H, p ∈ Fix (Tj), j ∈ 5.

First, we prove the following lemma.

Lemma 4. Let A : H1 → H2 be a bounded linear operator, {Ui, i ∈ 4} : H1 →
H1 be βi-demicontractive and {Tj , j ∈ 5} : H2 → H2 be µj-demicontractive
mappings. Assume the solution set Ω of (1.5) is nonempty, then the se-
quence {xn} generated by Algorithm 2 is the Féjer-monotone, i.e., for any
x ∈ Ω,

‖xn+1 − x‖ ≤ ‖xn − x‖, ∀n ≥ 0,

provided that γ ∈ (0, 1−µλ ] and αn ∈ (0, 1− β].
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Proof. Let y ∈ Ω. By Lemma 2, we have

‖xn+1 − y‖2 ≤ ‖un − y‖2 − αn(1− β − αn)
∥∥Ui(n)(un)− un

∥∥2. (3.1)

Note that un = xn + γA∗(Tj(n) − I)Axn, we get

‖un − y‖2 =
∥∥xn + γA∗(Tj(n) − I)(Axn)− y

∥∥2
= ‖xn − y‖2 + γ2

∥∥A∗(Tj(n) − I)(Axn)
∥∥2

+ 2γ
〈
xn − y,A∗(Tj(n) − I)(Axn)

〉
= ‖xn − y‖2 + γ2

〈
(Tj(n) − I)(Axn), AA∗(Tj(n) − I)(Axn)

〉
+ 2γ

〈
xn − y,A∗(Tj(n) − I)(Axn)

〉
≤ ‖xn − y‖2 + λγ2

∥∥(Tj(n) − I)(Axn)
∥∥2

+ 2γ
〈
xn − y,A∗(Tj(n) − I)(Axn)

〉
. (3.2)

For the last term of the above inequality, using (ii) of Lemma 1, one has

2γ
〈
xn − y,A∗(Tj(n) − I)(Axn)

〉
= 2γ

〈
A(xn − y), (Tj(n) − I)(Axn)

〉
= 2γ

〈
A(xn − y) + (Tj(n) − I)(Axn)− (Tj(n) − I)(Axn), (Tj(n) − I)(Axn)

〉
= 2γ

(〈
Tj(n)(Axn)−Ay, (Tj(n) − I)(Axn)

〉
−
∥∥(Tj(n) − I)(Axn)

∥∥2)
≤ 2γ

(
1 + µ

2

∥∥(Tj(n) − I)(Axn)
∥∥2 − ∥∥(Tj(n) − I)(Axn)

∥∥2)
= −γ(1− µ)

∥∥(Tj(n) − I)(Axn)
∥∥2. (3.3)

Thus, by (3.1), (3.2) and (3.3), we obtain

‖xn+1 − y‖2 ≤ ‖xn − y‖2 − αn(1− β − αn)
∥∥Ui(n)(un)− un

∥∥2
− γ(1− µ− λγ)

∥∥(Tj(n) − I)(Axn)
∥∥2. (3.4)

Since αn ∈ (0, 1 − β] and γ ∈ (0, 1−µλ ], then the sequence {xn} is Féjer-
monotone. This completes the proof. ut

Using this lemma, we obtain the following convergence result.

Theorem 2. Let A : H1 → H2 be a bounded linear operator, {Ui, i ∈ 4} :
H1 → H1 be βi-demicontractive and {Tj , j ∈ 5} : H2 → H2 be µj-demicon-
tractive mapping. Assume that {I − Ui, i ∈ 4} and {I − Tj , j ∈ 5} are
demiclosed at 0 and {Ui, i ∈ 4}, {Tj , j ∈ 5} are continuous. If the solution
set Ω of (1.5) is nonempty, then the sequence {xn} generated by Algorithm 2
converges weakly to a solution of the Ω, provided that γ ∈ (0, 1−µλ ) and αn ∈
(δ, 1− β − δ) for a small δ > 0.

Proof. From (3.4), and the fact that αn ∈ (δ, 1− β − δ) and γ ∈ (0, 1−µλ ), we
obtain

∞∑
n=0

∥∥Ui(n)(un)− un
∥∥2 <∞, and

∞∑
n=0

∥∥(Tj(n) − I)(Axn)
∥∥2 <∞.

Math. Model. Anal., 17(4):457–466, 2012.
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Therefore,
lim
n→∞

∥∥Ui(n)(un)− un
∥∥ = 0, (3.5)

and
lim
n→∞

∥∥(Tj(n) − I)(Axn)
∥∥ = 0. (3.6)

It follows from the Féjer-monotonicity of {xn} that the sequence is bounded.
Let x∗ ∈ wω(xn). Take a subsequence {xnk

} of {xn} such that xnk
⇀ x∗.

Since

‖xn+1 − xn‖2 =
∥∥(1− αn)

(
xn + γA∗(Tj(n) − I)(Axn)

)
+ αnUi(n)(un)− xn

∥∥2
=
∥∥γA∗(Tj(n) − I)(Axn) + αn

(
Ui(n)(un)− un

)∥∥2
≤ 2
(∥∥γA∗(Tj(n) − I)(Axn)

∥∥2 + α2
n

∥∥Ui(n)(un)− un
∥∥2).

Thus,
∞∑
n=0

‖xn+1 − xn‖2 <∞ and lim
n→∞

‖xn+1 − xn‖ = 0.

Notice A is a bounded linear operator, then we have

‖Axn+1 −Axn‖2 ≤ ‖A‖2 · ‖xn+1 − xn‖2.

Therefore,
∑∞
n=0 ‖Axn+1 − Axn‖2 < ∞, it implies that limn→∞ ‖Axn+1 −

Axn‖ = 0. Hence

‖Axn+j −Axn‖ → 0 as n→∞, (3.7)

for all j = 1, 2, . . . , r.
For each j ∈ 5, we get∥∥Axn − T[n+j](Axn)

∥∥ ≤ ∥∥Axn −Axn+j∥∥+
∥∥Axn+j − T[n+j](Axn+j)∥∥

+
∥∥T[n+j](Axn+j)− T[n+j](Axn)

∥∥,
where [n+ j] := (n+ j)(mod r) + 1. Using the continuity of {Tj , j ∈ 5}, (3.6)
and (3.7), we obtain

lim
n→∞

∥∥Axn − T[n+j](Axn)
∥∥ = 0.

It is clear that for each l ∈ 5, there exists j ∈ 5 such that l = (n+j)(mod r)+1.
Consequently,

lim
n→∞

∥∥Axn − Tl(Axn)
∥∥ = lim

n→∞

∥∥Axn − T[n+j](Axn)
∥∥ = 0.

By the demiclosedness of I − Tl at zero, Ax∗ ∈
⋂r
j=1 Fix (Tj).

Now, by setting un = xn + γA∗(Tj(n)− I)Axn, it follows that x∗ ∈ ωw(un).
On the other hand,

‖un+1 − un‖2 =
∥∥xn+1 − xn + γA∗(Tj(n+1) − I)Axn+1

− γA∗(Tj(n) − I)(Axn)
∥∥2

=
∥∥αn(Ui(n)(un)− un) + γA∗(Tj(n+1) − I)(Axn+1)

∥∥2
≤ 2
(
α2
n

∥∥Ui(n)(un)− un
∥∥2 + γ2

∥∥A∗(Tj(n+1) − I)(Axn+1)
∥∥2)
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that is,
∑∞
n=0 ‖un+1 − un‖2 < ∞ and therefore limn→∞ ‖un+1 − un‖ = 0.

Hence
‖un+i − un‖ → 0 as n→∞, (3.8)

for all i ∈ 4.
For each i ∈ 4, we get∥∥un − U[n+i](un)

∥∥ ≤ ‖un − un+i‖+ ‖un+i − U[n+i](un+i)‖
+
∥∥U[n+i](un+i)− U[n+i](un)

∥∥,
where [n + i] := (n + i)(mod p) + 1. By (3.5), (3.8) and together with the
continuity of {Ui, i ∈ 4}, we have

lim
n→∞

∥∥un − U[n+i](un)
∥∥ = 0.

It is now clear that for each k ∈ 4, there exists i ∈ 4 such that k = (n +
i)(mod p) + 1, then

lim
n→∞

‖un − Ukun‖ = lim
n→∞

∥∥un − U[n+i](un)
∥∥ = 0.

Since I−Uk is demiclosedness at zero and x∗ ∈ ωw(un), then x∗ ∈
⋂p
i=1 Fix (Ui).

By Lemma 3, we conclude that the sequence {xn} converges weakly to a
point in Ω. ut

Remark 4. To conclude, we construct a cyclic algorithm for approximating the
solution of the SCFP (1.5) which is a generalization of Moudafi[10].
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