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Abstract. In this paper, we study that the local minimizers of a class of functionals
(not necessarily differentiable) in the C'-topology are still their local minimizers in
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1 Introduction

We consider the functional ¢ : W *")(£2) — R defined by

<p(u):/(2%|Vu|p(x)da:—/nF(:v,u)dx,

p(x
where {2 is bounded smooth domain in RY,

1 <p_ =minp(z) < p(z) < maxp(z) =p" < +o00
€2 T€ES2
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and F'(t,x) is locally Lipschitz function in the ¢-variable integrand (in general
it can be nonsmooth), and dF (z,t) is defined in the sense of Clarke [3].

Such a result was first proven for functionals corresponding to elliptic equa-
tions with Dirichlet boundary values by Fan in [5]. They considered potentials
of the form

W= [ L@ g - 2 u) da
ol = [ = Ivup@ da = [ Pla)ds,

where F(x,u) fo (z,t) dt with some Carathéodory function f : 2 xR — R.

For variable exponent Neumann Sobolev spaces (i.e. WaP (‘/I")(Q))7 the result
can be found in Gasinski-Papageorgiou [7]. For the case p(x) = p = 2, Brezis
and Nirenberg in [2] proved that the local minimizers of a class of functionals
in the C'-topology are still their local minimizers in Wol’p(ﬁ). For the case
when p(z) = p, Motreanu and Papageorgiou [9] first considered the problem
by using nonsmooth functionals defined on WO1 P(£2) for the case 2 < p < 4o00.
In Tannizzotto—Papageorgiou [8] an analogous result was proved for p > 1,
Neumann boundary conditions and a nonsmooth potential.

The idea of the present paper was the generalization to the more general
case of nonsmooth functionals defined on W P T)(Q) with1 <p~ <p' < +oc.
The main goal of this paper is to answer the following question:

(Q) If up € Wol’p(m)(ﬂ) is a local minimizer of ¢ in the C'-topology, is it
still a local minimizer of ¢ in Wy P (£2)?

2 Hypotheses

We suppose the following conditions on the nonsmooth potentials F : 2 x
R—R:
H(F):

(1) For all t € R, z — F(x,t) is measurable;
(2) For almost all z € RY, ¢+ F(x,t) is locally Lipschitz;

(3) For almost all x € §2, all t € R and w € 9F(x,t), we have |w| < a3 +
ap|t|*®) =1 where ay, ay are positive constants, a € C(2) with 1 < o~ <

ox) < p*(2), p(x) = 3tk (+00), if p(z) < N(p(z) > N).

H(p): p € C%(Q) with 8 € (0,1), 1 < p(z) < p*(z) for every x € (2.

Remark 1. Note that the conditions above imply that the functional ¢ :

Wol'p(x) (£2) — R is locally Lipschitz (similar to the proof of Lemma 3.1 in [6]).
This guarantees, in particular, that Clarke’s generalized gradient ¢ — 9p(t)
exists.

3 Sobolev Versus C! Local Minimizers

In this section we shall give a positive answer to our question (Q). Our main
result is stated in the following theorem.

Math. Model. Anal., 17(3):396-402, 2012.
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Theorem 1. Suppose that H(F') and H(p) hold, and that ug € Wol’p(x)(ﬁ) is
a local minimizer of ¢ in the CL(§2) topology, that is., there exists some r > 0
such that

©(uo) < p(ug +h) for all h € C3(82) with ”hHC’é(ﬁ) <,

then ug € CL(82) is a local minimizer of ¢ in the Wol’p(w)(()) topology, i.e.,
there exists k > 0 such that

o(up) < p(ug +h) forall h € Wol’p(x)(()) with ||h||W01.,p(m)(Q) <k

Proof. By assumption, there exists rg > 0 such that
¢(uo) < p(ug +h), forall h € Cy(2), ||hllcy @) < ro-

Choose h € C(£2), then for small enough ¢ > 0 we have p(ug) < p(ug+th),
hence,
0 < ¢°(uo; h). (3.1)

Since C} (1) is dense in W™ (£2) and ¢° is continuous, (3.1) holds for all
he Wol’p(z)(ﬂ), so 0 € 9p(up). For any u € Wg’p(r)(ﬁ), define

__al@)
B) = o o

N(u)={we LP@(2): w(x) € OF (z,u(z)) for a.e. x € 2}.
Then, there exists vg € N(ug) such that
—diV(|Vuo|p(z)_2Vu0) = 7. (3.2)
From (3.2) , we infer that

{—div(|Vu0(x)|p($)_2Vu0(x)) =wvo(x), ae. x€ L,

3.3
u0|3g =0. ( )

From (3.3) and nonlinear regularity (see Fan and Zhao [6, Theorem 4.1] and
Fan [4, Theorem 1.2]), we have ug € C4®(12), for some a € (0,1).

Now, we argue by contradiction. Suppose that ug is not a local minimizer
of ¢ in the W, *")(£2). Exploiting the compact embedding of Wy ™ (£2) into
LP®)(£2), we can easily check that ¢ is sequentially weakly lower semicontinu-
ous

Define G(u) = [, % dx, Yu € WP (0).

Fix € € (0,1], see B. = {u € Wol’p(m)(ﬁ): G(u) < e}. Then B, is weakly
compact, closet convex subset of VVO1 P (‘T)(Q) and is a neighbourhood of ug in
VVO1 P (x)(.Q). From the Weierstrass theorem we can find u. € B, such that

p(ue) = inf o(u) < p(uo).
ueB,
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By the nonsmooth multiplier rule of Clarke [3] (Theorem 1 and Proposi-
tion 13), we can find A; < 0 such that A.G’(uc) € 9p(u.). Hence,

Aue) — we = MeA(ue —ug), we € N(ue).
That is,
—div{|Vu P2 Vu, — A\ |Vue — VuoP@ (Ve — Vug) } =w..  (3.4)

Define A, : 2 x RY - RN and B.: 2 xR = R by

Ae(%??) =

A
p(@)=2, 7 |, p(E)=2(p _
T /\Elnl U ,\el” V| (n — Vuo),
1
Be(x,n) = 1 Ve
g

where w. € 0F(x,n). Then u. is a solution of the following problem:

—divA.(z,Vu) = B:(z,u), a.e. x € {2,
(3.5)
u|aQ =0.
We can verify that A. and B, satisfy the following conditions:
Ac(@,mn > ei[nfP™ — ey, Vo€ 2, neRY, (3.6)
‘As(az,n)‘ <espP@t ey, Vre2, neRY, (3.7)

|Bs(xv77)‘ <c+ 06|77|Q(Z)717 Vz € ﬁa ne RNa

where ¢; are positive constants independent of € € (0,1).
Since the verification of (3.7) and (3.8) is simple, we only give the proof of
(3.6) here. By the definition of A.(z,n),

1
[P 720 = A7) 2n)
€

Ae (In = Vuo P72 (n — Vug) — [n|P™)=2n)|n
(X = X)) (|nlP™ = AT)],

AE(xv 77)77 =

T1o0

where I = (|n — Vug|[P'"™)=2(n — Vug) — |nP®)=2n)n.
Note that,

col§ —nl([€]+ [mhP~2, ifp > 2,

P=2¢_ |n|P—2y| <
||§\ §—1nl n’{c()f_mp—l’ fl<p<?2,

see Azorero [1].

So, when p(x) > 2, we have

1= (11— Vo™= ~ Tug) — Inf? ™) I
x)—2
< ¢o|Vuo|(|n — Vuo| + |77|)p( ) Inl
< CVuo|(|n|P™@ =2 + [Vuo [P =2) |1

1
< Ol ™=+ C < Sl + €,

Math. Model. Anal., 17(3):396-402, 2012.
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and when p(z) < 2,
1= [(In = Vuol"™~2(n = Vuo) — [P =2n)[In] < col Vo P ]

1
< Cll < 5l + €,

where C' is a generic positive constant independent of ¢.
Thus we have
Ae
1— A

1
Ac(,m)n > |n|P™ — 1] > §\n|”(‘”) -C

It follows from Theorem 4.1 in [6] that u. € L*(f2) and |uc|p= (o) < C,

because ||u5||W01,p<x)(m is bounded uniformly for £ € (0, 1), where C'is a positive

constant independent of e. Below we shall prove that ||'U/€||Cs,a( ) < C for some
a € (0,1) by using Theorem 1.2 in [4] in the following two cases, respectively.

Case (I): A €[-1,0].

Noting that ug satisfies the equation, —div(|Vug|P‘®)=2Vug) = vg, where
vg € LA®)(2) and vo(z) € OF (x,up(x)) for almost all x € 2. Equation (3.4)
is equivalent to the following equation:

— div{|Vue [P 72Vu, — A\ |Vue — Vo [P@=2(Vau, — Vag)
— e | Vo P2V ug) b = w. — Acvp.

Define B.(x,7n) = w. — Acvo,
Ac(x,m) = P72 = Acln = Vo [P 72 (n — Vo) — Ae| Vg [P ™2V,
Then u. is a solution of the following problem:

{—divAE(x, Vu) = B.(z,u), a.a. x€ {2,
u|aQ =0.

We can prove that, for x,y € 2, n € R¥\{0}, £ € RV, t € R, the following
estimations hold:

Loy =0, S i ee > coppe-2ep,

on;
>

1,7=1
| Bz (,m)] < o+ ot < ern + eanlt]*,

4,j=1

(33777)‘|77| <cs(1+ |77|p(x)—1)7

6( s)j
om;

(3.9)

and for sufficiently small § > 0, there exists a positive constant cs, depending
on p™,p~ and §, but independent of \. € [—1,0], such that

Az (z,m) — Aoy, n)| < csle —ylP (1 + n|ro=119), (3.10)
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where pg = max{p(x), p(y)}.
The proof of (3.9) is immediate (see [1]), here we only prove (3.10). It
follows from p € C%8(02) that

[P =2y — |p|P@) =2y < | [P =t — [P =1
<clz—y|?(L+ [n[*>~") (1 + [log|n]|).-

For given § € (0,p~ — 1), by limy, 4o %55 = 0 and lim; o+ 128 = 0, we
have that there exists a positive constant ¢(d), depending only on §, such that

[log|n|| < e(8) + |n]° + |n|~? for every n € RYN. Thus we obtain

|9 =2n = [p[P® 20| < esle —y|® (1+ [P~ 2).
Similarly, we have

| = Vo™ =2 () — Vo) — |n — Vuo[P¥) =2 () — Vo)
< cslr — y|5(1 +n— Vu0|p°_1+‘5)
< Glz —y|? (14 [n|Po~1*)

and
HVuo\p(‘”)_Q(Vuo) — \Vu0|p(y)_2(Vu0)| < cslz — y\ﬁ(l + |Vu0\p°_1+5)
<Glr —yl”.
Hence, noting that |A.| < 1, we see that (3.10) is true.
Case (II): A\ < —1.
From (3.4), we have

1 1
—div (—)\Vug|p(m)_2Vu6 + |Vue — Vuo|p(m)_2(VuE — Vuo)) =y We

Note that
1 1
—div(/\s |Vu0p(’”)_2Vu0) W

€

So,
1
— div [lm = Vug 7% (Vue — Vug) — = [Vue [V,

1 _ 1
+ )\*|Vu0|p(m) 2VU0} = _T(ws — o).

Then u. is a solution of the following problem:

—divA.(z, Vu) = Bo(z,u), aa. z € £,
ulon =0,

Math. Model. Anal., 17(3):396-402, 2012.
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where E(m,t) = f)\—ls(wE — ),

—~ 1 1
Ac(w,m) = n = Vo |72 (1 = Vo) = = 0P + = Vo[ 7> Vuo.
&€ =

Analogously to the case (I), we can prove that ;1: and E; satisfy the corre-
sponding conditions (3.9).

From the analysis in case (I) and case (IT), we know that Theorem 1.2 in [4]

is available. Hence u. € Cy™*(£2) and ||ugHCé,a(§) < C, that is ue — ug in

CY(R2) (by Cy*(22) < CL(2) compact embedding) as ¢ — 0. The proof of
Theorem 1 is complete. O
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