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Abstract. The aim of this paper is to analyze the Bickel–Rosenblatt test for simple
hypothesis in case of weakly dependent data. Although the test has nice theoretical
properties, it is not clear how to implement it in practice. Choosing different band-
width sequences first we analyze percentage rejections of the test statistic under H0

by some empirical simulation analysis. This can serve as an approximate rule for
choosing the bandwidth in case of simple hypothesis for practical implementation of
the test. In the recent paper [12] a version of Neyman goodness-of-fit test was estab-
lished for weakly dependent data in the case of simple hypotheses. In this paper we
also aim to compare and discuss the applicability of these tests for both independent
and dependent observations.
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1 Introduction

Let (Xt)t∈Z be a real-valued strictly stationary process defined on a probability
space (Ω,F , P ), where Xt has some distribution function F . Considering the
classical goodness-of-fit problem assume that we wish to test the following
simple hypothesis:

H0: F = U [0, 1] versus H1: F �= U [0, 1], (1.1)

where U [0, 1] denotes the uniform distribution on the interval [0, 1]. Note that
testing H0: F = F0 for some general continuous distribution F0 can be reduced
to this situation by transforming the data to F0(Xt), t ∈ Z.

For independent observations there exist many famous classical goodness-
of-fit tests dealing with the hypothesis (1.1) such as Kolmogorov–Smirnov,
chi-square, Cramer–von Mises tests. However, usually in practical econometric
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data problems observations are correlated. For example, consider the well
known class of autoregressive moving average (ARMA) processes, which are
widely used for forecasting and analysis of time series data. These processes are
weak dependent processes with autocorrelations decaying exponentially fast.
The weak dependence in general between observations can be described by
notion of mixing sequences or processes. After Rosenblatt [15] has introduced
the notion of strong mixing processes already in 1956, different other mixing
concepts have been defined afterwards (see, for example, [3]). It appears that
well known ARMA, GARCH, bilinear and different other nonlinear processes
have some mixing property. The purpose of this paper is to analyze some
goodness-of-fit tests for dependent observations.

There exist many papers about statistical methods for general mixing se-
quences. However, the goodness-of-fit problem has been analyzed less exten-
sively. According to our knowledge the first result is due to Neumann and
Paparoditis [13], where they consider tests based on the Bickel–Rosenblatt
statistic under an exponential β-mixing rate. Next, for simple hypothesis (1.1)
the version of Neyman smooth test statistic was introduced in [12] for general
α-mixing sequences.

Our initial goal was to compare recently established Neyman test with the
Bickel–Rosenblatt test for weakly dependent observations using some empirical
power analysis. Although introduced already in 1973 (see [2]), the Bickel–
Rosenblatt statistic is problematic to use in practice. The main reason is that
the test statistic contains the smoothing bandwidth parameter, which has to
be chosen by some data-driven selection rules. This problem differs from usual
kernel density bandwidth selection problems and should be treated differently.

Although the Bickel–Rosenblatt test is less known and less used in compar-
ison to the classical goodness-of-fit tests, there are many papers published in
recognizable statistical journals analyzing its theoretical properties (for exam-
ple, [1, 4, 5, 7, 11, 13]). It appears that the Bickel–Rosenblatt test statistic has
outstanding property: it has the same asymptotic behaviour in the case of 1)
the simple and composite hypotheses; 2) the independent and weak dependent
cases. Also it is interesting to mention that unlike in common nonparamet-
ric problems, the uniform Kernel appears to be theoretically the best for the
Bickel–Rosenblatt test (see [7]).

The main goal of our paper is to analyze the Bickel–Rosenblatt test statistic
by empirical simulation study both for independent and dependent observa-
tions. More specifically, firstly we aim to find an empirical rule for bandwidth
selection for the Bickel–Rosenblatt test in case of the simple hypothesis (1.1).
Secondly, we perform an empirical power analysis for the Bickel–Rosenblatt test
similarly to the analysis done in [8] and [12]. We also compare the empirical
power of both Neyman and Bickel–Rosenblatt tests.

Recently the authors have become aware of the paper [6], where some test
statistics based on kernel density estimators in nonparametric regression prob-
lems have been analyzed. The closed-form expressions were obtained to explic-
itly represent the leading terms of both the size and power functions depending
on the bandwidth parameter. In this paper it was shown how to control the
significance level simultaneously by maximizing the power of the test. It would
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be interesting to apply these ideas to the Bickel–Rosenblatt test in both the
independent and dependent cases, but it is postponed to the future work.

We organize our paper as follows. In Section 2 we introduce both the
Neyman and Bickel–Rosenblatt test statistics. Section 3 deals with some simu-
lation study. More specifically, we simulate 1) the asymptotic behaviour of the
Bickel–Rosenblatt test statistic under H0; 2) the percentage rejections of the
true H0; 3) the power against some smooth alternatives discussed in literature.

2 Test Statistics

Bickel–Rosenblatt test. We will use the setup of [13], where they consider
the Bickel–Rosenblatt test for dependent observations characterized by abso-
lutely regular or β-mixing processes.

Let (Xt)t∈Z be a real-valued strictly stationary process defined on a proba-
bility space (Ω,F , P ). For any two σ-fields A and B ⊂ F define the following
measure of dependence

β(A,B) := sup
1

2

I∑
i=1

J∑
j=1

∣∣P (Ai ∩Bj)− P (Ai)P (Bj)
∣∣,

where this latter supremum is taken over all {A1, . . . , AI} and {B1, . . . , BJ}
from Ω such that Ai ∈ A for all i and Bj ∈ B for all j. Define FL

J := σ(Xk, J ≤
k ≤ L), when −∞ ≤ J ≤ L ≤ ∞. (Xt)t∈Z is called absolutely regular or β-
mixing if β(n) := supJ∈Z β(F

J
−∞, F

∞
J+n) → 0 when n→ ∞.

Under certain (usually mild) conditions ARMA, GARCH, nonlinear time
series models, Markov chains are β-mixing processes (see [3]).

The Bickel–Rosenblatt test statistic has the following form

Tn = nh1/2
∫ (

f̂n(x)− (Kh ∗ f)(x))2 dx,
where f is the density under the null hypothesis,

f̂n(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
is the nonparametric density estimator, where h is a smoothing parameter and
finally define

(Kh ∗ g)(·) =
∫
h−1K

( · − z

h

)
g(z) dz

for some kernel function K.

Assumptions. For a strictly stationary β-mixing process (Xt)t∈Z assume the
following:

(A′) β(k) ≤ C exp(−Ck).
(B′) K is bounded and compactly supported.

Math. Model. Anal., 17(3):383–395, 2012.
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(C′) f is continuous, furthermore

sup
x1,...,xm

{
fXi1

,...,Xim
(x1, . . . , xm)

}
< ∞ ∀m and i1 < · · · < im.

(D′) h = o([ln(n)]−3) and h−1 = o(n).

Theorem 1. [13] Assume that conditions (A′)–(D′) hold. Then under H0 we
have

Tn − h−1/2

∫
K2(u) du →d N

(
0, σ2

)
,

where

σ2 = 2

∫
f2(x) dx

∫ (∫
K(u)K(u+ v) du

)2

dv.

H0 is rejected for large values of the test statistic.
For completeness we will make a small survey of literature regarding the

bandwidth parameter selection problem and Bickel–Rosenblatt test. Fan [5]
analyzed the Bickel–Rosenblatt test and its extensions in details concluding
that for consistency of the test data should be undersmoothed in sense that
nhd+2m → 0, where m is the order of the kernel function, d denotes the di-
mension of the data vector and h denotes the smoothing bandwidth parameter.
This also agrees with the previous results in [2] and [16]. For practical simu-
lations Fan [5] analyzes the composite hypothesis of normality and suggests to
choose the smoothing parameter in the form of h = h0σ̂n

−δ, where σ̂ denotes
the estimator of the standard deviation, δ and h0 are some positive constants
with 0 < δ < 1. He chooses δ = 2/8, 2/7 and by empirical percentage rejec-
tions of the true H0 of normality suggests that, for example, for δ = 1/4, the
value of h0 = 1.90 gives a good approximation of both 5% and 10% levels for
all sample sizes considered in the simulation study. This is maybe the best
attempt in the statistical literature to find the right smoothing parameter for
testing normality by simulations.

Chebana [4] also argues that one cannot choose the smoothing parameter
h = cn−1/5 which minimizes the integrated square error and fits for estimation
but not for tests. Therefore for simulations she also suggests to follow [5] and
chooses h = h0n

−δ, where δ = 0.25 and δ = 0.30 concluding that h0 = 0.05
might be the best choice for the simulations. It is interesting to note that in
[11] and [1] the Bickel–Rosenblatt test has been established for the first-order
autoregressive time series models. For simulation study they use h = 1/3n−1/5

and h = (σ̂2/n)1/5, respectively. Finally, we also would like to mention that in
the case of weakly dependent absolutely regular or β-mixing processes in [13]
a fixed bandwidth h = 0.03 has been chosen in the simulation study.

Neyman test. In [12] a modification of Neyman test has been introduced for
strong mixing or α-mixing processes. For any two σ-fields A and B ⊂ F define
the following measure of dependence

α(A,B) := sup
∣∣P (A ∩B)− P (A)P (B)

∣∣,
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where this latter supremum is taken over all A ∈ A and B ∈ B. For −∞ ≤
J ≤ L ≤ ∞ define FL

J := σ(Xk, J ≤ k ≤ L). (Xt)t∈Z is called strongly mixing
or α-mixing (see e.g. [3]) if α(n) := α(F 0

−∞, F
∞
n ) → 0 when n→ ∞.

It is well known that β-mixing property is stronger than α-mixing property
(see [3]). That means that β-mixing processes are also α-mixing, but not vice-
versa. A rescaled version of the Neyman statistic has the following form

Nk =
(
12σ2

)−1
Rk =

(
12σ2

)−1
k∑

j=1

{
n−

1
2

n∑
i=1

φj(Xi)
}2

, (2.1)

σ2 =

+∞∑
t=−∞

Cov(X0, Xt), (2.2)

where φ0, φ1, . . . , is an orthonormal system in L2[0, 1] with φ0(x) = 1. Com-
monly one restricts to the Legendre polynomial system on the interval [0, 1].
Note also that in the case of iid observations under H0 the factor (12σ2)−1 = 1
and Nk reduces to Rk, statistic initially proposed in [14].

Ledwina [10] has made the Neyman test appealing in comparison to other
well-known tests choosing k by the Schwarz’s [17] selection rule. We will use
the following modifications of this rule

Smod = min
{
k : 1 ≤ k ≤ d(n), Rk − k log n ≥ Rj − j log n, j = 1, . . . , d(n)

}
,

Smod2 = min
{
k : 1 ≤ k ≤ d(n), Nk − k log n ≥ Nj − j log n, j = 1, . . . , d(n)

}
.

The first rule Smod is based on the Neyman test statistic Rk in the indepen-
dent case and is equivalent to the usual Schwarz’s rule based on the penalized
likelihood as shown in [9]. Smod2 proposed in [12] takes into account also the
underlying dependence structure.

Finally, in [12] the consistency of the rescaled Neyman statistic NSmod
has

been shown. It appears that under H0 and rather mild conditions asymp-
totically the selection rules Smod and Smod2 select the dimension 1. Moreover,
NSmod

has the asymptotic chi-squared distribution with the degree of freedom 1
(see Theorem 2 and Corollaries 1 and 2). On the other hand under any sensible
alternative (under H1) it diverges to infinity.

Assumptions. For a strictly stationary α-mixing process (Xt)t∈Z assume the
following

(A) α(n) ≤ aρn, for some a > 0, 0 < ρ < 1.

(B) E|Xt|γ < +∞ for some γ > 2.

(C) σ2 =
∑+∞

t=−∞ Cov(X0, Xt) > 0.

(D) d(n) = o(log n/ log log n).

Let P0 denote that the marginals of (Xt)t∈Z are uniformly distributed
on [0, 1].

Theorem 2. [12] For a strictly stationary α-mixing process (Xt)t∈Z assume
(A) and (D).

Math. Model. Anal., 17(3):383–395, 2012.
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a) Then limn→∞ P0(Smod = 1) = 1.

b) If we assume furthermore that (B) and (C) hold, then under H0, as
n→ ∞, NSmod

→d χ
2
1.

Corollary 1. [12] Assume σ̂2 is a consistent estimator of σ2 defined in (2.2) and
further assume (A)–(D). Then(

12σ̂2
)−1

RSmod
→d χ

2
1.

Now let us investigate the asymptotical behaviour of NSmod
under alterna-

tives. Let Xt have a marginal distribution P �= P0 on [0, 1]. Suppose that

EPφ1(X) = · · · = EPφK−1(X) = 0, EPφK(X) �= 0 (2.3)

for some K = K(P ) ≥ 2. Consistency of NSmod
will be proved for any alterna-

tive of the form (2.3). It will be assumed that limn→∞ inf d(n) ≥ K, which is
certainly the case if limn→∞ d(n) = ∞, since K is fixed (see Assumption (D)).

Theorem 3. [12] Let (Xt)t∈Z be a strictly stationary α-mixing process. As-
sume that (A) holds. Then under any alternative P �= P0 with K defined
in (2.3), as n→ ∞

lim
n→∞P (Smod ≥ K) = 1 and NSmod

P→ ∞.

Corollary 2. [12] Under the assumptions (A)–(D) Theorems 2 and 3, and Corol-
lary 1 hold also for the selection rule Smod2 and the test statistic NSmod2

.

To use the Neyman test in the dependent case additional to the iid case one
needs to estimate σ2 in (2.2). Define the autocovariance γ(h) := Cov(Xt+h, Xt)
for all t, h ∈ Z. For stationary processes and in particular for ARMA processes
a common estimate for γ(h) is given by

γ̂(h) = (n− h)−1
n−h∑
t=1

(Xt − X̄)(Xt+h − X̄) for 0 ≤ h ≤ n− 1.

Thus it naturally leads to the estimator

σ̂2 = γ̂(0) + 2

q∑
j=1

γ̂(j), (2.4)

where q denotes the lag of the last autocovariance γ(q), which has to be es-
timated. One possibility is simply to truncate the autocovariances rounding
them to three decimal places in order to find appropriate q and estimate σ2

as in (2.4) (see [12]). In case of the exponential decrease of mixing coefficients
and positive dependence, such a truncation is plausible.



Bickel–Rosenblatt Test for Weakly Dependent Data 389

3 Simulation Study

In this section by simulation study we analyze the asymptotic behaviour of the
test statistics, the empirical percentage rejections under H0 and the empirical
power against some smooth alternatives in the independent and dependent
cases. In order to generate data from α-mixing process we will use the first
order autoregressive process {Xt}t∈Z defined as

Xt − θXt−1 = Zt,

where {Zt}t∈Z is an innovation process which is weakly stationary with mean
0 and autocovariance E(ZtZt+h) = σ2

Z < ∞ if h = 0 and 0 otherwise, and
|θ| ≤ 1 is the coefficient of the process. As described in [12] we generate
mixing sequences from AR(1) processes with uniform marginals first generating
them with normally distributed innovations, then using simple transformation
by the respective cumulative distribution function. For our simulation study
we will generate data form AR(1) processes with the coefficients θ = 0.3, 0.9
(denoted by models M1, M2) and θ = −0.3,−0.9 (denoted by models M3,
M4) to represent both moderate and strong negative and positive dependence,
respectively.

Figure 1. The true density under H0 (solid line) and three kernel density estimators
(with h = {0.004, 0.01, 0.02}) for the simulated statistic Tn under H0 for the independent

case with n = 1000 and 1000 replications. Kernels used in graphics are 1) N(0, 1) (left plot)
and 2) U [−1, 1] (right plot), σ2 is such as given in Theorem 1.

For illustration we have simulated the behaviour of the statistic Tn in order
to see how it depends on the bandwidth sequences and the structure of underly-
ing process. We used the nonparametric density approximations, based on the
sample size n = 1000, different fixed bandwidth h values and 1000 replications.
From the whole simulation study we found out that the results obtained using
the uniform kernel only slightly differ from those using the standard normal
kernel (see, for example, Figure 1).

In Figure 1 we see the behaviour of Tn in the independent case for both
N(0, 1) and U [−1, 1] kernels. Figures 2 and 3 deal with the Models M1, M3

and M2, M4, respectively, with N(0, 1) kernel. For moderate dependence the
optimal bandwidth is close to the independent case. However, for strongly neg-
ative and especially positive dependent observations first note that the limiting
distribution is not well approximated when n = 1000. Moreover, from Figure 3

Math. Model. Anal., 17(3):383–395, 2012.
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we can see that the bandwidth choice may strongly differ from the independent
case.
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Figure 2. The true density under H0 (solid line) and three kernel density estimators for
the simulated statistic Tn under H0 for models M1 (left plot) and M3 (right plot) with
n = 1000 and 1000 replications. Kernel is N(0, 1) and σ2 is such as given in Theorem 1.
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Figure 3. The true density under H0 (solid line) and three kernel density estimators for
the simulated statistic Tn under H0 for models M2 (left plot) and M4 (right plot) with
n = 1000 and 1000 replications. Kernel is N(0, 1) and σ2 is such that in Theorem 1.

Following [5] and [4] throughout we will use the bandwidth sequence in the
form h = h0n

−δ, where δ = 1/4 and h0 = (0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.15,
0.2, 0.25, 0.3). Other choices of δ lead to similar conclusions with a little differ-
ent h0 values.

In Table 1 simulated percentage rejections of the true H0 are shown for the
independent case andM1, M3 models. For the parameters h0 and δ chosen cor-
rectly, we expect that the respective column in Table 1 will show approximately
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Table 1. Tn percentage rejections of the trueH0 at 5% significance level with n = 20, 50, 100
for the iid case and models M1 and M3 made with 10,000 replications, h = h0n−1/4; kernel
U [−1, 1].

h0

n 0.005 0.01 0.02 0.03 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

{iid , 50} 6.90 6.61 6.03 5.59 4.86 4.34 3.93 3.49 2.98 2.65 2.39 2.25
{iid , 500} 6.06 6.21 6.35 5.60 5.67 4.99 4.51 4.45 4.21 3.88 3.70 3.45
{iid , 1000} 6.58 6.69 6.50 5.22 4.99 5.28 5.58 4.68 4.41 4.21 4.09 3.87

{M1, 50} 7.15 7.23 7.35 7.31 7.46 7.98 7.79 7.64 7.50 7.11 6.80 6.32
{M1, 500} 7.68 7.65 8.02 7.06 7.80 8.01 7.75 7.95 8.09 8.00 8.08 8.07
{M1, 1000} 7.48 8.12 8.48 6.85 6.71 8.27 9.63 8.54 8.87 8.85 8.77 8.66

{M2, 50} 37.47 46.68 56.37 62.36 68.14 74.47 75.82 76.36 75.81 75.00 74.01 72.62
{M2, 500} 42.55 53.74 64.22 67.86 73.94 78.53 80.32 80.99 81.11 81.03 80.57 80.03
{M2, 1000} 41.00 52.78 63.50 66.02 71.38 77.63 80.92 80.52 81.01 80.97 80.77 80.59

{M3, 50} 6.26 5.97 5.31 5.31 4.59 3.59 2.91 2.48 2.07 1.63 1.49 1.29
{M3, 500} 5.91 5.94 6.00 5.21 5.20 4.34 3.91 3.53 3.13 2.85 2.54 2.29
{M3, 1000} 5.95 6.05 5.99 4.49 4.29 4.52 4.88 3.66 3.42 3.36 3.11 2.78

{M4, 50} 15.91 18.77 21.61 23.77 25.90 28.22 28.21 27.59 26.87 25.88 24.54 23.19
{M4, 500} 14.39 18.69 22.89 23.51 26.62 29.68 30.61 30.47 30.20 29.89 29.31 28.76
{M4, 1000} 14.68 18.91 22.86 22.64 25.40 30.01 32.57 31.48 31.47 31.43 31.08 30.75

5% for all sample sizes large enough. We can see that for δ = −1/4, h0 = 0.05
could be a good choice for independent and also slight dependent cases (M1

and M3 models). Note also that for negatively correlated data the empirical
percentage rejections are closer to 5% than for positively correlated data for
the chosen set of bandwidth values. Moreover, the results for the independent
case are more similar to the slight negative case characterized by model M3.
To conclude from Table 1 we see that for the dependent and the independent
cases optimal h0 choice shall differ already in the case of moderate dependence.

For power analysis we use some alternatives investigated in [10] and [8]
which reflect different patterns of the density deviating from the null density.
Following these authors we consider alternatives of the form

g1(x) = c(θ) exp

{
k∑

j=1

θjφj(x)

}
, (3.1)

where θ = (θ1, . . . , θk)
T ∈ R

k is a parameter vector and θT denotes the trans-
pose of a vector θ. Here c(θ) is a normalizing constant, such that g1 integrates
to one. We also analyze alternatives of the form

g2(x) = 1 + ρ cos(jπx). (3.2)

For illustration see Figure 4 for alternatives g1 and g2 defined in (3.1) and
(3.2) with different parameters used in simulations θ1 = 0.3; θ2 = {0, 0.4};
θ3 = {0.25,−0.35} and {ρ, j} = ({0.4, 1}, {0.5, 2}, {0.7, 4}, {0.7, 5}, {0.7, 6}),
respectively.

Math. Model. Anal., 17(3):383–395, 2012.
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Figure 4. g1 (left plot) and g2 (right plot) alternatives chosen for simulation study.

Table 2. Estimated power (%) for g1 and g2 alternative defined in (3.1) and (3.2) of RSmod

(independent case), NSmod2
(M1 model) when n = 50 and d(n) = 10 based on 10,000 samples

in each case. For estimation of σ̂2 we use q = 3 in (2.4).

Statistic θ {ρ, j}
θ1 θ2 θ3 {0.4; 1} {0.5; 2} {0.7; 4}

RSmod
38.02 58.16 57.62 34.23 58.16 52.73

NSmod2
33.95 56.18 23.95 31.82 30.35 14.94

In Table 2 the empirical power in percentage has been shown for the alterna-
tives g1 and g2 for both: 1) the Neyman test RSmod

in the independent case; 2)
the Neyman test NSmod2

in the positively dependent case (model M1). For neg-
atively correlated observations the Neyman test works much worse (see [12]),
therefore we do not analyze this situation here. We base our simulations on
10,000 replications and fix n = 50 and d(n) = 10. As expected we conclude
that in the independent case the Neyman test is more powerful than in the
dependent case. For more detailed description and simulation study we refer
to [12].

Next for the alternatives g1 and g2 we analyze the empirical power for the
Bickel–Rosenblatt test statistic Tn. Again we consider only the case with n = 50
and base our simulations on 10,000 replications. We choose the kernel asN(0, 1)
density and h = h0n

−1/4 with h0 = (0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.15, 0.2,
0.25, 0.3). Tables 3–5 deal with the independent case and M1, M3 models,
respectively. The maximal power is shown in black. In contrast to the Neyman
test the power heavily depends on the smoothing parameter. Clearly if one
wishes to control the “right” behaviour of the statistic Tn under H0 choosing,
say h0 = 0.01 (see Table 1) then one may loose power of the test significantly.

Finally, for dependent observations (models M1, M2, M3 and M4) we plot
some power functions (see Figure 5) varying the sample size from n = 10 to
n = 500 for the fixed bandwidth h = h0n

−1/4, where the constant h0 = 0.05 has
been selected from the Table 1 as the best one. For this analysis we use the Uni-
form kernel U [−1, 1] and alternatives considered already in the Tables 3–5. We
denote them in the same order shortly by {alt1; alt2; alt3; alt4; alt5} from (3.2)
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Table 3. Independent case. Simulated power of Tn for alternatives g1 and g2 with n = 50
and 10,000 replications; h = h0n−1/4, kernel U [−1, 1].

h0

ρ j 0.005 0.01 0.02 0.03 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.4 1 9.2 10.3 13.9 15.6 20.5 28.1 33.2 36.1 38.7 41.7 43.5 45.4
0.5 2 11.6 12.3 17.6 21.4 26.8 37.9 43.9 48.8 51.8 54.0 55.3 55.5
0.7 4 17.0 24.6 34.8 43.2 55.5 70.0 73.3 73.6 69.6 64.9 55.2 40.4
0.7 5 17.6 23.9 34.9 43.1 55.0 66.7 69.2 66.4 55.7 38.9 23.2 13.3
0.7 6 16.9 22.6 32.8 40.9 52.7 62.4 60.3 50.9 33.5 18.6 10.2 7.2

θ

(0, 3) 25.9 23.5 24.4 26.0 28.4 32.8 36.4 40.1 42.5 44.6 46.6 48.2
(0,−0.4) 10.4 12.4 17.5 21.9 26.8 34.0 39.1 41.9 42.9 45.3 46.0 45.8

(0.25,−0.35) 10.0 12.0 17.6 21.0 27.2 33.7 38.2 42.5 45.2 48.5 49.6 50.5

Table 4. AR(1) case with φ = 0.3 (M1 model). Simulated power for alternatives g1 and
g2 with n = 50 and 10,000 replications; h = h0n−1/4, kernel U [−1, 1].

h0

ρ j 0.005 0.01 0.02 0.03 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.4 1 8.1 9.3 12.4 13.8 16.7 20.9 24.4 26.5 27.9 29.7 30.3 30.8
0.5 2 10.8 11.9 15.9 19.5 25.3 31.8 36.2 38.6 39.7 40.5 39.9 38.9
0.7 4 18.1 22.8 31.7 39.5 48.4 61.1 66.3 64.0 59.0 50.9 37.9 25.7
0.7 5 16.7 21.7 32.4 38.8 48.3 58.8 60.3 52.9 41.1 26.5 15.9 10.4
0.7 6 16.6 22.1 30.2 39.1 48.2 56.7 52.4 40.7 24.2 11.7 7.8 6.4

θ

(0, 3) 27.6 23.3 22.5 24.0 26.1 28.4 32.5 33.3 33.6 35.1 36.5 37.1
(0,−0.4) 10.9 10.9 14.0 16.2 19.4 24.9 31.3 32.9 33.7 34.1 33.8 32.3

(0.25,−0.35) 9.5 10.6 14.3 16.5 20.0 26.9 32.9 34.9 37.1 38.2 38.5 38.0

Table 5. AR(1) case with φ = −0.3 (M3 model). Simulated power for alternatives g1 and
g2 with n = 50 and 10,000 replications; h = h0n−1/4, kernel U [−1, 1].

h0

ρ j 0.005 0.01 0.02 0.03 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.4 1 6.1 9.2 10.8 12.8 15.2 22.5 28.6 34.4 37.3 41.5 44.9 48.1
0.5 2 8.9 12.8 16.6 19.2 26.3 38.9 46.0 50.7 54.6 57.5 58.7 60.7
0.7 4 15.3 21.9 33.8 40.5 53.0 70.0 75.7 77.9 75.4 70.4 62.2 48.7
0.7 5 16.3 22.6 33.6 39.7 53.6 67.9 70.8 68.1 58.3 42.2 26.0 15.8
0.7 6 16.1 22.0 32.0 38.9 52.2 64.2 64.8 55.3 39.0 22.2 12.5 9.6

θ

(0, 3) 25.1 25.3 25.2 24.5 27.6 34.6 40.1 45.3 49.8 53.7 57.4 60.9
(0,−0.4) 7.8 11.1 15.4 17.1 23.2 33.4 38.4 42.5 44.8 47.0 47.7 48.3

(0.25,−0.35) 9.3 11.7 15.5 17.4 23.7 33.8 40.2 45.7 48.5 51.6 53.3 55.5
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Figure 5. Empirical power plots for different alternatives (3.2) and (3.1) for models M1

(top left plot), M3 (top right plot), M2 (bottom left plot) and M4 (bottom right plot) with
different sample sizes, based on 1000 replications. Kernel is U [−1, 1] and h = h0n−1/4 with

h0 = 0.05.

and {alt .exp1, alt .exp2, alt .exp3} from (3.1).
We conclude that the bandwidth choice heavily affects the power behaviour

of the test. For different dependence structures the bandwidth parameter
should be chosen differently under H0. However, for slight dependences (pos-
itive or negative) the behaviour of the Bickel–Rosenblatt test is similar to the
independent case and one could suggest to use for testing purposes, for exam-
ple, the bandwidth h = h0n

−1/4 with h0 = 0.05. As it has been mentioned
in the Introduction it would be interesting to apply the ideas developed in [6]
for the Bickel–Rosenblatt test both for independent and also for dependent
observations.
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