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Abstract. This paper presents a solution approach for multi-objective linear pro-
gramming problem. We propose to involve fuzzy order relations to describe the ob-
jective functions where in ”classical” fuzzy approach the membership functions which
illustrate how far the concrete point is from the solution of individual problem are
studied. Further the global fuzzy order relation is constructed by aggregating the
individual fuzzy order relations. Thus the global fuzzy relation contains the infor-
mation about all objective functions and in the last step we find a maximum in the
set of constrains with respect to the global fuzzy order relation. We illustrate this
approach by an example.
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1 Introduction

In the paper we work in the field of multi-objective (or Multiple Objective) lin-
ear programming (MOLP), which is an important tool for solving real-life op-
timization problems such as production planning, logistics, environment man-
agement, banking/finance planning etc. Our investigations are based on the
fuzzy approach [16] where the membership functions are involved to prescribe
how far the concrete point is from the solution of an individual problem. In
our paper we propose to use fuzzy order relations [1, 15] instead of the mem-
bership functions described above. Further we describe the solution approach
and investigate examples. Let us now focus on the problem formulation and
the scheme description.
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MOLP problem can be represented as follows:

max Z, where Z = (z1, . . . , zk) is a vector of objectives,

zi =

n∑
j=1

cijxj , where i = 1, . . . , k,

subject to

n∑
j=1

aijxj ≤ bi, i = 1, . . . ,m. (1.1)

So we must find a vector xo = (xo1, . . . , x
o
n) which maximizes k objective func-

tions of n variables, and with m constraints. Let D denote a feasible region of
the problem (1.1). For the sake of brevity further we denote vectors in bold,
e.g., x = (x1, . . . , xn), y

∗ = (y∗1 , . . . , y
∗
n).

In problem (1.1), all objective functions can hardly reach their optima at the
same time subject to the given constraints since usually the objective functions
conflict with one another. Thus Pareto optimal solution (efficient solution) and
optimal compromise solution are introduced:

Definition 1. [17] x∗ is called Pareto optimal solution if and only if there does
not exist another x ∈ D such that zi(x

∗) ≤ zi(x) for all i and zj(x
∗) �= zj(x)

for at least one j.

Definition 2. [17] An optimal compromise solution of a vector-maximum prob-
lem is a solution x ∈ D which is preferred by the decision maker to all other
solutions, taking into consideration all criteria contained in the vector-valued
objective function. It is generally accepted, that an optimal compromise solu-
tion has to be a Pareto optimal solution. Further we will call optimal compro-
mise solution simply optimal solution.

Thus our main aim is to determine the optimal compromise solution. The
fuzzy approach for solving MOLP proposed by Zimmermann [16] has given
an effective way of measuring the satisfaction degree for MOLP. The idea is
to identify the membership functions prescribing the fuzzy goals (solutions of
individual problem) for the objective functions zi, i = 1, . . . , k. The following
linear function is an example of a membership function:

μi(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if zi(x) < zmin

i ,

zi(x)− zmin
i

zmax
i − zmin

i

, zmin
i ≤ zi(x) ≤ zmax

i ,

1, zi(x) > zmax
i ,

where zmax
i is the solution of individual problem

max zi, s.t.

n∑
j=1

aijxj ≤ bi, i = 1, . . . ,m

and zmin
i is the solution of individual problem
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min zi, s.t.

n∑
j=1

aijxj ≤ bi, i = 1, . . . ,m.

Usually the membership functions μi are linear functions and it is argued by the
“facilitation computation for obtaining solutions”. Further in the “classical”
fuzzy approach membership functions μi are aggregated. The main subject
which is discussed in the large part of papers is the choice of an aggregation
function.

In our paper we propose a completely different approach although we still
use the fuzzy environment. We initiate involving of fuzzy orders to solve the
problem. To justify the choice of fuzzy order let us first observe the classical
linear programming problem when we should maximize the unique function
z =

∑n
j=1 cjxj where the vectors (x1, . . . , xn) belong to the set

D :

n∑
j=1

aijxj ≤ bi, i = 1, . . . ,m.

In this case we can involve the relation �:

x � y ⇔ z(x) ≤ z(y)

which is obviously a crisp linear order with respect to the crisp equivalence
relation

x
.
= y ⇔ z(x) = z(y).

Thus we can reformulate the problem in the following way: MAX (D,�). That
is we should find a maximum in the set D which is ordered by the linear order
�. We use this idea to solve the multi-objective linear programming problem.
Since we have more than one objective function we should involve order relation
for each objective function and they should be obviously fuzzy order relations
to overcome the conflict of all objective functions. Further we aggregate fuzzy
order relations to get one fuzzy order relation which include the information
about all objective functions and in the last step we should find a maximum in
the set D with respect to the aggregated fuzzy order relation. Thus the scheme
of solution is as follows:

1. We define fuzzy order relations Pi which generalize the following crisp
order relations:

x �i y ⇔ zi(x) ≤ zi(y), i = 1, . . . , k.

Thus each fuzzy order relation describes corresponding objective func-
tion zi.

2. We aggregate fuzzy orders using an aggregation function A which pre-
serves the properties of initial fuzzy orders:

P (x,y) = A
(
P1(x,y), . . . , Pk(x,y)

)
.

Thus the aggregated fuzzy order relation P provides the information
about all objective functions.
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3. We find a maximum in the set D with respect to the aggregated fuzzy
order relation P .

In our work we exactly realize the above described scheme. As we have seen
above, solving the classical linear programming problem with one objective
function there is naturally arisen crisp linear order, which could be naturally
generalized to fuzzy linear order solving multi-objective problem. Thus if we use
fuzzy approach proposed by Zimmermann [16] and generalized by many others
authors (see e.g. [6, 11, 12]) we do not take into account the information about
these orders (which are reflective, transitive and antisymmetric relations), so
this information is lost. Thus one of the advantages of our approach is that
we take into account this information, and even more aggregating these fuzzy
orders we use the aggregation function which preserve the properties of fuzzy
orders. The other advantage is that in our approach we explain the “shape”
of fuzzy order relation and choice of aggregation function (this is caused by
the fuzzy environment (or t-norm) in which we are working). Moreover, in our
approach we can naturally use compensatory aggregation functions and even
more we can use weights (see last section) to show the preference of objective
functions.

As we wrote in Definition 2, an optimal compromise solution has to be a
Pareto optimal solution. Although the “min” operator method, proposed by
Zimmermann [16] has been proven to have several nice properties, the solu-
tion generated by this approach does not guarantee Pareto-optimality. As we
will see later, in our approach we have found the properties which guarantee
Pareto-optimality even regardless of the uniqueness of the optimal solution (see
Theorem 6).

The paper is structured in the following way: Section 2 contains some
known facts about fuzzy logic important for the further understanding of the
material; we propose the general information about fuzzy relations and build
the essential fuzzy relations for the realization of our scheme in Section 3; we
study the aggregation of fuzzy relations in Section 4; We propose the solution
approach in Section 5; we observe the numerical example in Section 6 and we
conclude our paper by Section 7.

2 Preliminaries

When we solve MOLP problem using a fuzzy approach it is worth to work in
fuzzy logic where the truth values are from the unit interval with 1 being the
absolute truth and 0 being the absolute falsity. For example for the statement
that x ≤ y we do not say that it is true or false, but we give the degree to
which the statement is true which is a number from the unit interval. For the
brief introduction to fuzzy set theory and fuzzy logic see [14], for more detailed
information see [7]. We start with the definition of a t-norm which represents
a generalized conjunction in fuzzy logic:

Definition 3. [9] A triangular norm (t-norm for short) is a binary operation T
on the unit interval [0, 1], i.e. a function T : [0, 1]2 → [0, 1] such that for all
x, y, z ∈ [0, 1] the following four axioms are satisfied:
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• T (x, y) = T (y, x) (commutativity);

• T (x, T (y, z)) = T (T (x, y), z) (associativity);

• T (x, y) ≤ T (x, z) whenever y ≤ z (monotonicity);

• T (x, 1) = x (boundary condition).

Some of often used t-norms are mentioned below:

• TM (x, y) = min(x, y) minimum t-norm;

• TP (x, y) = x · y product t-norm;

• TL(x, y) = max(x+ y − 1, 0) �Lukasiewicz t-norm.

A t-norm T is called Archimedean if and only if, for all pairs (x, y) ∈ (0, 1)2,

there is n ∈ N such that x
(n)
T < y. Product and �Lukasiewicz t-norms are

Archimedean while minimum t-norm is not.
We proceed with one powerful tool for the construction of t-norms involving

only one-place real function (additive generator) and addition. Furthermore,
we use the same tool for constructing fuzzy equivalence.

Definition 4. [9] Let f : [a, b] → [c, d] be a monotone function, where [a, b]
and [c, d] are closed subintervals of the extended real line [−∞,∞]. The pseudo-
inverse f (−1) : [c, d] → [a, b] of f is defined by

f (−1)(y) =

⎧⎪⎨⎪⎩
sup{x ∈ [a, b] | f(x) < y} if f(a) < f(b),

sup{x ∈ [a, b] | f(x) > y} if f(a) > f(b),

a if f(a) = f(b).

Definition 5. [9] An additive generator t : [0, 1] → [0,∞] of a t-norm T is
a strictly decreasing function which is also right-continuous in 0 and satisfies
t(1) = 0, such that for all (x, y) ∈ [0, 1]2 we have

t(x) + t(y) ∈ Ran(t) ∪ [
t(0),∞]

, T (x, y) = t(−1)
(
t(x) + t(y)

)
.

3 Fuzzy Order Relations

We continue with an overview of basic definitions and results on fuzzy relations.
Definitions of a fuzzy order relation and a fuzzy equivalence relation were first
introduced by L.A. Zadeh in 1971 [15] under the names of fuzzy ordering and
similarity relation. Fifteen years later U. Höhle and N. Blanchard in their
paper [8] proposed to involve fuzzy equivalence relation (L-valued equality) in
a definition of a fuzzy order (partial ordering). In our paper we use more resent
results on fuzzy order defined with respect to the fuzzy equivalence relation
(studied in [1]).

Definition 6. A fuzzy binary relation R on a set X is a mapping R : X×X →
[0, 1].
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Definition 7 [see e.g. [1]]. A fuzzy binary relation E on a set X is called a
fuzzy equivalence relation with respect to a t-norm T (or T -equivalence), if and
only if the following three axioms are fulfilled for all x, y, z ∈ X:

1. E(x, x) = 1 reflexivity;

2. E(x, y) = E(y, x) symmetry;

3. T (E(x, y), E(y, z)) ≤ E(x, z) T-transitivity.

The following result establishes principles of construction of fuzzy equiva-
lence relations using pseudo-metrics.

Theorem 1. [4] Let T be a continuous Archimedean t-norm with an additive
generator t. For any pseudo-metric d, the mapping

Ed(x, y) = t(−1)
(
min

(
d(x, y), t(0)

))
is a T -equivalence.

Example 1. Let us consider the set of real numbers X = R and metric d(x, y) =
|x − y| on it. Taking into account that tL(x) = 1 − x is an additive generator
of TL (�Lukasiewicz t-norm) and that tP (x) = − ln(x) is an additive generator
of TP (product t-norm), we obtain two fuzzy equivalence relations:

EL(x, y) = max
(
1− |x− y|, 0); EP (x, y) = e−|x−y|.

Definition 8 [see e.g. [1]]. A fuzzy binary relation L on a set X is called fuzzy
order relation with respect to a t-norm T and a T -equivalence E (or T -E-order),
if and only if the following three axioms are fulfilled for all x, y, z ∈ X:

1. L(x, y) ≥ E(x, y) E-reflexivity;

2. T (L(x, y), L(y, z)) ≤ L(x, z) T-transitivity;

3. T (L(x, y), L(y, x)) ≤ E(x, y) T -E-antisymmetry.

A fuzzy order relation L is called strongly linear if and only if ∀x, y ∈ X:
max(L(x, y), L(y, x)) = 1.

The following theorem states that strongly linear fuzzy order relations are
uniquely characterized as fuzzifications of crisp linear orders. Preliminarily let
us recall the definition of compatibleness:

Definition 9. [1] Let � be a crisp order on X and let E be a fuzzy equivalence
relation on X. E is called compatible with � if and only if the following impli-
cation holds for all x, y, z ∈ X: x � y � z ⇒ (E(x, z) ≤ E(y, z) and E(x, z) ≤
E(x, y)).

Theorem 2. [1] Let L be a binary fuzzy relation on X and let E be a T -
equivalence on X. Then the following two statements are equivalent :

1. L is a strongly linear T -E-order on X.

Math. Model. Anal., 17(3):366–382, 2012.
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2. There exists a linear order � the relation E is compatible with, such that
L can be represented as follows:

L(x, y) =

{
1, if x � y,

E(x, y), otherwise.

This theorem shows that if we have a set X, a linear order � on it and
a T -equivalence on X which is compatible with �, then we can build a fuzzy
linear order L as it was shown above.

Let us now come back to the realization of our scheme. Our aim now
is to involve fuzzy orders Pi which contain the information about objective
functions zi. Since we define fuzzy order relations it is necessary to define fuzzy
equivalence relations first. To define the fuzzy equivalence relations we use the
construction proposed in the Theorem 1 where the relation is constructed on
the base of a pseudo-metric. It is worth to mention that this approach is widely
used in the literature for practical applications (see e.g. [3]).

Thus we build the following pseudo-metrics on the set D:

di(x,y) =
|zi(x)− zi(y)|
zmax
i − zmin

i

.

Thus defined di are indeed pseudo-metrics and applying the Theorem 1 we can
build a T -equivalence relation:

Ei(x,y) = t(−1)

(
min

( |zi(x)− zi(y)|
zmax
i − zmin

i

, t(0)

))
, (3.1)

where t is an additive generator of a continuous Archimedean t-norm T .
Hence we should first choose a t-norm which plays a role of a generalized

conjunction and further construct T -equivalences using a correspondent addi-
tive generator t.

Example 2.

1. Ei(x,y) = 1− |zi(x)− zi(y)|
zmax
i − zmin

i

(3.2)

are fuzzy TL-equivalence relations.

2. Ei(x,y) = e
− |zi(x)−zi(y)|

zmax
i

−zmin
i (3.3)

are fuzzy TP -equivalence relations.

Remark 1. Although the above defined pseudo-metrics are quite natural, other
metrics can be also used. For example the following pseudo-metrics can be
chosen:

di(x,y) = Ci · |zi(x)− zi(y)|
zmax
i − zmin

i

,

where Ci is a real number greater than 0.
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In this case Ei(x,y) = max(1−Ci · |zi(x)−zi(y)|
zmax
i −zmin

i
, 0) are fuzzy TL-equivalence

relations and Ei(x,y) = e
−Ci

|zi(x)−zi(y)|
zmax
i

−zmin
i are fuzzy TP -equivalence relations.

Further we build fuzzy order relations applying Theorem 2. Namely we
construct T -Ei-orders where T is a chosen t-norm and Ei is a constructed
fuzzy equivalence relation. To apply Theorem 2 we should also fix crisp order
relations and in our case they are linear orders �i on the set D:

x �i y ⇔ zi(x) ≤ zi(y).

Let us show that fuzzy equivalence relation (3.1) is compatible with linear order
�i: x �i y �i z ⇒ (Ei(x, z) ≤ Ei(y, z) and Ei(x, z) ≤ Ei(x,y)).

If x �i y �i z then zi(x) ≤ zi(y) ≤ zi(z) and hence |zi(x) − zi(y)| ≤
|zi(x)− zi(z)|. Furthermore

min

( |zi(x)− zi(y)|
zmax
i − zmin

i

, t(0)

)
≤ min

( |zi(x)− zi(z)|
zmax
i − zmin

i

, t(0)

)
.

Hence by strictly decreasing monotonicity of t(−1) we get: Ei(x, z) ≤ Ei(x,y).
The same considerations are valid to show that Ei(x, z) ≤ Ei(y, z).

Hence the following functions:

Pi(x,y) =

{
1, if x �i y

Ei(x,y), otherwise
=

{
1, if zi(x) ≤ zi(y),

Ei(x,y), otherwise.
(3.4)

are T -Ei-orders, where Ei are defined by Equation (3.1).

Example 3.

1. Pi(x,y) =

{
1, if zi(x) ≤ zi(y),

1− |zi(x)−zi(y)|
zmax
i −zmin

i
, otherwise

are fuzzy order relations with respect to t-norm TL and TL-equivalence
Ei defined by Equation (3.2).

2. Pi(x,y) =

⎧⎨⎩1, if zi(x) ≤ zi(y),

e
− |zi(x)−zi(y)|

zmax
i

−zmin
i , otherwise

are fuzzy order relations with respect to t-norm TP and TP -equivalence
Ei defined by Equation (3.3).

The fuzzy order relations are constructed and we come to the next step
where we aggregate corresponding relations.

4 Aggregation of Fuzzy Order Relations

The idea of the following section is that we have to fuse the information about
all fuzzy order relations Pi and get a global fuzzy order relation P which in-
cludes the information about all fuzzy order relations Pi and thereby also the

Math. Model. Anal., 17(3):366–382, 2012.
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information about all objective functions zi. Let us introduce the following
mapping A : [0, 1]k → [0, 1] which aggregates fuzzy order relations:

P (x,y) = A
(
P1(x,y), . . . , Pk(x,y)

)
.

It is natural to require from A at least the following properties:

1. If Pi(x,y) = 1 for all i (that is x �i y) the global degree should be also 1.
In other words: A(1, . . . , 1) = 1.

2. If x �i y does not entirely fulfilled for every i, then the global degree of
fulfillment should be 0, too: A(0, . . . , 0) = 0.

3. If one degree Pi(x,y) increases while the others are kept constant, the
overall degree must not decrease, i.e. A should be non-increasing in each
component.

That is exactly the definition of aggregation function:

Definition 10. [5] An aggregation function is a mapping A : [0, 1]k → [0, 1]
which fulfills the following properties:

• A(x1, . . . , xk) ≤ A(y1, . . . , yk) whenever xi ≤ yi for all i ∈ {1, . . . , k}
(monotonicity);

• A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1 (boundary conditions).

For more information about aggregation functions or aggregation operators
see [5] and [10]. It is also natural to require that the global fuzzy relation
should fulfill the same properties as the individual fuzzy relations.

Due to the fact that the fuzzy order relations are based on the equivalence
relations let us first focus on the aggregation of fuzzy equivalence relations Ei.
The preservation of reflexivity is rather clear because of the boundary condi-
tions of aggregation function. Preservation of symmetry is also obvious. The
more interesting and complex question is about preservation of T -transitivity.
Here we use the results about the preservation of T -transitivity studied in [13],
where it is shown that preservation of T -transitivity is equivalent to the domi-
nance of the t-norm T by the aggregation operator (or function) A.

Definition 11. [13] Consider an n-argument aggregation function A:[0,1]n→
[0, 1] and a t-norm T . We say that A dominates T if for all xi ∈ [0, 1] with
i ∈ {1, . . . , n} and yi ∈ [0, 1] with i ∈ {1, . . . , n} the following property holds:

T
(
A(x1, . . . , xn), A(y1, . . . , yn)

) ≤ A
(
T (x1, y1), . . . , T (xn, yn)

)
.

Theorem 3. [13] Let |X| > 3 and let T be a t-norm. An aggregation function
A preserves T -transitivity of fuzzy relations on X if and only if A belongs to
the class of aggregation functions which dominate T .

Corollary 1. Let |X| > 3 and let T be a t-norm. If Ei for all i ∈ {1, . . . , n} are
fuzzy equivalence relations (T -equivalences) then

E(x, y) = A
(
E1(x, y), . . . , En(x, y)

)
is also a T -equivalence relation if A belongs to the class of aggregation functions
which dominate T .
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We continue with the aggregation of fuzzy order relations. The next theo-
rem is a straightforward generalization of Theorem 6.1 of [2].

Theorem 4. Let |X| > 3 and let T be a t-norm. If Ei for all i ∈ {1, . . . , n}
are fuzzy equivalence relations (T -equivalences); Pi for all i ∈ {1, . . . , n} are
fuzzy order relations (T -Ei-orders) then P (x, y) = A(P1(x, y), . . . , Pn(x, y)) is
T -E-order relation if A belongs to the class of aggregation functions which
dominate T and E(x, y) = A(E1(x, y), . . . , En(x, y)).

Proof. 1. Since all Pi are Ei-reflexive (Ei(x, y) ≤ Pi(x, y))

A
(
E1(x, y), . . . , En(x, y)

) ≤ A
(
P1(x, y), . . . , Pn(x, y)

)
because of the monotonicity of the function A. Thus P is an E-reflexive
fuzzy relation.

2. T -transitivity holds because of Theorem 3.

3. It remains to prove that T (P (x, y), P (y, x)) ≤ E(x, y):

T
(
P (x, y), P (y, x)

)
= T

(
A
(
P1(x, y), . . . , Pn(x, y)

)
, A

(
P1(y, x), . . . , Pn(y, x)

))
≤ A

(
T
(
P1(x, y), P1(y, x)

)
, . . . , T

(
Pn(x, y), Pn(y, x)

))
because of the dominance of T by A. Further

A
(
T
(
P1(x, y), P1(y, x)

)
, . . . , T

(
Pn(x, y), Pn(y, x)

))
≤ A

(
E1(x, y), . . . , En(x, y)

)
since A is a monotone function and T (Pi(x, y), Pi(y, x)) ≤ Ei(x, y). Thus
we have proven the required inequality. 	


It was important to find conditions for an aggregation function which guar-
antee the preservation of the properties of fuzzy order relations in the aggrega-
tion process. Let us show the importance of the requirement that aggregated
fuzzy relation of fuzzy orders must be also a fuzzy order by the example of
preservation of transitivity:

If zi(x) ≤ zi(y) and zi(y) ≤ zi(z) for all i it is natural that the element z
is more preferable for us than the element x in a global sense what is exactly
guaranteed by the preservation of transitivity.

In the next two examples we observe the aggregation function which domi-
nates �Lukasiewicz and product t-norms:

Example 4. For any k > 2 and any p = (p1, . . . , pk) with
∑k

i=1 pi ≥ 1 and
pi ∈ [0,∞] k-ary aggregation function

Ap(x1, . . . , xk) = max

( k∑
i=1

xipi + 1−
k∑

i=1

pi, 0

)
dominates �Lukasiewicz t-norm TL.

Example 5. For any k > 2 and any p = (p1, . . . , pk) with
∑k

i=1 pi ≥ 1 and

pi ∈ [0,∞] k-ary aggregation function Ap(x1, . . . , xk) =
∏k

i=1 x
pi

i dominates
product t-norm TP .

Math. Model. Anal., 17(3):366–382, 2012.
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5 Solution Approach

Further the multi-objective linear programming problem comes to the following
problem:

max
y

min
x

P (x,y) (P )

Intuitively this means that we find for each y ∈ D the value min
x

P (x,y),

that is we find the degree to which y is greater (or better) than every x ∈ D.
In other words we find the degree to which y is a maximal element in the set
D and later on we find y to which this satisfaction degree is the greatest.

Theorem 5. An optimal solution y to the problem (P ) is a Pareto optimal
solution if it is the unique optimal solution.

Proof. If y is not a Pareto optimal solution then there exists another ỹ ∈ D
such that zi(y) ≤ zi(ỹ) for all i and zj(y) �= zj(ỹ) for at least one j. Let us now
compare Pi(x,y) and Pi(x, ỹ). Further we distinguish between the following
three cases:

1. If zi(y) ≤ zi(ỹ) ≤ zi(x) or zi(y) < zi(ỹ) ≤ zi(x) then |zi(x) − zi(ỹ)| ≤
|zi(x)− zi(y)|. Furthermore

min

( |zi(x)− zi(ỹ)|
zmax
i − zmin

i

, t(0)

)
≤ min

( |zi(x)− zi(y)|
zmax
i − zmin

i

, t(0)

)
.

Further since t(−1) is strictly decreasing we get: Ei(x,y) ≤ Ei(x, ỹ) and
thus Pi(x,y) ≤ Pi(x, ỹ).

2. If zi(x) ≤ zi(y) ≤ zi(ỹ) or zi(x) ≤ zi(y) < zi(ỹ) then Pi(x,y) =
Pi(x, ỹ) = 1 since zi(x) ≤ zi(y) and zi(x) < zi(ỹ) (or zi(x) ≤ zi(ỹ)).

3. If zi(y) < zi(ỹ) then there could be also the following situation:
zi(y) < zi(x) < zi(ỹ). Then Pi(x,y) ≤ Pi(x, ỹ) since Pi(x, ỹ) = 1.

Thus for all x ∈ D

A
(
P1(x,y), P2(x,y), . . . , Pk(x,y)

) ≤ A
(
P1(x, ỹ), P2(x, ỹ), . . . , Pk(x, ỹ)

)
.

Hence min
x

P (x,y) ≤ min
x

P (x, ỹ). This contradicts the fact that y is the unique

optimal solution to the problem. 	

We can also prove the above theorem without demanding the “uniqueness of

the optimal solution” but in this case we should require some specific properties:

Theorem 6. An optimal solution y to the problem (P ) is a Pareto optimal
solution if zi(x) > zi(y) ⇒ Pi(x,y) < 1, A is a strictly monotone function and
set D is linearly connected.

The properties that zi(x) > zi(y) ⇒ Pi(x,y) < 1 and that A is a strictly
monotone function are quite natural properties since by this we simply require
that the order P should react to any change of any of the functions zi. Thus for
practical applications we suggest to use fuzzy orders and aggregation functions
respecting these properties.
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6 Numerical Example

Let us observe the following linear programming problem:

max z1 = x1, max z2 = x2,

s.t. x1 + x2 ≤ 1, x1, x2 ≥ 0.

Figure 1. The solution space.

Figure 1 shows the solution space of this problem, where we coloured in gray
the feasible region of the problem and dotted lines denote the level lines of the
objective functions for which the corresponding objective reaches its maximum.
We have chosen the simple (in the sense of input data) problem in order not to
pay attention into details of computation but to illustrate the naturality of the
proposed approach. Here we demonstrate the computation and how the result
depends on the choice of an aggregation function and the base t-norm.

The point (1, 0) is optimal solution with respect to the objective function z1,
the point (0, 1) is the optimal solution with respect to the objective function z2.
Obviously the set {(x1, x2) : x1 ∈ [0, 1], x2 = 1−x1} is the set of Pareto optimal
solutions.

We follow the approach described above and apply the following fuzzy order
relations based on �Lukasiewicz t-norm (see Example 3):

P1(x,y) =

{
1, if x1 ≤ y1,

1− x1 + y1, otherwise,

where x = (x1, x2) and y = (y1, y2);

P2(x,y) =

{
1, if x2 ≤ y2,

1− x2 + y2, otherwise.

Further we aggregate the corresponding fuzzy order relations with the aid of the
following aggregation function: A(x, y) = (x+ y)/2, which is an aggregation
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function preserving TL-transitivity. Thus:

P (x,y) = A
(
P1(x,y), P2(x,y)

)
=
P1(x,y) + P2(x,y)

2

Further we should solve the following problem:

max
y∈D

min
x∈D

P (x,y).

Let us contract the set D for the simplicity of calculations, so we have to find
a set B such that B ⊂ D and

max
y∈B

min
x∈B

P (x,y) = max
y∈D

min
x∈D

P (x,y). (6.1)

Let us prove that if B = {(x1, x2) : x1 ∈ [0, 1], x2 = 1−x1} then Equation (6.1)
holds. We start with the proof of the following equation:

max
y∈B

min
x∈D

P (x,y) = max
y∈D

min
x∈D

P (x,y).

Let us prove by contradiction, that is we suppose that y = (y1, y2) ∈ D but
y �∈ B. Then there exist points ỹ = (y1, 1 − y1) and ˜̃y = (1 − y2, y2) (see
Figure 1) such that

min
x∈D

P (x,y) < min
x∈D

P (x, ỹ) and

min
x∈D

P (x,y) < min
x∈D

P (x, ˜̃y).

Let us prove the first equation. We will prove that for all x ∈ D it holds

A
(
P1(x,y), P2(x,y)

) ≤ A
(
P1(x, ỹ), P2(x, ỹ)

)
and there exists x̄ ∈ D such that A(P1(x̄,y), P2(x̄,y)) < A(P1(x̄, ỹ), P2(x̄, ỹ)).

We know that P1(x,y) = P1(x, ỹ) since z1(y) = z1(ỹ). Let us now com-
pare P2(x,y) and P2(x, ỹ). Obviously z2(y) < z2(ỹ). Further we distinguish
between the following three cases:

1. If z2(y) < z2(ỹ) ≤ z2(x) then P2(x,y) = 1−|z2(x)−z2(y)| < 1−|z2(x)−
z2(ỹ)| = P2(x, ỹ).

2. If z2(x) ≤ z2(y) < z2(ỹ) then P2(x,y) = P2(x, ỹ) = 1 since z2(x) ≤ z2(y)
and z2(x) < z2(ỹ).

3. If z2(y) < z2(x) < z2(ỹ) then P2(x,y) ≤ P2(x, ỹ) since P2(x, ỹ) = 1.

Thus for all x ∈ D A(P1(x,y), P2(x,y)) ≤ A(P1(x, ỹ), P2(x, ỹ)), although
there obviously exists x̄ ∈ D such that z2(y) < z2(x̄) < z2(ỹ). In this case
P2(x̄, ỹ) = 1 but P2(x̄,y) < 1. Thus, because of the strict monotonicity of the
function A

A
(
P1(x̄,y), P2(x̄,y)

)
< A

(
P1(x̄, ỹ), P2(x̄, ỹ)

)
.
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By this we have finished the proof that

max
y∈B

min
x∈D

P (x,y) = max
y∈D

min
x∈D

P (x,y).

We continue with the proof of the following equation:

max
y∈B

min
x∈B

P (x,y) = max
y∈B

min
x∈D

P (x,y).

Let us prove by contradiction, that is we suppose that x = (x1, x2) ∈ D but
x �∈ B. Then there exist points x̃ = (x1, 1− x1) and ˜̃x = (1− x2, x2) such that
for the fixed y ∈ B

P (x̃,y) < P (x,y) and P (˜̃x,y) < P (x,y).

Let us prove the first equation. We will prove that for all y ∈ B

A(P1(x̃,y), P2(x̃,y)) ≤ A(P1(x,y), P2(x,y)).

Obviously P1(x̃,y) = P1(x,y) since z1(x̃) = z1(x).
Let us now compare P2(x,y) and P2(x̃,y). Obviously z2(x) < z2(x̃). Fur-

ther we distinguish between the following three cases:

1. If z2(x) < z2(x̃) ≤ z2(y) then P2(x,y) = P2(x̃,y) = 1 since z2(x) < z2(y)
and z2(x̃) ≤ z2(y).

2. If z2(y) ≤ z2(x) < z2(x̃) then P2(x̃,y) = 1−|z2(x̃)−z2(y)| < 1−|z2(x)−
z2(y)| = P2(x,y).

3. If z2(x) < z2(y) < z2(x̃) then P2(x̃,y) ≤ P2(x,y) since P2(x,y) = 1.

Thus for all y ∈ B it holds A(P1(x̃,y), P2(x̃,y)) ≤ A(P1(x,y), P2(x,y)), al-
though there obviously exists ȳ such that z1(x) < z1(ȳ) < z1(x̃). In this case
P1(x, ȳ) = 1 but P1(x̃, ȳ) < 1. Thus, because of the strict monotonicity of the
function A

A
(
P1(x̃, ȳ), P2(x̃, ȳ)

)
< A

(
P1(x, ȳ), P2(x, ȳ)

)
.

Thus max
y∈B

min
x∈B

P (x,y) = max
y∈D

min
x∈D

P (x,y), where B is the set of Pareto optimal

solutions. It is an important fact which makes calculations much easier.
Let us come back to our initial example and by the following figures we

demonstrate the dependences of the value min
x∈B

P (x,y) on the choice of y. The

horizontal axises are the set B of Pareto optimal solutions: B = {(y1, y2):
y1 ∈ [0, 1], y2 = 1 − y}, where the elements y = (y1, y2) of the set B are
presented by its first coordinate:

Figure 2 and Figure 3 demonstrate the results when we use �Lukasiewicz
t-norm and A(a1, a2) = (a1 + a2)/2 and A(a1, a2) = (a1 + 2a2)/3 respectively.
The results are rather expected: when the weights are the same (1/2 and 1/2)
the maximum point is exactly in the middle, but if the weights are 1/3 and 2/3
then the maximum point divides the unit interval respectively as 1/3 and 2/3.
The results for the problem max

y∈B
min
x∈B

P (x,y) are the same when we use the

product t-norm, but the shape of the function f(y) = min
x∈B

P (x,y) is slightly

different, see Figure 4 and Figure 5.
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Figure 2. f(y), where

A(a1, a2) =
a1+a2

2

Figure 3. f(y), where

A(a1, a2) =
a1+2a2

3

Figure 4. f(y), where

A(a1, a2) = a
1
2
1 a

1
2
2

Figure 5. f(y), where

A(a1, a2) = a
1
3
1 a

2
3
2

7 Conclusions

In our paper we proposed a solution approach for multi-objective linear pro-
gramming problem where we have used fuzzy order relations instead of the
membership functions prescribing the satisfaction degree of reaching the solu-
tion of individual problems. Further, to get an optimal compromise solution
the fuzzy order relations were aggregated and the “maximum” with respect
to the aggregated fuzzy order relation has been found. Although the approach
described in our paper is more complicated in computations it has the following
advantages:

1. This approach generalizes the classical linear programming approach and
testifies its naturality.

2. There is a reasonable explanation of the choice of the “shape” of fuzzy
order relation. In classical fuzzy approach more often the choice of linear
membership functions is not explained or is explained by “facilitation
computation for obtaining solutions”. The choice in our approach is
caused by the fuzzy environment (or t-norm) in which we are working.



Involving Fuzzy Orders for Multi-Objective Linear Programming 381

3. There is a reasonable explanation of the choice of aggregation function.
The choice in our approach is caused by the necessity to preserve the
properties of initial fuzzy order relations.

We see the following two possible directions for future research:

1. We see that in our example presented in Section 6 the results do not
depend on the choice of a t-norm. It is interesting to investigate how the
choice of a t-norm affects the results in general.

2. The usage of fuzzy order relations are investigated only for the simplest
fuzzy approach for solving multi-objective linear programming problems.
It is interesting also to involve fuzzy order relations for two-level (multi-
level) linear programming problems. Also it is interesting to realize in-
teractive fuzzy programming or fuzzy compromise approach by involving
fuzzy order relations.
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