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Abstract. In this paper, we consider a class of quasilinear elliptic systems with
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1 Introduction

The aim of this paper is to establish the existence and multiplicity of nontrivial
non-negative solutions to the quasilinear elliptic system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−div
(|x|−ap|∇u|p−2∇u) = 1

p∗|x|bp∗ Fu(x, u, v) + λf(x)
1

|x|β |u|
q−2u, in Ω,

−div
(|x|−ap|∇v|p−2∇v) = 1

p∗|x|bp∗ Fv(x, u, v) + μf(x)
1

|x|β |v|
q−2v, in Ω,

u > 0, v > 0, in Ω,

u = v = 0, on ∂Ω,

(1.1)
where 0 ∈ Ω is a bounded domain in R

N (N ≥ 3) with the smooth boundary
∂Ω, F ∈ C1(Ω × (R+)2,R+) is positively homogeneous of degree p∗. Here
p∗ = p(a, b) � pN

N−p(1+a−b) is the Hardy–Sobolev critical exponent. Note that

2(a, a) = 2N
N−2 = 2∗ is the Sobolev critical exponent. Thus F (x, tu, tv) =

tp
∗
F (x, u, v) (t > 0) hold for all (x, u, v) ∈ Ω×(R+)2, (Fu(x, u, v), Fv(x, u, v)) =

∇F (x, u, v).
We make the following assumptions:
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(A1) β < (1 + a)p1 + N
(
1 − p1

p

)
, with 1 < q < p∗, 1 < p0 ≤ Np

N−p and

q < p1 <
Np
N−p such that 1

p0
+ q

p1
= 1, (λ, μ) ∈ R

2 \ {(0, 0)} and f(x) ∈
Lp0(Ω, |x|−β), with f±(x) = max{±f, 0} �= 0.

Problem (1.1) is related to the well known Caffarelli–Kohn–Nirenberg in-
equality in [12, 22],( ∫

RN

|x|−bp∗ |u|p∗ dx
) p

p∗

≤ Ca,b

∫
RN

|x|−ap|∇u|p dx, for all u ∈ C∞0
(
R

N
)
, (1.2)

where 1 < p < N , −∞ < a < N−p
p , a ≤ b ≤ a+ 1, p∗ = Np

N−p(1+a−b) .

If 1 < p < N and −∞ < a < N−p
p we denote by W 1,p

0 (Ω, |x|−ap) the

completion of C∞0 (Ω) with respect to the norm

‖u‖ =

(∫
Ω

|x|−ap|∇u|p dx
)1/p

.

By using the inequality (1.2) and the boundedness of Ω, was proved in [22]
that there exists C > 0 such that(∫

Ω

|x|−δ|u|r dx
)p/r

≤ C

∫
Ω

|x|−ap|∇u|p dx, for all u ∈ W 1,p
0

(
Ω, |x|−ap

)
,

where 1 ≤ r ≤ Np
N−p , δ ≤ (a+ 1)r +N [1− (r/p)], which is said the Caffarelli–

Kohn–Nirenberg’s inequality. In other words, the embeddingW 1
0 (Ω, |x|−ap) ↪→

Lr(Ω, |x|−δ) is continuous if 1 ≤ r ≤ Np
N−p and δ ≤ (a + 1)r + N [1 − (r/p)].

Moreover, this embedding is compact if 1 ≤ r < Np
N−p and δ < (a+1)r+N [1−

(r/p)], see Theorem 2.1 in [22] for the case when ν = 0.
Now, we define the space W = W 1,p

0 (Ω, |x|−ap)×W 1,p
0 (Ω, |x|−ap) with the

norm

∥∥(u, v)∥∥ =

(∫
Ω

|x|−ap|∇u|p dx+

∫
Ω

|x|−ap|∇v|p dx
)1/p

.

Also, we can define the best Hardy–Sobolev constant:

A = Aa,b(Ω) = inf
u∈W 1,p

0 (Ω,|x|−ap)\{0}

∫
Ω
|x|−ap|∇u|p dx

(
∫
Ω
|x|−bp∗ |u|p∗ dx) p

p∗
.

In recent years, several authors have used the Nehari manifold to solve semi-
linear and quasilinear problems (see [1, 2, 6, 7, 8, 9, 10, 16, 20] and references
therein). Brown and Zhang [11] have studied a subcritical semi-linear elliptic
equation with a sign-changing weight function and a bifurcation real parameter
in the case p = 2 and Dirichlet boundary conditions. Exploiting the relation-
ship between the Nehari manifold and fibering maps (i.e., maps of the form
t �→ Jλ(tu) where Jλ is the Euler functional associated with the equation),
they gave an interesting explanation of the well-known bifurcation result. In
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fact, the nature of the Nehari manifold changes as the parameter λ crosses the
bifurcation value. In this work, we give a variational method which is similar
to the fibering method (see [14] or [6, 11]) to prove the existence of at least two
nontrivial nonnegative solutions of problem (1.1). Some authors also studied
the singular problems with Hardy–Sobolev critical exponents ([3, 17, 18] the
references therein).

Before stating our results, we need the following assumptions:

(H1) F : Ω × (R+) × (R+) → R
+ is a C1 function such that F (x, tu, tv) =

tp
∗
F (x, u, v) (t > 0) hold for all (x, u, v) ∈ Ω × (R+)2;

(H2) F (x, u, 0) = F (x, 0, v) = Fu(x, u, 0) = Fv(x, 0, v) = 0 where u, v ∈ R
+;

(H3) Fu(x, u, v), Fv(x, u, v) are strictly increasing functions about u, v for all
u > 0, v > 0.

Moreover, using assumption (H1), we have the so-called Euler identity

(u, v) · ∇F (x, u, v) = p∗F (x, u, v), (1.3)

F (x, u, v) ≤ K
(|u|p + |v|p) p∗

p , for some constant K > 0. (1.4)

This paper is divided into three sections, organized as follows. In Section
2, we give some notations, preliminaries, properties of the Nehari manifold and
set up the variational framework of the problem. In Section 3, we give our
main results.

2 Preliminaries

Let us consider Ω a domain in R
N , 0 ∈ Ω, 1 < p < N , 0 ≤ a < (N − p)/p,

a ≤ b < a+ 1 and p∗ = pN
N−p(1+a−b) . We define the space

W 1,p
a,e (Ω) =

{
u ∈ Lp∗(Ω, |x|−bp

)
: |∇u| ∈ Lp

(
Ω, |x|−ap

)}
,

equipped with the norm

‖u‖W 1,p
a.e (Ω) := ‖u‖Lp∗ (Ω,|x|−bp∗ ) + ‖∇u‖Lp(Ω,|x|−ap).

We consider the constant S̃a,p given by

S̃a,p := inf

{ ∫
RN |x|−ap|∇u|p dx

(
∫
RN |x|−bp∗ |u|p∗ dx) p

p∗
: u ∈ W 1,p

a.e

(
R

N
) \ {0}}.

Also, we define

R1,p
a.e(Ω) =

{
u ∈ W 1,p

a.e (Ω) : u(x) = u
(|x|)},

endowed with the norm

‖u‖R1,p
a.e(Ω) = ‖u‖W 1,p

a.e (Ω).
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Actually, Horiuchi in [15] proved that, if a ≥ 0,

S̃a,p,R := inf

{ ∫
RN |x|−ap|∇u|p dx

(
∫
RN |x|−bp∗ |u|p∗ dx) p

p∗
: u ∈ R1,p

a.e

(
R

N
) \ {0}} = S̃a,p,

and it is achieved by functions of the form

yε(x) := ka,p(ε)Ua,p,ε(x), ∀ε > 0,

where

ka,p(ε) = c̃ε
N−p(1+a−b)

p2(1+a−b) , and Ua,p,ε(x) =
(
ε+ |x| p(1+a−b)(N−p−ap)

(p−1)(N−p(1+a−b))
)−N−p(1+a−b)

p(1+a−b) .

We observe that by the Caffarelli–Kohn–Nirenberg’s inequality follows that
W 1,p

0 (Ω, |x|−ap) is a subset of W 1,p
a.e (R

N ), then S̃a,p ≤ A.
We need the following lemma (the proof of this lemma follows exactly as

in [19]).

Lemma 1. Let R1, c1 be positive constants with B(0, 3R1) ⊂ Ω and ψ ∈
C∞0 (B(0, 3R1)) with ψ ≥ 0 in B(0, 3R1) and ψ = 1 in B(0, 2R1), then the
function given by

uε(x) := ψ(x)Ua,p,ε(x)/‖ψUa,p,ε‖Lp∗ (Ω,|x|−bp),

satisfies

‖uε‖p
∗

Lp∗ (Ω,|x|−bp)
= 1, ‖∇uε‖pLp(Ω,|x|−ap) ≤ S̃a,p,R +O

(
ε

N−p(1+a−b)
p(1+a−b)

)
,

and ∥∥f1/quε
∥∥q

Lq(Ω,|x|−β)

≥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O(ε

(N−p(1+a−b))q

p2(1+a−b) ), if q < (N−β)(p−1)
N−p−ap ,

O(ε
(N−p(1+a−b))q

p2(1+a−b) |ln(ε)|), if q = (N−β)(p−1)
N−p−ap ,

O(ε
(N−p(1+a−b))(p−1)[(N−β)p−(N−p−ap)q]

p2(1+a−b)(N−p−ap) ), if q > (N−β)(p−1)
N−p−ap ,

(2.1)

for all f ∈ Lp0(Ω, |x|−β) with f ≥ 0 for a.e. in B(0, 3R1) and infB(0,2R) f > 0
for some 0 < R ≤ R1. Moreover, the inequality (2.1) is uniform in f ∈
Lp0(Ω, |x|−β) satisfying : f ≥ 0 for a.e. in B(0, 3R1) and(

1 +R
p(1+a−b)(N−p−ap)
(p−1)(N−p(1+a−b))

)− (N−p(1+a−b))q
p(1+a−b) RN−β inf

B(0,2R)
f ≥ c1,

for some R ∈ (0, R1].

Now, by (1.3) the corresponding energy functional of problem (1.1) is de-
fined by

Jλ,μ(u, v) =
1

p

∥∥(u, v)∥∥p − 1

p∗

∫
Ω

|x|−bp∗F (x, u, v) dx− 1

q
Kλ,μ(u, v),

for each (u, v) ∈ W , where Kλ,μ(u, v) =
∫
Ω
(λf |x|−β |u|q + μf |x|−β |v|q) dx.

In order to verify Jλ,μ ∈ C1(W,R), we need the following lemmas.

Math. Model. Anal., 17(3):330–350, 2012.
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Lemma 2. Suppose that (H3) holds. Assume that F ∈ C1(Ω ×R
2,R) is posi-

tively homogeneous of degree p∗, then Fu, Fv ∈ C(Ω × R
+2
,R+) are positively

homogeneous of degree p∗ − 1.

Moreover by the Lemma 2, we get the existence of a positive constant M such
that ∣∣Fu(x, u, v)

∣∣ ≤ M
(|u|p∗−1 + |v|p∗−1

)
, (2.2)∣∣Fv(x, u, v)

∣∣ ≤ M
(|u|p∗−1 + |v|p∗−1

)
, ∀x ∈ Ω, u, v ∈ R

+. (2.3)

By the weighted Hardy–Sobolev inequality, (2.2) and (2.3), Jλ,μ ∈ C1(W,R).
Now, we consider the problem (1.1) on the Nehari manifold. Define the

Nehari manifold

Nλ,μ =
{
(u, v) ∈ W \ {

(0, 0)
} ∣∣ 〈J ′λ,μ(u, v), (u, v)〉 = 0

}
,

where〈
J ′λ,μ(u, v), (u, v)

〉
=

∥∥(u, v)∥∥p − ∫
Ω

|x|−bp∗F (x, u, v) dx−Kλ,μ(u, v).

Note that Nλ,μ contains every nonzero solution of (1.1). Define

Φλ,μ(u, v) =
〈
J ′λ,μ(u, v), (u, v)

〉
,

then for (u, v) ∈ Nλ,μ〈
Φ′λ,μ(u, v), (u, v)

〉
= p

∥∥(u, v)∥∥p − p∗
∫
Ω

|x|−bp∗F (x, u, v) dx− qKλ,μ(u, v) (2.4)

= (p− q)
∥∥(u, v)∥∥p − (p∗ − q)

∫
Ω

|x|−bp∗F (x, u, v) dx (2.5)

= (p− p∗)
∥∥(u, v)∥∥p − (q − p∗)Kλ,μ(u, v) (2.6)

= (p− p∗)
∫
Ω

|x|−bp∗F (x, u, v) dx− (q − p)Kλ,μ(u, v). (2.7)

Now, we split Nλ,μ into three parts:

N+
λ,μ =

{
(u,v) ∈ Nλ,μ :

〈
Φ′λ,μ(u, v), (u, v)

〉
> 0

}
,

N0
λ,μ =

{
(u, v) ∈ Nλ,μ :

〈
Φ′λ,μ(u, v), (u, v)

〉
= 0

}
,

N−λ,μ =
{
(u, v) ∈ Nλ,μ :

〈
Φ′λ,μ(u, v), (u, v)

〉
< 0

}
.

To state our main result, we now present some important properties of N+
λ,μ,

N0
λ,μ and N−λ,μ.

Lemma 3. There exists a positive number Λ = Λ(q,N,K,C, |Ω|) > 0 such that
if

0 <
(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q < Λ,

then N0
λ,μ = ∅.



Existence of Multiple Positive Solutions for Quasilinear Elliptic Systems 335

Proof. Suppose opposite, that for

Λ =

(
p− q

K(p∗ − q)

) p
p∗−p

(
p∗ − p

p∗ − q

) p
p−q

C−
p∗

p∗−p
− q

p−q

there exists (λ, μ) with

0 <
(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q < Λ,

such that N0
λ,μ �= ∅. Then for (u, v) ∈ N0

λ,μ, by (2.5) and (2.6) we have

0 =
〈
Φ′λ,μ(u, v), (u, v)

〉
= (p− q)

∥∥(u, v)∥∥p − (p∗ − q)

∫
Ω

|x|−bp∗F (x, u, v) dx

= (p− p∗)
∥∥(u, v)∥∥p − (q − p∗)Kλ,μ(u, v).

By the Caffarelli – Kohn – Nirenberg inequality, the Minkowski inequality
and estimate (1.4), one can get

∫
Ω

|x|−bp∗F (x, u, v) dx ≤ K

(∫
Ω

|x|−bp∗(|u|p + |v|p) p∗
p dx

) p
p∗ · p

∗
p

≤ K

((∫
Ω

|x|−bp∗ |u|p∗ dx
) p

p∗

+

(∫
Ω

|x|−bp∗ |v|p∗ dx
) p

p∗
) p∗

p

≤ KC
p∗
p
(‖u‖p + ‖v‖p) p∗

p = KC
p∗
p

∥∥(u, v)∥∥p∗ . (2.8)

Also, by the Hölder and Caffarelli–Kohn–Nirenberg’s inequalities, we have

p∗ − p

p∗ − q

∥∥(u, v)∥∥p
= Kλ,μ(u, v)

=

∫
Ω

λf |x|−β |u|q dx+

∫
Ω

μf |x|−β |v|q dx

≤ |λ|
(∫

Ω

(
f |x|−β

)p0
dx

)1/p0
(∫

Ω

|u|p1 dx

)q/p1

+ |μ|
(∫

Ω

(
f |x|−β

)p0
dx

)1/p0
(∫

Ω

|v|p1 dx

)q/p1

≤ |λ|‖f‖Lp0 (Ω,|x|−β)‖u‖qLp1 + |μ|‖f‖Lp0 (Ω,|x|−β)‖v‖qLp1

≤ C
q
p
(|λ|‖f‖Lp0 (Ω,|x|−β)‖u‖q + |μ|‖f‖Lp0 (Ω,|x|−β)‖v‖q

)
≤ C

q
p
((|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

) p−q
p

∥∥(u, v)∥∥q
.

Thus

∥∥(u, v)∥∥ ≥
(

p− q

K(p∗ − q)
C−

p∗
p

) 1
p∗−p

,

Math. Model. Anal., 17(3):330–350, 2012.
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and

∥∥(u, v)∥∥ ≤
(
p∗ − q

p∗ − p
C

q
p

) 1
p−q [(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

+
(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

] 1
p .

This implies(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q ≥ Λ.

This is a contradiction! Therefore, we can conclude that there exists Λ > 0
such that for

0 <
(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q < Λ,

we have N0
λ,μ = ∅. 	


Lemma 4. The energy functional Jλ,μ is coercive and bounded below on Nλ,μ.

Proof. If (u, v) ∈ Nλ,μ, then by the Hölder inequality and Caffarelli–Kohn–
Nirenberg’s inequality, we can get

Jλ,μ(u, v) =
p∗ − p

pp∗
∥∥(u, v)∥∥p − p∗ − q

qp∗
Kλ,μ(u, v)

≥ p∗ − p

pp∗
∥∥(u, v)∥∥p − p∗ − q

qp∗
C

q
p
[(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

+
(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

] p−q
p

∥∥(u, v)∥∥q
.

Since 1 < q < p, we see that Jλ,μ is coercive and bounded below on Nλ,μ. 	


Furthermore, similar to the argument in Brown and Zhang [4, Theorem 2.3]
(or see Binding [4], Drábek, and Huang [11]), we can conclude the following
result.

Lemma 5. Assume that (u0, v0) is a local minimizer for Jλ,μ on Nλ,μ and
that (u0, v0) /∈ N0

λ,μ. Then J ′λ,μ(u0, v0) = 0 in W−1 (the dual space of Sobolev
space W ).

By Lemma 3, we let

ΘΛ0
=

{
(λ, μ) ∈ R

2 \ {
(0, 0)

}
: 0 <

(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

+
(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q < Λ0

}
,

where Λ0 =
(
q
p

) p
p−qΛ < Λ. If (λ, μ) ∈ ΘΛ0

, we have Nλ,μ = N+
λ,μ∪N−λ,μ. Define

θλ,μ = inf
(u,v)∈Nλ,μ

Jλ,μ(u, v), θ+λ,μ = inf
(u,v)∈N+

λ,μ

Jλ,μ(u, v),

θ−λ,μ = inf
(u,v)∈N−λ,μ

Jλ,μ(u, v).



Existence of Multiple Positive Solutions for Quasilinear Elliptic Systems 337

Lemma 6. There exists a positive number Λ0 such that if (λ, μ) ∈ ΘΛ0
, then

(i) θλ,μ < θ+λ,μ < 0;

(ii) there exists d0 = d0(p, q,N,K,C, λ, μ) > 0 such that θ−λ,μ > d0.

Proof. (i) For (u, v) ∈ N+
λ,μ, by (2.6), we have

Kλ,μ(u, v) ≥ p∗ − p

p∗ − q

∥∥(u, v)∥∥p
and so

Jλ,μ(u, v) =

(
1

p
− 1

p∗

)∥∥(u, v)∥∥p − (
1

q
− 1

p∗

)
Kλ,μ(u, v)

≤
(
1

p
− 1

p∗

)∥∥(u, v)∥∥p − (
1

q
− 1

p∗

)
p∗ − p

p∗ − q

∥∥(u, v)∥∥p
≤ p∗ − p

p∗

(
1

p
− 1

q

)∥∥(u, v)∥∥p < 0.

Thus, from definition of θλ,μ and θ+λ,μ, we can deduce that θλ,μ < θ+λ,μ < 0.

(ii) For (u, v) ∈ N−λ,μ, by Lemma 3,

∥∥(u, v)∥∥ ≥
(

p− q

K(p∗ − q)

) 1
p∗−p

C−
p∗

p(p∗−p) .

Moreover, by Lemma 4,

Jλ,μ(u, v) ≥ p∗ − p

pp∗
∥∥(u, v)∥∥p − p∗ − q

qp∗
C

q
p
[(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

+
(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

] p−q
p

∥∥(u, v)∥∥q

=
∥∥(u, v)∥∥q[p∗ − p

pp∗
∥∥(u, v)∥∥p−q − p∗ − q

qp∗
C

q
p
((|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

+
(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

) p−q
p

]
≥

(
p− q

K(p∗ − q)

) q
p∗−p

C−
qp∗

p(p∗−p)

[
p∗ − p

pp∗
∥∥(u, v)∥∥p−q − p∗ − q

qp∗
C

q
p

× ((|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

) p−q
p

]
.

Thus, if

0 <
(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q < Λ0,

then for each (u, v) ∈ N−λ,μ we have

Jλ,μ(u, v) ≥ d0 = d0(p, q,N,K,C, λ, μ) > 0. 	
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For each (u, v) ∈ W \ {(0, 0)} such that
∫
Ω
F (x, u+, v+) dx > 0, let

tmax =

(
(p− q)‖(u, v)‖p

(p∗ − q)
∫
Ω
|x|−bp∗F (x, u, v) dx

) 1
p∗−p

.

Lemma 7. Assume that

0 <
(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q < Λ0.

Then, for every (u, v) ∈ W with
∫
Ω
F (x, u+, v+) dx > 0 there exists tmax > 0

such that

(i) if Kλ,μ(u, v) ≤ 0, then, there is a unique t− > tmax such that (t−u, t−v) ∈
N−λ,μ and

Jλ,μ(t
−u, t−v) = sup

t≥0
Jλ,μ(tu, tv);

(ii) if Kλ,μ(u, v) > 0, then, there are unique t+ and t− with 0 < t+ < tmax <
t− such that (t±u, t±v) ∈ N±λ,μ and

Jλ,μ(t
+u, t+v) = inf

0≤t≤tmax

Jλ,μ(tu, tv), Jλ,μ(t
−u, t−v) = sup

t≥0
Jλ,μ(tu, tv).

Proof. Fix (u, v) ∈ W with
∫
Ω
F (x, u, v) dx > 0, let

m(t) = tp−q
∥∥(u, v)∥∥p − tp

∗−q

∫
Ω

|x|−bp∗F (x, u, v) dx,

for t ≥ 0. Clearly, m(0) = 0 and m(t) → −∞ as t→ ∞. Since

m′(t) = (p− q)tp−q−1
∥∥(u, v)∥∥p − (p∗ − q)tp

∗−q−1

∫
Ω

F (x, u, v) dx,

there is a unique tmax > 0 such that m(t) achieves its maximum at tmax,
increasing for t ∈ [0, tmax) and decreasing for t ∈ (tmax,∞) with limt→∞m(t) =
−∞. Clearly, (tu, tv) ∈ N+

λ,μ (or N−λ,μ) if and only if m′(t) > 0 (or < 0).
Moreover,

m(tmax) =

(
(p− q)‖(u, v)‖p

(p∗ − q)
∫
Ω
|x|−bp∗F (x, u, v) dx

) p−q
p∗−p ∥∥(u, v)∥∥p

−
(

(p− q)‖(u, v)‖p
(p∗ − q)

∫
Ω
|x|−bp∗F (x, u, v) dx

) p∗−q
p∗−p

∫
Ω

|x|−bp∗F (x, u, v) dx

=
∥∥(u, v)∥∥q[( p− q

p∗ − q

) p−q
p∗−p

−
(
p− q

p∗ − q

) p∗−q
p∗−p

]
×

( ‖(u, v)‖p∗∫
Ω
|x|−bp∗F (x, u, v) dx

) p−q
p∗−p

≥
(
p− q

p∗ − q

) p−q
p∗−p

(
p∗ − p

p∗ − q

)(
1

KC
p∗
p

) p−q
p∗−p ∥∥(u, v)∥∥q.
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(i) Kλ,μ(u, v) ≤ 0, then, there is unique t− > tmax such that m(t−) =
Kλ,μ(u, v) and m

′(t−) < 0. Now,

(p− q)(t−)p
∥∥(u, v)∥∥p − (p∗ − q)(t−)p

∗
∫
Ω

|x|−bp∗F (x, u, v) dx

= (t−)q+1m(t−) < 0,

and 〈
J ′λ,μ(t

−u, t−v), (t−u, t−v)
〉
= (t−)q

[
m(t−)−Kλ,μ(u, v)

]
= 0.

Thus, (t−u, t−v) ∈ N−λ,μ. Since for t > tmax, we have m′(t) < 0 and m′′(t) < 0.
Subsequently,

Jλ,μ(t
−u, t−v) = sup

t≥0
Jλ,μ(tu, tv).

(ii) Kλ,μ(u, v) > 0. For

0 < (|λ|‖f‖Lp0 (Ω,|x|−β))
p

p−q + (|μ|‖f‖Lp0 (Ω,|x|−β))
p

p−q < Λ0 < Λ,

we have

m(0) = 0 < Kλ,μ(u, v)

≤ C
q
p
((|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

) p−q
p

∥∥(u, v)∥∥q

≤
(
p− q

p∗ − q

) p−q
p∗−p

(
p∗ − p

p∗ − q

)(
1

KC
p∗
p

) p−q
p∗−p ∥∥(u, v)∥∥q ≤ m(tmax),

there are unique t+ and t− such that 0 < t+ < tmax < t−,

m(t+) = Kλ,μ(u, v) = m(t−), m′(t+) > 0 > m′(t−).

We have (t+u, t+v) ∈ N+
λ,μ, (t

−u, t−v) ∈ N−λ,μ; and

Jλ,μ(t
−u, t−v) ≥ Jλ,μ(tu, tv) ≥ Jλ,μ(t

+u, t+v), ∀t ∈ [t+, t−],

Jλ,μ(t
+u, t+v) ≤ Jλ,μ(tu, tv), ∀t ∈ [0, tmax].

Thus

Jλ,μ(t
+u, t+v) = inf

0≤t≤tmax

Jλ,μ(tu, tv), Jλ,μ(t
−u, t−v) = sup

t≥0
Jλ,μ(tu, tv).

This completes the proof. 	


3 Existence of solutions

Now, we can state our main results.
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Theorem 1. Suppose R0 and c0 are positive constants with B(0, 3R0) ⊂ Ω.
In addition to (H1)–(H3) and (A1) hold. Then, there exists Λ > 0 such that
problem (1.1) has a positive solution for each f ∈ Lp0(Ω, |x|−β) satisfying
f(x) ≥ 0 for a.e. x ∈ B(0, 3R0),(
1 +R

p(1+a−b)(N−p−ap)
(p−1)(N−p(1+a−b))

)− (N−p(1+a−b))q
p(1+a−b) RN−β inf

B(0,2R)
f ≥ c0, for some R ∈ (0, R0],

and the parameters λ, μ satisfy

0 <
(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖g‖Lp0 (Ω,|x|−β)

) p
p−q < Λ.

Theorem 2. Suppose R0 and c0 are positive constants with B(0, 3R0) ⊂ Ω.
In addition to (H1)–(H3) and (A1) hold. Then, there exists Λ0 > 0 such that
problem (1.1) has at least two positive solutions (u+0 , v

+
0 ) and (u−0 , v

−
0 ) for each

f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e. x ∈ B(0, 3R0),(
1+R

p(1+a−b)(N−p−ap)
(p−1)(N−p(1+a−b))

)− (N−p(1+a−b))q
p(1+a−b) RN−β inf

B(0,2R)
f ≥ c0, for some R ∈ (0, R0],

and the parameters λ, μ satisfy

0 <
(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q < Λ0.

Before given the proofs of Theorems 1 and 2, we need the following lemma.

Lemma 8. (i) If 0 < (|λ|‖f‖Lp0 (Ω,|x|−β))
p

p−q + (|μ|‖f‖Lp0 (Ω,|x|−β))
p

p−q < Λ,
then there exists a (PS )θλ,μ

-sequence {(un, vn)} ⊂ Nλ,μ in W for Jλ,μ.

(ii) If 0 < (|λ|‖f‖Lp0 (Ω,|x|−β))
p

p−q +(|μ|‖f‖Lp0 (Ω,|x|−β))
p

p−q < Λ0, then there

exists a (PS )θ−λ,μ
-sequence {(un, vn)} ⊂ N−λ,μ in W for Jλ,μ.

Proof. The proof is almost the same as that in Wu [21]. 	


Theorem 3. If 0 < (|λ|‖f‖Lp0 (Ω,|x|−β))
p

p−q + (|μ|‖f‖Lp0 (Ω,|x|−β))
p

p−q < Λ and

(H1)–(H3) hold, then Jλ,μ has a minimizer (u+0 , v
+
0 ) in N+

λ,μ and it satisfies

(i) Jλ,μ(u
+
0 , v

+
0 ) = θ+λ,μ,

(ii) (u+0 , v
+
0 ) is a positive solution of (1.1).

Proof. By the Lemma 8(i), there exist a minimizing sequence {(un, vn)} for
Jλ,μ on Nλ,μ such that

Jλ,μ(un, vn) = θλ,μ + o(1) and J ′λ,μ(un, vn) = o(1) in W−1. (3.1)

Then, by Lemma 4 and the continuity of the embedding theorem, there is a
subsequence {(un, vn)} and (u+0 , v

+
0 ) ∈ W such that⎧⎪⎪⎨⎪⎪⎩

un ⇀ u+0 , vn ⇀ v+0 , weakly in W 1,p
0 (Ω, |x|−ap),

un → u+0 , vn → v+0 , strongly in Lq(Ω, |x|−β),

un → u+0 , vn → v+0 , a.e in Ω,

(3.2)
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as n→ ∞. This implies that

Kλ,μ(un, vn) → Kλ,μ(u
+
0 , v

+
0 ), as n → ∞.

By (3.1) and (3.2), it is easy to prove that (u+0 , v
+
0 ) is a weak solution of

problem (1.1). Since

Jλ,μ(un, vn) =
p∗−p
pp∗

∥∥(un, vn)∥∥p − p∗−q
qp∗

Kλ,μ(un, vn) ≥ −p∗−q
qp∗

Kλ,μ(un, vn),

and by Lemma 4(i),

Jλ,μ(un, vn) → θλ,μ < 0 as n→ ∞.

Letting n → ∞, we see that Kλ,μ(u
+
0 , v

+
0 ) > 0.

Now, we prove that{
un → u+0 , strongly in W 1,p

0 (Ω, |x|−ap),

vn → v+0 , strongly in W 1,p
0 (Ω, |x|−ap),

and Jλ,μ(u
+
0 , v

+
0 ) = θλ,μ.

By applying Fatou’s lemma and (u+0 , v
+
0 ) ∈ Nλ,μ, we get

θλ,μ ≤ Jλ,μ(u
+
0 , v

+
0 ) =

(
1

p
− 1

p∗

)∥∥(u+0 , v+0 )∥∥p − p∗ − q

qp∗
Kλ,μ(u

+
0 , v

+
0 )

≤ lim inf
n→∞

[(
1

p
− 1

p∗

)∥∥(un, vn)∥∥p − p∗ − q

qp∗
Kλ,μ(un, vn)

]
≤ lim inf

m→∞ Jλ,μ(un, vn) = θλ,μ.

This implies that

Jλ,μ(u
+
0 , v

+
0 ) = θλ,μ, lim

n→∞
∥∥(un, vn)∥∥p

=
∥∥(u+0 , v+0 )∥∥p

.

Then, un → u+0 strongly in W 1,p
0 (Ω, |x|−ap) and vn → v+0 strongly in

W 1,p
0 (Ω, |x|−ap).
Moreover, we have (u+0 , v

+
0 ) ∈ N+

λ,μ. In fact, if (u+0 , v
+
0 ) ∈ N−λ,μ, by

Lemma 7, there are unique t+0 and t−0 such that (t+0 u
+
0 , t

+
0 v

+
0 ) ∈ N+

λ,μ, (t
−
0 u

+
0 ,

t−0 v
+
0 ) ∈ N−λ,μ and t+0 < t−0 = 1. Since

d

dt
Jλ,μ(t

+
0 u

+
0 , t

+
0 v

+
0 ) = 0 and

d2

dt2
Jλ,μ(t

+
0 u

+
0 , t

+
0 v

+
0 ) > 0,

there exist t+0 < t ≤ t−0 such that Jλ,μ(t
+
0 u

+
. , t

+
0 v

+
0 ) < Jλ,μ(t0u

+
0 , t0v

+
0 ). By

Lemma 7, we have

Jλ,μ(t
+
0 u

+
0 , t

+
0 u

+
0 ) < Jλ,μ(t0u

+
0 , t0u

+
0 ) ≤ Jλ,μ(t

−
0 u

+
0 , t

−
0 v

+
0 ) = Jλ,μ(u

+
0 , v

+
0 )

which contradicts Jλ,μ(u
+
0 , v

+
0 ) = θ+λ,μ. Since Jλ,μ(u

+
0 , v

+
0 ) = Jλ,μ(|u+0 |, |v+0 |)

and (|u+0 |, |v+0 |) ∈ N+
λ,μ. By Lemma 5, we may assume that (u+0 , v

+
0 ) is a non-

negative solution of problem (1.1). By the maximum principle, it follows that
u+0 > 0, v+0 > 0 in Ω. 	


The following two lemmas are similar to that in Hsu [16].
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Lemma 9. If {(un, vn)} ∈ W is a (PS )c-sequence for Jλ,μ with (un, vn) ⇀
(u, v) in W , then J ′λ,μ(u, v) = 0, and there exists a positive constant Υ depend-

ing on p, q, N and C, such that Jλ,μ(u, v) ≥ −Υ ((|λ|‖f‖Lp0 (Ω,|x|−β))
p

p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β))
p

p−q ).

Lemma 10. If {(un, vn)} ∈ W be a (PS )c-sequence for Jλ,μ, then {(un, vn)}
is bounded in W .

Denote

AF = inf
(u,v)∈W

{ ‖(u, v)‖p
(
∫
Ω
|x|−bp∗F (x, u, v) dx)

p
p∗

}
.

Now, we need the following proposition.

Proposition 1. [13] Suppose that F ∈ C1(Ω ×R×R,R+) is positively homo-
geneous of degree p∗ with p∗ > 1. Then, there exists MF > 0 such that∣∣F (x, u, v)

∣∣ ≤ MF

(|u|p∗ + |v|p∗), ∀(x, u, v) ∈ Ω × R× R,

where MF = max{F (x, u, v) | x ∈ Ω, u, v ∈ R, |u|p∗ + |v|p∗ = 1}.
Also, we need the following version of Brèzis–Lieb lemma [5].

Lemma 11. Consider F ∈ C1(Ω, (R+)2) with F (x, 0, 0) = 0 and∣∣Fu(x, u, v)
∣∣, ∣∣Fv(x, u, v)

∣∣ ≤ C1

(|u|p∗−1 + |v|p∗−1
)

for some 1 ≤ p∗ < ∞, C1 > 0. Let (un, vn) be bounded sequence in
Lp∗(Ω, |x|−bp∗), and such that (un, vn) ⇀ (u, v) weakly in W . Then one has∫

Ω

|x|−bp∗F (x, un, vn) dx →
∫
Ω

|x|−bp∗F (x, un − u, vn − v) dx

+

∫
Ω

|x|−bp∗F (x, u, v) dx as n→ ∞.

Proof. We will follow the approach presented in [5, 13] to give the proof of
this lemma. Using the mean value theorem, for given 0 < |θ| < 1, it follows
that

|x|−bp∗
∣∣F (x, un, vn)− F (x, un − u, vn − v)

∣∣
=

∣∣|x|−bp∗∇F (x, un − u+ θu, vn − v + θv) · (u, v)∣∣
≤ C1|x|−bp∗(|un − u+ θu|p∗−1 + |vn − v + θv|p∗−1

)|u|
C1|x|−bp∗(|un − u+ θu|p∗−1 + |vn − v + θv|p∗−1

)|v|
≤ C|x|−bp∗[|un − u|p∗−1|u|+ |u|p∗ + |vn − v|p∗−1|u|+ |v|p∗−1|u|
|un − u|p∗−1|v|+ |u|p∗−1|v|+ |vn − v|p∗−1|v|+ |v|p∗]

≤ C|x|−bp∗[|un − u|p∗−1|u|+ |vn − v|p∗−1|v|+ |un − u|p∗−1|v|
|vn − v|p∗−1|u|+ |u|p∗ + |v|p∗ + |u|p∗−1|v|+ |v|p∗−1|u|].
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Hence, for any ε > 0, applying the Young inequality to the last inequality, there
exists Cε > 0 such that

|x|−bp∗
∣∣F (x, un, vn)− F (x, un − u, vn − v)

∣∣
≤ ε|x|−bp∗[|un − u|p∗ + |vn − v|p∗]+ Cε|x|−bp∗(|u|p∗ + |v|p∗).

Now we define the functions

fn = |x|−bp∗
∣∣F (x, un, vn)− F (x, un − u, vn − v)− F (x, u, v)

∣∣,
gn = fn − ε|x|−bp∗(|un − u|p∗ + |vn − v|p∗).

Then

fn ≤ ε|x|−bp∗(|un − u|p∗ + |vn − v|p∗)+ Cε|x|−bp∗(|u|p∗ + |v|p∗)
+ |x|−bp∗

∣∣F (x, u, v)
∣∣,

gn ≤ |x|−bp∗
∣∣F (x, u, v)

∣∣+ Cε|x|−bp∗(|u|p∗ + |v|p∗)
≤ MF |x|−bp∗(|u|p∗ + |v|p∗)+ Cε|x|−bp∗(|u|p∗ + |v|p∗)
≤ (MF + Cε)|x|−bp∗(|u|p∗ + |v|p∗) ∈ L1

(
Ω, |x|−bp∗).

Since (un, vn) ⇀ (u, v) in W , we can assume that un → u, vn → v a.e. in Ω.
Thus, gn → 0 a.e. in Ω as n → ∞. The Lebesgue dominated convergence
theorem implies that

lim
n→∞

∫
Ω

gn(x) dx = 0.

Therefore, we obtain

lim sup
n→∞

∫
Ω

fn(x) dx ≤ lim sup
n→∞

∫
Ω

(
gn(x) + ε|x|−bp∗(|un − u|p∗ + |vn − v|p∗)) dx

≤ lim sup
n→∞

∫
Ω

gn(x) dx+ ε lim sup
n→∞

∫
Ω

|x|−bp∗(|un − u|p∗ + |vn − v|p∗) dx
≤ Cε.

By the arbitrariness of ε > 0, one has

lim
n→∞

∫
Ω

fn(x) dx = 0.

This completes the proof. 	


Lemma 12. Jλ,μ satisfies the (PS )cF condition with cF satisfying

−∞ < cF < c∞ =

(
1

p
− 1

p∗

)
A

p∗
p∗−p

F

− Υ
((|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

)
.

Math. Model. Anal., 17(3):330–350, 2012.



344 N. Nyamoradi

Proof. Let {(un, vn)} ∈ W be a (PS )cF -sequence for Jλ,μ with cF ∈ (−∞, c∞).
It follows from Lemma 10 that {(un, vn)} is bounded inW , and then (un, vn) ⇀
(u, v) up to a subsequence, (u, v) is a critical point of Jλ,μ. Moreover, we may
assume ⎧⎪⎪⎨⎪⎪⎩

un ⇀ u, vn ⇀ v, weakly in W 1,p
0 (Ω, |x|−ap),

un → u, un → u, strongly in Lq(Ω, |x|−β),

un → u, un → u, a.e. on Ω.

Hence, we have that J ′λ,μ(u, v) = 0 and

Kλ,μ(un, vn) → Kλ,μ(u, v), as n→ ∞. (3.3)

Let ũn = un − u, ṽn = vn − v. Then by Brèzis–Lieb lemma [5], we obtain∥∥(ũn, ṽn)∥∥p → ∥∥(un, vn)∥∥p − ∥∥(u, v)∥∥p, as n→ ∞, (3.4)

and by Lemma 11,∫
Ω

|x|−bp∗F (x, ũn, ṽn) dx →
∫
Ω

|x|−bp∗F (x, un, vn) dx

−
∫
Ω

|x|−bp∗F (x, u, v) dx, as n → ∞. (3.5)

Since Jλ,μ(un, vn) = cF + o(1), J ′λ,μ(un, vn) = o(1) and (3.3)–(3.5), we can
deduce that

1

p

∥∥(ũn, ṽn)∥∥p − 1

p∗

∫
Ω

|x|−bp∗F (x, ũn, ṽn) dx = cF − Jλ,μ(u, v) + o(1), (3.6)

∥∥(ũn, ṽn)∥∥p −
∫
Ω

|x|−bp∗F (x, ũn, ṽn) dx = o(1).

Thus, we may assume that∥∥(ũn, ṽn)∥∥p → l,

∫
Ω

|x|−bp∗F (x, ũn, ṽn) dx → l. (3.7)

If l = 0, the proof is completed. Assume l > 0, then from (3.7), we obtain

AF l
p
p∗ = AF lim

n→∞

(∫
Ω

|x|−bp∗F (x, ũn, ṽn) dx

)p/p∗

≤ lim
n→∞

∥∥(ũn, ṽn)∥∥p
= l,

which implies that l ≥ A
p∗

p∗−p

F .
In additional, from Lemma 9, (3.6) and (3.7), we get

cF =

(
1

p
− 1

p∗

)
l + Jλ,μ(u, v) ≥

(
1

p
− 1

p∗

)
A

p∗
p∗−p

F

− Υ
((|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

)
,
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which contradicts

cF <

(
1

p
− 1

p∗

)
A

p∗
p∗−p

F − Υ
((|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

)
.

	


Lemma 13. There exist a non-negative function (u, v) ∈ W \ {(0, 0)} and
C∗ > 0 such that for

0 < (|λ|‖f‖Lp0 (Ω,|x|−β))
p

p−q + (|μ|‖f‖Lp0 (Ω,|x|−β))
p

p−q < C∗,

we have

sup
t≥0

Jλ,μ(tu, tv) < AF .

In particular θ−λ,μ < c∞ for all

0 <
(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q < C∗.

Proof. We fix in Lemma 1 the constants R1 = R0 and c1 = c0. Now, we
consider the functional I : W → R defined by

I(u, v) =
1

p

∥∥(u, v)∥∥p − 1

p∗

∫
Ω

|x|−bp∗F (x, u, v) dx for all (u, v) ∈ W.

Set u0 = e1uε, v0 = e2uε and (u0, v0) ∈ W , where (e1, e2) ∈ (R+)2, ep1+e
p
2 =

1 and infx∈Ω F (x, e1, e2) ≥ K. Then by (H1) and (2.8), the definition of AF

and Lemma 1, we obtain that

sup
t≥0

I(te1uε, te2uε) ≤
(
1

p
− 1

p∗

)(
(ep1 + ep2)

∫
Ω
|x|−ap|�uε|p dx

(
∫
Ω
|x|−bp∗F (x, e1uε, e2uε) dx)

p
p∗

) p∗
p∗−p

≤
(
1

p
− 1

p∗

)( ∫
Ω
|x|−ap|�uε|p dx

K
p
p∗ (

∫
Ω
|x|−bp∗ |uε|p∗ dx)

p
p∗

) p∗
p∗−p

≤
(
1

p
− 1

p∗

)(
1

K
p
p∗

) p∗
p∗−p

(S̃a,p,R +O
(
ε

N−p(1+a−b)
p(1+a−b)

)) p∗
p∗−p

≤
(
1

p
− 1

p∗

)(
1

K
p
p∗

) p∗
p∗−p (

S̃a,p,R +O(ε
N−p(1+a−b)

p(1+a−b) )
) p∗

p∗−p

≤
(
1

p
− 1

p∗

)(
1

K
p
p∗

) p∗
p∗−p (

S̃
p∗

p∗−p

a,p,R +O(ε
N−p(1+a−b)

p(1+a−b) )
)

≤
(
1

p
− 1

p∗

)
A

p∗
p∗−p

F +O
(
ε

N−p(1+a−b)
p(1+a−b)

)
, (3.8)

where the following fact has been used:

sup
t≥0

(
tp

p
A− tp

∗

p∗
B

)
=

(
1

p
− 1

p∗

)(
A

B
p
p∗

) p∗
p∗−p

, A,B > 0.
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We can choose δ1 > 0 such that for all

0 <
(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q < δ1,

we have

c∞ =
p∗−p
pp∗

A
p∗

p∗−p

F −Υ ((|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

)
> 0.

Using the definitions of J(u, v) and (u0, v0), we get

Jλ,μ(tu0, tv0) ≤ tp

p

∥∥(u0, u0)∥∥p for all t ≥ 0 and λ, μ > 0,

which implies that there exists t0 ∈ (0, 1) satisfying

sup
0≤t≤t0

Jλ,μ(t0u0, t0u0) < c∞,

for all

0 <
(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q < δ1.

Using the definitions of J(u, v) and (u0, v0), and by (3.8), we have

sup
t≥t0

Jλ,μ(t0u0, t0u0) = sup
t≥t0

(
I(t0u0, t0u0)− tq

q
Kλ,μ(u

+
0 , v

+
0 )

)
≤

(
1

p
− 1

p∗

)
A

p∗
p∗−p

F +O
(
ε

N−p(1+a−b)
p(1+a−b)

)− tq0
q
m(λ+ μ)

∫
B(x0,R0)

|uε|q dx, (3.9)

where m = min{eq1, eq2}. We observe that

(N − p(1 + a− b))q

p2(1 + a− b)
<
N − p(1 + a− b)

p(1 + a− b)
. (3.10)

Suppose q < (N−β)(p−1)
N−p−ap . The inequalities (3.9), (3.10) and Lemma 1, imply

sup
t≥t0

Jλ,μ(t0u0, t0u0) ≤
(
1

p
− 1

p∗

)
A

p∗
p∗−p

F +O(ε
N−p(1+a−b)

p(1+a−b) )

− tq0
q
m(λ+ μ)O

(
ε

(N−p(1+a−b))q

p2(1+a−b)
)
. (3.11)

Now, for all

ε =
((|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

) p(1+a−b)
N−p(1+a−b) ∈ (0, R0),

we get

sup
t≥t0

Jλ,μ(t0u0, t0v0) ≤
(
1

p
− 1

p∗

)
A

p∗
p∗−p

F +O
((|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

+
(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

)− tq0
q
m(λ+ μ)

((|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

+
(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

) q
p .
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Thus, we can choose δ2 > 0 such that for all 0 < (|λ|‖f‖Lp0 (Ω,|x|−β))
p

p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β))
p

p−q < δ2, we obtain

O
((|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

)
− tq0

q
m(λ+ μ)

((|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

) q
p

≤ −Υ ((|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

)
.

If we set C∗ = min{δ1, R0, δ2} and

ε =
((|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q

) p(1+a−b)
N−p(1+a−b) ,

then for

0 < (|λ|‖f‖Lp0 (Ω,|x|−β))
p

p−q + (|μ|‖f‖Lp0 (Ω,|x|−β))
p

p−q < C∗,

we have

sup
t≥t0

Jλ,μ(t0u0, t0u0) ≤ c∞. (3.12)

Similarly, let q = (N−β)(p−1)
N−p−ap , by inequalities (3.9), (3.10) and Lemma 1, one

can get

sup
t≥t0

Jλ,μ(t0u0, t0u0) ≤
(
1

p
− 1

p∗

)
A

p∗
p∗−p

F +O
(
ε

N−p(1+a−b)
p(1+a−b)

)
− tq0

q
m(λ+ μ)O

(
ε

(N−p(1+a−b))q

p2(1+a−b) |ln ε|). (3.13)

If q > (N−β)(p−1)
N−p−ap , then

sup
t≥t0

Jλ,μ(t0u0, t0u0) ≤
(
1

p
− 1

p∗

)
A

p∗
p∗−p

F +O
(
ε

N−p(1+a−b)
p(1+a−b)

)
− tq0

q
m(λ+ μ)O

(
ε

(N−p(1+a−b))(p−1)[(N−β)p−(N−p−ap)q]

p2(1+a−b)(N−p−ap)
)
, (3.14)

then, by (3.13) and (3.14), we have

sup
t≥t0

Jλ,μ(t0u0, t0u0) ≤ c∞. (3.15)

Finally, we prove that θ−λ,μ < c∞ for all

0 < (|λ|‖f‖Lp0 (Ω,|x|−β))
p

p−q + (|μ|‖f‖Lp0 (Ω,|x|−β))
p

p−q < C∗.

Recall (u0, v0) = (e1uε, e2uε). It is easy to see that∫
Ω

|x|−bp∗F (x, u0, v0) dx > 0.
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Combining this with Lemma 7, from the definition of θ−λ,μ, (3.12) and (3.15),

we obtain that there exists t0 > 0 such that (t0u0, t0v0) ∈ N−λ,μ and

θ−λ,μ ≤ Jλ,μ(t0u0, t0v0) ≤ sup
t≥t0

Jλ,μ(t0u0, t0u0) < c∞,

for all 0 < (|λ|‖f‖Lp0 (Ω,|x|−β))
p

p−q + (|μ|‖f‖Lp0 (Ω,|x|−β))
p

p−q < C∗. 	


Theorem 4. If

0 < (|λ|‖f‖Lp0 (Ω,|x|−β))
p

p−q + (|μ|‖f‖Lp0 (Ω,|x|−β))
p

p−q < C∗0

and (H1)–(H3) hold, then Jλ,μ has a minimizer (u−0 , v
−
0 ) in N

−
λ,μ and it satisfies

(i) Jλ,μ(u
−
0 , v

−
0 ) = θ−λ,μ,

(ii) (u−0 , v
−
0 ) is a positive solution of (1.1),

where C∗0 = min{C∗, Λ0}.

Proof. By the Lemma 8(ii), there exists a minimizing sequence {(un, vn)} ⊂
N−λ,μ in W for Jλ,μ for all

0 <
(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q < C0.

From Lemmas 12, 13 and 6(ii), for

0 <
(|λ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q +

(|μ|‖f‖Lp0 (Ω,|x|−β)

) p
p−q < C∗,

Jλ,μ satisfies (PS )θ−λ,μ
condition and θ−λ,μ > 0. Since Jλ,μ is coercive on Nλ,μ,

we get that (un, vn) is bounded in W . Therefore, there exists a subsequence
still denote by (un, vn) and (u−0 , v

−
0 ) ∈ N−λ,μ such that (un, vn) → (u−0 , v

−
0 )

strongly in W and Jλ,μ(u
−
0 , v

−
0 ) = θ−λ,μ > 0 for all

0 < (|λ|‖f‖Lp0 (Ω,|x|−β))
p

p−q + (|μ|‖f‖Lp0 (Ω,|x|−β))
p

p−q < C∗0 .

Finally, by the same arguments as in the proof of Theorem 3, for all

0 < (|λ|‖f‖Lp0 (Ω,|x|−β))
p

p−q + (|μ|‖f‖Lp0 (Ω,|x|−β))
p

p−q < C∗0 ,

we have that (u−0 , v
−
0 ) is a positive solution of problem (1.1). 	


Now, we complete the proof of Theorem 1 and Theorem 2: By Theorem 3,
we obtain that for all 0 < (|λ|‖f‖Lp0 (Ω,|x|−β))

p
p−q +(|μ|‖f‖Lp0 (Ω,|x|−β))

p
p−q < C,

problem (1.1) has a positive solution (u+0 , v
+
0 ) ∈ N+

λ,μ. On the other hand, from

Theorem 4, we get the second positive solution (u−0 , v
−
0 ) ∈ N−λ,μ for all

0 < (|λ|‖f‖Lp0 (Ω,|x|−β))
p

p−q + (|μ|‖f‖Lp0 (Ω,|x|−β))
p

p−q < C∗0 < C.

Since N+
λ,μ ∩ N−λ,μ = ∅, this implies that (u+0 , v

+
0 ) and (u−0 , v

−
0 ) are distinct.

This completes the proofs of Theorem 1 and Theorem 2.
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