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Abstract. In this paper, we consider a class of quasilinear elliptic systems with
weights and the nonlinearity involving the critical Hardy—Sobolev exponent and one
sign-changing function. The existence and multiplicity results of positive solutions
are obtained by variational methods.
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1 Introduction

The aim of this paper is to establish the existence and multiplicity of nontrivial
non-negative solutions to the quasilinear elliptic system

1

7diV(‘I|7ap‘VU|p72VU) - WFu(xv u, U) + )\f(CC) ‘$|B |u|lI*2u7 iIl Qa

1
—div(a TP ETY) = e P, 0) + ) sl i 2
u>0, v>0, in £2,
u=v=0, on 012,

(1.1)
where 0 € 2 ii a bounded domain in RY (N > 3) with the smooth boundary
002, F € CH2 x (RT)2,R") is positively homogeneous of degree p*. Here
p* = pla,b) £ Wﬁa_b) is the Hardy—Sobolev critical exponent. Note that
2(a,a) = 2% = 2* is the Sobolev critical exponent. Thus F(z,tu,tv) =
t?" F(z,u,v) (t > 0) hold for all (z,u,v) € 2x(RT)2, (Fy(x,u,v), Fy(z,u,v)) =
VF(z,u,v).

We make the following assumptions:
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(Al) 8 < (1—|—a)P1+N( —%), with 1 < g < p*, 1 < pg < NN—_’; and
g<p < NN—Q) such that pio +b=1(\np) € R2\ {(0,0)} and f(x) €
Lro (02, |x|7P8), with f*(x) = max{£f,0} # 0.
Problem (1.1) is related to the well known Caffarelli-Kohn-Nirenberg in-
equality in [12, 22],
( / || 7P |u|P” dx) ’ < Cap / |2|~P|VulP dz, for all u € C§°(RY), (1.2)
RN RN

where1<p<N,—oo<a<¥,a§b§a+1»]9*:%-

Ifl<p< Nand —0 <a< % we denote by Wy*(£2,|z|~%) the
completion of C§°(§2) with respect to the norm

1/p
full = ([ felrivap i)
10}

By using the inequality (1.2) and the boundedness of {2, was proved in [22]
that there exists C' > 0 such that

p/r
(/ |x|—5|u|’“dx) <C / | [Vul? d, for all u € WP (€2, [2]7),
0 2

where 1 <7 < &, § < (a+ 1)r + N[1 — (r/p)], which is said the Caffarelli-
Kohn-Nirenberg’s inequality. In other words, the embedding W (2, |z|~7) <
L7(£2,]2|7°%) is continuous if 1 < r < NN—_”p and 0 < (a+ 1)r + N[1 — (r/p)].
Moreover, this embedding is compact if 1 < r < NLE) and 0 < (a+1)r+ N[1—

(r/p)], see Theorem 2.1 in [22] for the case when v = 0.
Now, we define the space W = W, P (2, || =) x WP (£, |z|~*) with the

norm
1/p
woll = ( [ erwarass [ j-eivopar)
(9] 2

Also, we can define the best Hardy—Sobolev constant:

fQ |x| 9P |VulP dz

p* dx)pl*.

A=A,,(2) = . —
weWg P (2,|z]=*»)\{0} ([, |2~ |u

In recent years, several authors have used the Nehari manifold to solve semi-
linear and quasilinear problems (see [1, 2, 6, 7, 8, 9, 10, 16, 20] and references
therein). Brown and Zhang [11] have studied a subcritical semi-linear elliptic
equation with a sign-changing weight function and a bifurcation real parameter
in the case p = 2 and Dirichlet boundary conditions. Exploiting the relation-
ship between the Nehari manifold and fibering maps (i.e., maps of the form
t — Jx(tu) where Jy is the Euler functional associated with the equation),
they gave an interesting explanation of the well-known bifurcation result. In
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fact, the nature of the Nehari manifold changes as the parameter A crosses the
bifurcation value. In this work, we give a variational method which is similar
to the fibering method (see [14] or [6, 11]) to prove the existence of at least two
nontrivial nonnegative solutions of problem (1.1). Some authors also studied
the singular problems with Hardy—Sobolev critical exponents ([3, 17, 18] the
references therein).

Before stating our results, we need the following assumptions:

(H1) F: 2 x (RT) x (Rt) = R" is a C* function such that F(z,tu,tv) =
tP" F(2,u,v) (t > 0) hold for all (z,u,v) € 2 x (RT)?;

(H2) F(z,u,0) = F(z,0,v) = F,(z,u,0) = F,(x,0,v) = 0 where u,v € Rt;

(H3) Fyu(x,u,v), Fy(x,u,v) are strictly increasing functions about w, v for all
u>0,v>0.

Moreover, using assumption (H1), we have the so-called Euler identity

(u,v) - VF(z,u,v) = p"F(z,u,v), (1.3)

p*

F(z,u,v) < K([ul’ + |[v’) 7, for some constant K > 0. (1.4)

This paper is divided into three sections, organized as follows. In Section
2, we give some notations, preliminaries, properties of the Nehari manifold and
set up the variational framework of the problem. In Section 3, we give our
main results.

2 Preliminaries

Let us consider £2 a domain in RN, 0 € 2, 1 <p < N,0<a < (N —p)/p,

a<b<a+1andp*= Wﬁa_b). We define the space

War(2)={uce ¥ (92,12|7PP) : |Vu| € LP (02, ]z]~P) },
equipped with the norm
lullwrr oy = llull Lo (@,jo)-2r) + 1VUll Lo (2,12 -ar).-
We consider the constant S, , given by

ga,p = inf{ IRN |x|7a*p|vqi|p de
(Jan 2|77 [ulp” da)?®

tu € WP (RY)\ {0}}.

Also, we define
Ry2(2) = {u e WP (2): u(z) = u(|z]) },
endowed with the norm

lull e o) = llullyyrr ()
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Actually, Horiuchi in [15] proved that, if a > 0,

~ “P|Vul|Pd
Sa,p,R = inf{ Jp 27Vl xL
(Jan |2]~ )P
and it is achieved by functions of the form

Ye(x) = ko p(e)Uq pe(x), Ve>0,

we RIP(RY) {0}}

where
__ N—p(ta-—b) p(l+a—b)(N—p—ap) N—-p(l+a—b)
ka,p(e) — Ce P2(ta-b) , and Ua’p’e(x) — (6 + ‘x| (P—D(N= p(1+a b))) p(I+a—b)

We observe that by the Caffarelli-Kohn—Nirenberg’s inequality follows that
WP (£2,]z|~%) is a subset of WLP(RN), then S, , < A.

We need the following lemma (the proof of this lemma follows exactly as
n [19]).
Lemma 1. Let Ry, ¢1 be positive constants with B(0,3R;) C {2 and ¢ €
C§°(B(0,3R1)) with » > 0 in B(0,3R1) and ¢ = 1 in B(0,2R;), then the
function given by

te(x) := P(@)Vap,e(2)/[[¥Uap.cll Lo (2,2 -0r)
satisfies

N-p(l+a—b)

= 1’ Hvueni:ﬁ(n’lw‘_ap < SapR+O(€ p(1+a—b) )7

A

and

Hfl/qWHqu(n,mrﬁ)

(N—p(l+a—b))q

Ofe ritrem ), if g < OFEEC
(N=p(ta=b))qg _ _
= O(e 7t In(e)), ifg=Ug5eR, (21)
O R e ), if g > T

for all f € LP(82,|x|=7) with f > 0 for a.e. in B(0,3Ry) and infpo2p) f > 0
for some 0 < R < Ry. Moreover, the inequality (2.1) is uniform in f €
LPo(92,|x|7P) satisfying: f >0 for a.e. in B(0,3Ry) and

p(l4+a—b)(N—p—ap) . _ (N—p(t+a—b))g
(1+ RGDm—paretn )~ p0Fem RN=F inf f> ¢
B(0,2R)

for some R € (0, Ry].

Now, by (1.3) the corresponding energy functional of problem (1.1) is de-
fined by

1 1 * 1
Iap(u,v) = f||(u,v)”p — —*/ |$|7bp F(z,u,v)de — - Ky ,(u,v),
p P Jo q

for each (u,v) € W, where K ,(u,v) = [,(Af]z| 7P |ul? + pf|z| P |v]?) do
In order to verify Jy , € C'(W,R), we need the following lemmas.

Math. Model. Anal., 17(3):330-350, 2012.



334 N. Nyamoradi

Lemma 2. Suppose that (H3) holds. Assume that F € C1(£2 x R%,R) is posi-
tively homogeneous of degree p*, then F,, F, € C(£2 x R*Q,RJ“) are positively
homogeneous of degree p* — 1.

Moreover by the Lemma 2, we get the existence of a positive constant M such
that

(e, 0)| < M (! ) (22)
|Fy(2,u,0)| < (|u|p S Y, Ve, uveRh. (2.3)

By the weighted Hardy—Sobolev inequality, (2.2) and (2.3), J, , € C*(W,R).
Now, we consider the problem (1.1) on the Nehari manifold. Define the
Nehari manifold

N/\uu' = {(u’ ’U) € W\ {(070)} | <J;\,;¢(uﬂ 7}), (U7U>> = O}’

where
<J§\7N(u, v), (u,v)> = H(u,v)”p — / \x|_bp*F(J:,u,v) dr — K ,(u,v).
Q

Note that Ny , contains every nonzero solution of (1.1). Define

Dy pu(u,v) = <J§\’M(u, v), (u,v)),

then for (u,v) € Ny,

<¢’)\7M(u, v), (u, v)>

= pH(u,v)Hp —p" / 2| 7% F(z, u,v) de — K (u,v) (2.4)
2
— (- o)) - & —q) / 2]~ F(,u,0) da (2.5)
2
= (p _p*) (U’U)Hp - (q - p*)K)\,[L(U’7 1}) (26)
— (") /Q 2|~ F(z,u,0) do — (g — p)Kau(uww).  (27)

Now, we split IV , into three parts:

To state our main result, we now present some important properties of NV ;r W
NEM and Ny .
Lemma 3. There exists a positive number A = A(q, N, K, C,|2|) > 0 such that
if
_P_ P
0 < (IMILFllzro@.fa1-2)) =% + (Bl fllLro (2 fa)-8)) 7% < 4,
then NY , = 0.
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Proof. Suppose opposite, that for

D

p—gqg \T o (p=p\T v
A= (> < ) C o =p p-a
K(p* —q) P —q

there exists (A, u) with

0 < (IMIflzro(2,2-2y) =7 + (Il flpro (2,021-2)) 7~ < 4,

such that NS’M # (. Then for (u,v) € Nf\)’u, by (2.5) and (2.6) we have

0= (2, (u,v), (u,0)) = (p — )| (w,0) [" — " —q) /Q | P F (2, u, 0) dae
= (p =) (w0 = (g = ") K pu(u, v).

By the Caffarelli — Kohn — Nirenberg inequality, the Minkowski inequality
and estimate (1.4), one can get

*

/lxlbp*F(x,um)deK(/ |x|bp*(u|p+|vp)idx)" ’
2 2

< K((/ |~ " dx)p + (/ |~ o P dm)p ) ’
(9] (]
< KO (Jull* + Jol]?) T = KCF ||(w,0)]]”" (28)

Also, by the Holder and Caffarelli-Kohn—Nirenberg’s inequalities, we have

p*
p*

P w0 = Kopulu,v)
q

= [ MlalPpufrda+ [ el ot da
(9} 2

1/po q/p1
sw( [ ey dm> < [ dx)

1/po q/p1
+Iu|< [ (el dx) ( [ 1o dm)

<INl zro 2,y Nl Eor + [l £l Lro (2, 1212 1011 04
a
< C7 (Ml Lro (2, o) 1wl 4+ 1l F | Lro 2,121~y 10119)

< CF (A llzosaset=) 7" + (ull flzsoqenio-) ™) 7 Il )]

Thus

ol 2 (lrtse )7
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and

_1

was(_y) TN o o) 77

p*

S =

_pP
+ (1Ll £l oo (2,1 -2y) P~
This implies

(MW zwo (g fa-5) 7" + (1l oo (22 -2)) 77 = A.

This is a contradiction! Therefore, we can conclude that there exists A > 0
such that for

0 < (IMIfllzro (2,ja1-2)) " + (lllfll oo (,10-2)) 7% < 4,
we have Ny =0. O

Lemma 4. The energy functional J , is coercive and bounded below on Ny .

Proof. 1f (u,v) € Ny ,, then by the Holder inequality and Caffarelli-Kohn—
Nirenberg’s inequality, we can get

e (I e SWICRD
p —p P —q 1 -
= pp* H(u’v)” P Cp[(|>‘|||fHLP0(9,|m|*ﬂ))” !

+ (1l f o el o) 7] 7 [y 0)]|1

Since 1 < g < p, we see that J) , is coercive and bounded below on Ny ,. O

Furthermore, similar to the argument in Brown and Zhang [4, Theorem 2.3]
(or see Binding [4], Drébek, and Huang [11]), we can conclude the following
result.

Lemma 5. Assume that (ug,vo) s a local minimizer for Jx, on Ny, and
that (ug,vo) ¢ NR#. Then J} ,(ug,vo) = 0 in WL (the dual space of Sobolev
space W ).

By Lemma 3, we let

a0 ={(\ 1) €RZ\{(0,0)}: 0 < (IMIIF | oo (2,fa1-2)) 7
+ (Il FllLro (2,21-5)) 7~ < Ao},

where Ag = (%)ﬁ/l < A If (A, 1) € Oy, we have N ,, = NI#UN):#. Define

Ox,= inf J ), 6F = inf J , V),
Ak (u,U;IEINA,u /\,}J«(u v> Aot (u,v;relN;tu A’M(u v)
0y, = inf  Jyu(u,0).

(w,v)ENY,
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Lemma 6. There exists a positive number Ay such that if (A, 1) € O4,, then
(1) Ox, < OIM < 0;
(ii) there exists dg = do(p, q, N, K, C, A, ) > 0 such that 0y, > do.

Proof. (i) For (u,v) € Ny, by (2.6), we have

and so
bt~ (4= e~ (2~ e
1 1 1 1 *—
< (2-Diwolr - (3 - ) E=Lhw ol
o <

+
Ap?

(ii) For (u,v) € Ny ,, by Lemma 3,

Thus, from definition of ) ,, and 6 we can deduce that 6, , < QI# < 0.

1

*

o) > (2 ts) e,
Moreover, by Lemma 4,

p—p P —q 0 »
Tl v) 2 pp* I oll” - ap* C# [(IANf oo (2,fa-2)) P

+ (11lllf o ai-) 7] 7 || 0)||°

q|P" =P p—a _P"—q 1 2
= ) 9 _7Cp >\ PO x|~ P
O e [ e (T PP

P P=9
+ (|:U“H|f||LP0(_Q7|w‘_B)) P*q) ) :|
p

q
p—q PTP_apt f—p p—qa P —q 1
>t C w*m{ (u,v _P Z4n
(K(p*—q)> pp* IS qp*

p—q

R (L T e

< (A fllzro (2, fa1-2)) 7
Thus, if

0 < (ML zeo (2,121-)) 7= + (Il F Lo (2,41-2)) 70 < Ao,
then for each (u,v) € N, , we have

JA,#(U,U)ZdO:dO(p7Q7N7Kac,)‘a/u’)>0' o

Math. Model. Anal., 17(3):330-350, 2012.
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For each (u,v) € W\ {(0,0)} such that [, F(z,u",v")dz >0, let

_ (p — q)||(u,v)||? e
F = <(p*_Q)fQ |$|bp*F(m,u,v)dx> '

Lemma 7. Assume that

0 < (IMIfllzro 2,121-2y) =% + (Il Fll £eo (2, 121-5)) P~ < Ao

Then, for every (u,v) € W with [, F(z,u®,v")dx > 0 there ewists tmax > 0
such that
(1) if Kx pu(u,v) <0, then, there is a unique t~ > tmax such that (t~u,t"v) €
Ny, and

It u, t7v) = sup Jy ,(tu, tv);
t>0

(i) if Kx p(u,v) > 0, then, there are unique t+ and t= with 0 <t < tmax <
t= such that (t*u, t*v) € Nfu and

Ipttu, tto) = inf Jy,(tu,tv), Jyu(t u,t”v) = sup Jy u(tu, to).
0<t<tmax >0

Proof. Fix (u,v) € W with [, F(z,u,v)dz >0, let
m(®) = 0w )| =07 [ fal " Pla,u,0) o
for t > 0. Clearly, m(0) = 0 and m(t) — —oo as t — co. Since
(@) = o= e o) = 07 =9 [ Fau) e

there is a unique tmax > 0 such that m(t) achieves its maximum at tpax,
increasing for ¢ € [0, tax) and decreasing for ¢ € (tmax, 00) With lim;_, o m(t) =
—o00. Clearly, (tu,tv) € N;r,u (or Ny ) if and only if m/(¢) > 0 (or < 0).
Moreover,

L (p—a)l|(w, v)]” DT
o) = (g e Ay ) Nl

_( (0~ @)ll(w.)]” ) /m|@quwd

(p* —q) [, x|~ F (2, u,v) dx

P

-ren{(2=2)"7 - (222)
(prrtas)

CONEE oo\ 1\
> (22D (220 ()
P*—q P —q)\Kc5%
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(i) Kz pu(u,v) < 0, then, there is unique t~ > tmax such that m(t™) =
K, (u,v) and m/(t~) < 0. Now,

(p— @)t )P||(w,v)]|” = (" — a)( /|w\prwuv)d
=(@t)™m(t7) <0,
and
<J§\,H(t_u,t_v), (t_u,t_v)> = (t_)q[m(t_) — Ky ,u(u, v)] =0.

Thus, (t7u,t"v) € Ny ,. Since for ¢ > tyax, we have m/(t) < 0 and m”(t) < 0.
Subsequently,

Iap(tTu, t7v) = sup Jy . (tu, tv).
>0

(ii) Ky u(u,v) > 0. For
_p _p_
< (Ml zro 2, 121-5)) 7= + (el fll ro (2,21 -8)) P2 < Ao < A,
we have
m(0) =0 < K ,(u,v)

C (A zro (2, 121-#)) P~% + (|:u‘Hf”LPO(Q,\x\*ﬁ))E)% | (u, ) ||

pP—q rP—q
p—q \*"*[(p"—p 1 P
S( — ) ( — )( ) [ (w, )| < m(tmax),
P —q P —a)\Kc%

there are unique t* and ¢t~ such that 0 < tT <t <17,

m(tt) = Ky ,(u,v) =m(t™), m/(tT)>0>m/(t7).

We have (ttu,ttv) € N and

N (7w t7v) € Ny

)\;U

Ip(tTu t™o) > Iy (tu, to) > Iy (tTu, tTo), Ve [ttt
T (tTu tto) < Iy u(tu,tv),  VE € [0, tmax)-

Thus

Iptu,tto)y = inf Iy u(tu to), Iyt utTo) = sup Jy(tu, to).
0<t<tmax t>0

This completes the proof. O

3 Existence of solutions

Now, we can state our main results.

Math. Model. Anal., 17(3):330-350, 2012.
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Theorem 1. Suppose Ry and ¢y are positive constants with B(0,3Ry) C 2.
In addition to (H1)-(H3) and (Al) hold. Then, there exists A > 0 such that
problem (1.1) has a positive solution for each f € LPo(82,|x|™?) satisfying
f(x) >0 for a.e. x € B(0,3Ry),

p(14+a—b)(N—p—ap) (N—p(l+a—b))g
(1+ R%) p(Fa=0)  RpN- BB({)n;fR)f > ¢o, for some R € (0, Rol,

and the parameters \, u satisfy

0< (‘)\|||f||L”’(Q»\ﬂE|”3))ﬁ + (|M‘HQHLPo(Q,|m|—B))H < A

Theorem 2. Suppose Ry and ¢y are positive constants with B(0,3Ry) C 2.

In addition to (H1)-(H3) and (A1) hold. Then, there exists Ag > 0 such that

problem (1.1) has at least two positive solutions (ug7 vy) and (ug ,vy ) for each

f € Lro(02,|z|=P) satisfying f(x) >0 for a.e. x € B(0,3Ry),

p(1+a—b)(N—p—ap) (N—p(ta—b))g N-8
(1+RG=D—paFa=e) ) »(Fa=) "R (mf f > cq, for some R € (0, Ry,
B(0,2R

and the parameters A, u satisfy

0 < (IMIFllLro(@.fzi—#)) P~ + (el FllLro (2.121-5)) 77 < Ao.
Before given the proofs of Theorems 1 and 2, we need the following lemma.

Lemma 8. (i) If 0 < ([A[lfllzro(2,1e1-2)) 77 + (lulllfllro01z1-2)) 777 < A,
then there exists a (PS)gk’“—sequence {(tn,vp)} C Ny in W for Jy .

(ii) If0 < (|>‘|||f||LP0(Q,|x|*5))ﬁ Jr(\M|||f||Lpo(n,\gc|fﬁ))ﬁ < Ay, then there
exists a (PS)(,; -sequence {(tn,vn)} C Ny, in W for Jy .
N ’

Proof. The proof is almost the same as that in Wu [21]. O

Theorem 3. If 0 < (NIl zro (e jo|-5)) 77 + (Wl o )75 < A and
(H1)—(H3) hold, then Jy , has a minimizer (ug,vy) in NJF’# cmd it satisfies
() T pulug,vg) =05,

(ii) (ug,vg) is a positive solution of (1.1).

Proof. By the Lemma 8(i), there exist a minimizing sequence {(uy,v,)} for
Ja,u on Ny, such that

Iapu(tn,vp) =05, +0(1) and J§\7M(un,vn) =o(1) in W (3.1)

Then, by Lemma 4 and the continuity of the embedding theorem, there is a
subsequence {(un,v,)} and (ud,vy) € W such that

Up —ud, v, —vd, weakly in Wy P(02,|x]|7),
Up — ug, v, — vy, strongly in L($2,|z|7P), (3.2)

un—>ug7 vn—H}ar, a.e in {2,
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as n — oo. This implies that
Ky u(tn,vn) = Ky u(ud,vf),  asn — oo

By (3.1) and (3.2), it is easy to prove that (ug,vg) is a weak solution of
problem (1.1). Since

p* p DP'—q P —
‘])\,L(u U ): ’U) - s (u ’U)Zf
pATTR T pp 2l qp* e qp*
and by Lemma 4(i),

qKAvlL(umvn)a

Inp(Un,vp) = O0x, <0 asn— oo.

Letting n — oo, we see that Ky ,(ug,vg) > 0.
Now, we prove that

U, — ug,  strongly in Wy P (82, |z]|~P),
v, —vg, strongly in Wol’p((?, |z[ =),

and Jy ,(ud,vd) = Oy 4
By applying Fatou’s lemma and (ug,vj) € Ny ., we get

P —q
Orp < Ixpu(ud,vg) = ( - ) ud, v )||” - Ky . (ug,vg
Iz u(ug,vg) » [ (ug,vg) | " n(ug,vg)

< liminf{<1 - 1) ||(un,vn)Hp — v _*qKA,H(un,vn)

n—oo P p* qap
< I}TILILlélof Jx H(Umvn) =0, L

This implies that
| (g o)

Then u, — ud strongly in WoP(2,|z|~%) and v, — vf
WP (@ 2],

Moreover, we have (ug,vl) € NJr In fact, if (ug,vd) € Ny by
Lemma 7, there are unique ¢J and t; such that (tgug,tgvg) € N;u, (toug,

tovg) € Ny, and ts <t; = 1. Since

Iau(udvf) = Oxp, Jim H(“n’”n)Hp = |

strongly in

d d?
dJA,H(tOuO,tJF F)Y=0 and dt2JM(t0u0,t+ §) >0,

there exist t§ < # <ty such that Jy ,(tfut, tfod) < Jyu(foud,fovg). By
Lemma 7, we have

N M(t"'ué,ﬁ H< J,\M(touo ,touo ) < I ulty “0 .t Vg 5 =Jy M(ua',v(‘f)

which contradicts Jy ,(ug,vg) = 9+ Since Jy ,(ug,vg) = Iaulud | lvg])
and (|uf|, |vg]) € N;Cu' By Lemma 5, we may assume that (ud,v]) is a non-
negative solution of problem (1.1). By the maximum principle, it follows that
ug >0,vf >0in 2. O

The following two lemmas are similar to that in Hsu [16].
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Lemma 9. If {(un,vn)} € W is a (PS)c-sequence for Jx, with (u,,v,) —
(u,v) in W, then J} ,(u,v) =0, and there exists a positive constant T depend-
ing on p, ¢, N and C, such that J ,(u,v) > —T((|)\|||f||LpO(Q,|I|_ﬁ))p%q +
(el flzro (2, 121-2)) 7=7) -

Lemma 10. If {(un,vn)} € W be a (PS).-sequence for J ., then {(un,vn)}
is bounded in W.

Denote

P PR () R
F = . P (-
w)eW | ([, |z|~t" F(x, u,v) dx)?"

Now, we need the following proposition.

Proposition 1. [13] Suppose that F € C*(2 x R x R,R*) is positively homo-
geneous of degree p* with p* > 1. Then, there exists Mg > 0 such that

|F(z,u,v)| < MF(|u|p* + |v|p*), V(z,u,v) € 2 xR xR,

where Mp = max{F(z,u,v) |z € 2, u,v € R, |[ul?” + |[v|P" =1}.

Also, we need the following version of Brezis—Lieb lemma [5].
Lemma 11. Consider F € C*(£2,(R*)?) with F(x,0,0) =0 and
| Fuar,u,0)], [Fule, u,0)| < Cr(jul?” =+ o)

for some 1 < p* < oo, C1 > 0. Let (up,vn) be bounded sequence in
LP" (2, |z|~%"), and such that (uy,v,) — (u,v) weakly in W. Then one has

/\x|_b”*F($,un,vn)d$—>/ 2|7 F (2, up — u, v — v) da
7 7
+/ 2|7 F(z,u,v)dz  as n — .
7

Proof. 'We will follow the approach presented in [5, 13] to give the proof of
this lemma. Using the mean value theorem, for given 0 < || < 1, it follows
that

||t |F(x, Up,y Un) — F(z, 0, — u, v, — v)|
= Hx|_bp*VF(x,un —u+ Ou, v, — v+ 0v) - (u,v)|
< Oyl =" (| —u+ OulP” "' + |v, — v+ 9v|p*_1)|u|
Cy ||~ (Jup —u+ OulP” ' + |v, — v + 01)|p*_1)|v|
< Ol ™" [Jun — wl” " Hul + [l + o = vl” ] + [0 ul
Jn = ufP" 7 ol 4 JulP" T o] + [on = 0P o] + ol
< Ol ™" Jun — ul” Ml + |on — 0"~ ol + Jun — ul” o]

o — vlP" " ul + [ul?” + o o]+ ol ful]

P*+‘u
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Hence, for any € > 0, applying the Young inequality to the last inequality, there
exists C. > 0 such that

|| 0P ‘F(m,un,vn) — F(x,up — u, vy, — ’U)’

< ela] " [fun — ul?” + [ = o]+ el (Jul?” + fol?”).

Now we define the functions

fr = || 7% |F(x, Un, Un) — F (2,0, —u, v, —0) — F(z,u,v)

n = Fr = elz7%" (Jun — ulP” + v, — v]").
Then
Fo < el ™ (Jun — ul”" + Jon — 0P") + Cela| 7" (ul”” + [o]”")
+ 2|77 F (2, u,0)],
gn < |27 | F2,u,0)| + Cela| ™" (julP” + [u]")
< Mo~ (Juf”" + [o]P") + Celz| =" (Jul”" +[o"")
< (Mp + C)la| ™" (Jul?” + o) € L (82, ]| 7").

Since (up,vn) — (u,v) in W, we can assume that w, — u, v, — v a.e. in 2.
Thus, g, — 0 a.e. in {2 as n — oo. The Lebesgue dominated convergence
theorem implies that

lim [ gn(z)dz=0.

Therefore, we obtain

n—oo n—oo

lim sup/ fn(z)dx < limsup/ (gn(z) + el =" (Jun — ul?” + v, — v|p*)) dx
2 o)

< limsup/ gn(x) dx + elimsup/ ||~ (Jun — ul?” + v, — v|p*) dx
n— oo 0 n—o0 (9]

<C..

By the arbitrariness of € > 0, one has

lim [ fu(z)dz=0.

n—oo (9]

This completes the proof. O

Lemma 12. J, , satisfies the (PS).,. condition with cp satisfying
1 1 o
—00 < Cp < Cop = <—*>AI’;_"
p p
_p_ i
—T((IMflzro(2,121-5)) 7= 4 (el flzro (2,2-2)) 7~7)-
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Proof. Let {(un,vn)} € W bea (PS),,-sequence for Jy , with cp € (—00, ¢x0)-
It follows from Lemma 10 that {(u, v,,)} is bounded in W, and then (uy,, v,,) —
(u,v) up to a subsequence, (u,v) is a critical point of J ,. Moreover, we may
assume

Uy —u, v, — v, weakly in W P(£2,]x]~),

Up = U, Up —>u, strongly in LI(£2,|z|~7),
Uy — U, Uy —> U, a.e. on §2.

Hence, we have that J} ,(u,v) =0 and
K (tup,vn) = Ky u(u,v), asn— oo. (3.3)
Let @, = u, — u, ¥, = v, —v. Then by Brezis—Lieb lemma [5], we obtain
H(ﬂn,'ﬁn)Hp — ||(un,vn)||p - ||(u,v)”p, as n — oo, (3.4)

and by Lemma 11,
/|x|—bp*F(x,ﬂn,5n)dx—>/ |x‘_bp*F(x,un,vn)dx
Q 0
—/ || 7% F(z,u,v)dz, asn—oco. (3.5)
Q

Since Jy u(un,vn) = cp + o(1), J3 ,(un,vs) = o(1) and (3.3)~(3.5), we can
deduce that

1y,~ ~ 1 x - -
f||(un,"Un)Hp - 7/ 2| 7" F (2,1, D) do = cp — I u(u,v) +0(1), (3.6)
p P Jo
G, B)[|” / [~ F (2, i, B) d = o(1).
[0
Thus, we may assume that

|| (@, T)||” = 1, /Q\x|—bp*F(x,'ﬁn,an)dx—>z. (3.7)

If { = 0, the proof is completed. Assume [ > 0, then from (3.7), we obtain

n—oo

} . p/p”
Aplv® = Ap nli_)ngo(/|x|_bp F(x,an,an)dx> < lim [|(@n, 7)) =1,
2

which implies that [ > Al’jfi_”.
In additional, from Lemma 9, (3.6) and (3.7), we get

1 1 1 1 _rt
cp=|-—— I+ Jyuluv 2(—)/1"_17
r (p p*) pnt-0) p p) T

_p_ _p
=T ((IMNF e (2,121-5)) 7= + (Ll 1l ro (2,121-5)) 7)),
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which contradicts

L1y %5 Y
cr < (p - p*>A1€‘ P ((|)\|||fHLP0 2,|z|~ B)) (‘u'”f”LT’D 2| B)) )

O

Lemma 13. There exist a non-negative function (u,v) € W\ {(0,0)} and
C* > 0 such that for

0 < (IANfllzro (@ jz1-2)) 77 + (Bl fll oo (2,1e)-5)) P2 < CF,
we have

sup J ,(tu, tv) < Ap.
>0

In particular 0):“ < ¢ for all

0 < (IMNF I zro 2,121-2)) 7= + (Il f1 oo (2, -5)) 77 < C*.

Proof. We fix in Lemma 1 the constants Ry = Ry and ¢; = ¢p. Now, we
consider the functional I : W — R defined by

1 1 .
I(u,v) = fH(u,v)Hp - — / 2| 7% F(x,u,v)dz for all (u,v) € W.
b p 2
Set ug = ejue, vg = eaue and (ug, vo) € W, where (e1,e2) € (RT)?, e} +eb =
1 and inf 5 F(x,e1,e2) > K. Then by (H1) and (2.8), the definition of Ap
and Lemma 1, we obtain that

C 1)((4+@Lmﬂwmwwx>ﬁp

sup I (tejue, teaue) <
>0 ‘ ‘ (Jo |x|*bP*F(x,elu5,eQuE) dz)

hS)
3
*

<(1 1)( S l2]~?| AP da )ﬁp
“\r p/\Kw» (f |t |uc|P” dz)v*
P
1 1 p**p ~ N—p(l+a—b) p*
< |- R = , ,R"’O € p(ita—b) )P —p
(p p*) <K> “r ( )

1 1 1 N—p(lta—b) . _p*
< |- — = ’ )R_|_O € p(ta—b) ))P*—p
(p p*) (K) “r ( )

P
1 1 1 pr— p* N—p(14+a—b)
<|l-—— = S” i + O(e pFa=t)
(p p*) <Kp > pht Ol )
p* N—p(lta—b)
AL 7 4 O(e e ), (3.8)

(-3

where the following fact has been used:

o 11 A \77
Sup(A — *B) = ( — *) <p> s A,B > O
t>0 \ P p p p Br*
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We can choose d; > 0 such that for all

0 < (M llLeo(2,ai-2)) 7= + (Il Fll Leo (2,21-5)) 7~ < 61,

we have
I S N
Coo = oo Ap —T((‘M||f||Lpo(Q,\m|fa))p 7 4 (|/QLH|f||Lp0(QV‘m‘76))p q) <> 0.

Using the definitions of J(u,v) and (ug,vp), we get
»
I u(tug, tvg) < EH(uO’uO)Hp for all t > 0 and A\, u > 0,

which implies that there exists ¢t € (0, 1) satisfying

sup Jy,u(touo, totig) < Coos
0<t<to

for all

P _p_
0 < (IMIfllzro (2,2-2y) =% + (Il fl pro (2,02)-5)) P~ < 61
Using the definitions of J(u,v) and (ug,vg), and by (3.8), we have

4
sup Jx, . (touo, toug) = sup <I(tou0,tgu0) — —K,\,M(ua', v{f))
t>to t>tg q

1 —p(lf+a—b tq

< <_1>Ap —p+0(€p(1+7ab>))_£
p* q

p

m(A+ u) /|u6|qu, (3.9)

B(z0,Ro)
where m = min{e{, ed}. We observe that

(N—=p(l+a—-10))q - N—-p(l4+a-—1b)
p*(l4+a—0) p(l14+a—0>)

(3.10)

Suppose ¢ < %. The inequalities (3.9), (3.10) and Lemma 1, imply

1 1 - N—p(i+a—b)
sup Jy u(touo, toug) < | — — — A” P4+ Oe pFa= )
t>to p D*
g (N=p(1+a=b))q
— ImA+ p)O(e P2atra—v ), (3.11)
Now, for all
NMH7GI>>
= (Al zro (2.t~ )7 + (Il peo (2,12 )70 NI € (0, R),

we get

1 1 A .
sup Jx, . (touo, tove) < i AR+ O((IMN Nl o (2, 21-2y) 7"

t>to
q

P t D
+ (1l f 1| zro (2,2)-8)) *~7) — ;Om(A+M)((W||f||LPo(Q,|m\fﬂ))”"’

P 4
+ (|’u|||fHLp0(.Q7|w‘—ﬁ)) P—Q)p.
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Thus, we can choose d > 0 such that for all 0 < (\)\|||f||Lp0(Q,‘x|fg))ﬁ +
(|/’L|||fHLPO(Q,|93|*ﬁ))ﬁ < do, we obtain

O((IMIf 1 zro (2,2-2y) =% + (Il fll oo (2,p1-2)) 7~*)
— 2\ A+ 1) (Ml zro (2,2-29) 77+ (Il 1l oo (2,421-2)) 7~7)

_p_ 2
< =T (NS pro2,21-2)) "= 4 (Ll fllLro (2,12-5)) 7))
If we set C* = min{dy, Ry, 62} and

S

_p_ p(l+a—b)
= ((IMIf1 Lro (2,21~ B)) + ([l f L peo (2,21 -5y) P~ ) N POFa=0
then for
< (Ml zoo @ pop-2)) 77 + (el 1l oo (2,p0p-2)) 77 < CF,
we have
sup Ji . (touo, toto) < Coo- (3.12)
t>to
Similarly, let ¢ = %, by inequalities (3.9), (3.10) and Lemma 1, one
can get
1 —p(1t+a—b)
sup Jx, . (touo, touo) < < — )AP P —|—O(e Tce=n )
t>tg p D*
q (N—p(1+a=b))q
— 2mA+p)O(e @t |lne|). (3.13)

(N=B)(p=1)
If q > Wf@p, then

1 1 N-—p(l+a—b)
sup Ji . (touo, touo) < < — )A" 7 +0(e P(Fa=b) )
t>to p p*

q (N=p(1+a=b))(p=1)[(N=B)p—(N—p—ap)d]

_ Om()\ + ,u)O(e p?(1+a—b)(N—p—ap) ), (3.14)

then, by (3.13) and (3.14), we have

sup Jx . (touo, touo) < Coo- (3.15)
t>t0

Finally, we prove that 6 u < Coo for all

< (Ml zro(2,121-2) 77 + (ulll fllLro (2,21-)) =7 < C.

Recall (ug, v9) = (e1ue, eau.). It is easy to see that

/ || 7" F (2, ug, vo) dzz > 0.
02
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Combining this with Lemma 7, from the definition of 9;7/” (3.12) and (3.15),
we obtain that there exists to > 0 such that (toug,tovo) € NA_,u and

05, < I pultouostovo) < S;lp Iaultouo, touo) < Coo,
t>to

for all 0 < (A1 £llzoo (2 o1-2) 77 + (ulllfllzoo(e o)) 77 < C*. O
Theorem 4. If
0 < (M lzro(@ufer-2)) 77 + (el F ]l zoo@ai-5) 77 < C
and (H1)-(H3) hold, then Jx ., has a minimizer (uq ,vy ) in Ny, and it satisfies
(i) Iapulug,vy) = 9;’#,
(if) (ug ,vqy ) is a positive solution of (1.1),
where C§ = min{C*, Ag}.

Proof. By the Lemma 8(ii), there exists a minimizing sequence {(un,v,)} C
Ny, in W for Jy, for all
0 < (IMNfllzeo(,jz)-2)) =7 + ([l fllLro (2 jz)-5)) 7% < Co-

From Lemmas 12, 13 and 6(ii), for

0 < (IMIIflzeofal-2)) 77 + (Il Lo yja1-2)) 7 < €7,
Jx,p satisfies (PS)E’I
e

we get that (un,v,) is bounded in W. Therefore, there exists a subsequence
still denote by (un,vn) and (uy,vy) € Ny , such that (un,vn) — (ug,vg)
strongly in W and Jx ,(ug , vy ) = 0y, > 0 for all

condition and 0y , > 0. Since Jy, is coercive on Ny 4,

0 < (A llLro (@, 1z1-2)) 7~ + (Il f [l Lro (2,121-5)) P2 < G-
Finally, by the same arguments as in the proof of Theorem 3, for all
0 < (ANl zro(2,)-#)) P~ + (ulllfll2ro (2,je)-#)) P* < Cg,

we have that (ugy, v, ) is a positive solution of problem (1.1). O

Now, we complete the proof of Theorem 1 and Theorem 2: By Theorem 3,
we obtain that for all 0 < (|A|| fll e (2,(a|-#)) 77 + (1ll| ]| oo (2,101-5)) P77 < C,
problem (1.1) has a positive solution (ug, vy € NIM. On the other hand, from
Theorem 4, we get the second positive solution (u, , vy ) € N W for all

0 < (IAIfllzro(2,je)-5)) P2 + (| fllro (2,)2-5)) P < Cp < C.

Since N;_u N Ny, = 0, this implies that (ug,vg) and (ug,vy ) are distinct.
This completes the proofs of Theorem 1 and Theorem 2.
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