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Abstract. The unique existence of classical solution of initial–boundary value prob-
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This problem arises at the modeling of electromagnetic fields with arbitrary time de-
pendence when interaction between the field and solids is simulated with impedance
boundary conditions.

Keywords: initial–boundary value problem, integral boundary condition, characteristic

method.

AMS Subject Classification: 35G16; 35L05.

1 Introduction

Method of boundary value problems for modelling processes in electrodynamics
is strongly connected with formulation of boundary conditions on media inter-
face. Boundary conditions describe interaction processes between field and
interfaces and essentially depend on a field time mode and material structure
of near-surface layer. Models with impedance boundary conditions on strongly
conductive bodies are widely used in applied electrodynamics. Impedance
boundary conditions allow us to exclude the field calculation inside bodies.
Such an approach is used when material medium of conductive body has com-
plex physical and geometrical structure. In this case exact field calculation
inside the body is connected with solution of two-domain boundary-value prob-
lem with classical boundary conjugation conditions. A solution of the problem
becomes simpler when the effect of body on resultant electromagnetic field is
modelled by impedance boundary condition.

Shchukin–Leontovich impedance boundary conditions are used for mod-
elling electromagnetic fields with harmonic time-dependance [2, 7, 13]. In case
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of arbitrary time-dependance impedance boundary conditions take an integral
form [2, 7, 18]. Problems for hyperbolic equations with non-local integral con-
dition are thoroughly examined lately. Articles [3, 4, 5, 8, 14, 15, 16, 17] are
devoted to analysis of solvability of non-local problems for hyperbolic equa-
tions with integral boundary conditions of different types with respect to space
variable.

The purpose of this work is to examine the existence and unique solvability
of classical solution of initial–boundary value problem with integral with respect
to time boundary condition of special kind and of certain physical meaning and
to find this solution.

2 Definition of Initial–Boundary Value Problem for Wave
Equation with Integral with Respect to Time Boundary
Condition

Let R3 be a Euclidean space with fixed Cartesian coordinates Oxyz and basis
�ex, �ey, �ez. We put plane screen D = {0 < x < l, −∞ < y, z < ∞}, filled with
material with permittivity ε, magnetic permeability μ and conductivity γ = 0
into R

3 space (Fig. 1). In half-space D1(x < 0) medium is characterized by

ε1, μ1, γ1. There is electromagnetic field �E = �E(x, y, z, t), �H = �H(x, y, z, t)
penetrating in layer D.
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Figure 1. Plain screen.

Electromagnetic field satisfies Maxwell’s equations:

rot �H = ε
∂ �E

∂t
, rot �E = −μ∂

�H

∂t
, t > 0, (x, y, z) ∈ D. (2.1)

Electromagnetic field �E, �H is generated by initial conditions

�E|t=0 = �E0, �H|t=0 = �H0, (x, y, z) ∈ D (2.2)

and given tangential component of electric field on plain Γ2(x = l)[
�n, [ �E,�n]

]∣∣
x=l

= �E1, t > 0, −∞ < y, z < ∞, (2.3)
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where �E0 = �E0(x, y, z), �H0 = �H0(x, y, z) are electric and magnetic field inten-

sity at initial time t = 0; �E1 = �E1(x, y, t) is vector tangent to plain Γ2.
We assume that field and medium of half-space D2(x > l) do not interact

and penetration of electromagnetic field from layer D into half-space D1 is
modeled by impedance boundary condition that does not take into account
displacement currents induced in D1 [2]:

[�n, �E]|x=0 = −
√

μ1

πγ1

∫ t

0

∂

∂η

[
�n,

[
�H(x, y, z, η), �n

]]∣∣∣
x=0

dη√
t− η

, t > 0,

−∞ < y, z < ∞, (2.4)

where �n = �ex is normal to layer D.
It is necessary to find fields �E, �H that satisfy equations (2.1)–(2.4). Elec-

trodynamic problems with boundary condition (2.4) were studied in [5, 18].
Let electromagnetic field not depend on space coordinates y, z and vectors

�E, �H, �E0, �H0, �E1 be parallel to layer D of the kind:

�E = E(x, t)�ey, �H = H(x, t)�ez, �E1 = χ(t)�ey, �E0 = ϕ(x)�ey, �H0 = v0(x)�ez.

Taking into consideration this assumption on electromagnetic field structure
we transform Maxwell’s equations (2.1) to wave equation. Hence we obtain
the following scalar initial–boundary value problem with respect to unknown
function E(x, t):

∂2E(x, t)

∂t2
− 1

εμ

∂2E (x, t)

∂x2
= 0, t > 0, 0 < x < l,

E(x, t)|t=0 = ϕ(x),
∂E(x, t)

∂t

∣∣∣∣
t=0

= −1

ε

∂v0(x)

∂x
, 0 � x � l,

E(x, t)|x=0 =
1

μ

√
μ1

πγ1

∫ t

0

∂E(x, τ)

∂x

∣∣∣∣
x=0

dτ√
t− τ

, t � 0,

E(x, t)|x=l = E1(t), t � 0. (2.5)

Let us find solution of the problem (2.5). We shall change some variables
and formulate the problem in the following form.

Problem 1. Find function u(x, t) ∈ C2(Ω), Ω = {0 < t < ∞, 0 < x < l} that
satisfies conditions:

∂2u(x, t)

∂t2
− a2

∂2u(x, t)

∂x2
= 0 in Ω, (2.6)

u(x, t)
∣∣
t=0

= ϕ(x),
∂u(x, t)

∂t

∣∣∣
t=0

= ψ(x), 0 � x � l, (2.7)

u(x, t)
∣∣
x=0

= c

∫ t

0

∂u(x, τ)

∂x

∣∣∣
x=0

dτ√
t− τ

+ g(t),

u(x, t)
∣∣
x=l

= χ(t), t � 0, (2.8)

where ϕ(x) ∈ C2([0, l]), ψ(x) ∈ C1([0, l]), χ(t) ∈ C2([0,∞)), g(t) ∈ C2([0,∞)),
a = const, a > 0, c = const, c > 0.

Math. Model. Anal., 17(3):309–329, 2012.
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Note that problems for hyperbolic equations with non-local boundary con-
ditions are often considered in literature recently. Particularly works [3, 4, 5, 8,
12, 15, 16, 17] study solvability of non-local problems for hyperbolic equations
with different integral conditions with respect to space coordinate.

3 Solution of Auxiliary Problem for Initial–Boundary Va-
lue Problem for Wave Equation with Integral Boundary
Condition in Orthogonal Domain

Let us consider auxiliary initial–boundary value problem in domain Ωb =
{b < t < b+ l/a, 0 < x < l} (see, [6, 9, 10, 11]).

Problem 2. It is necessary to find function u(b) ∈ C2(Ωb) that satisfies condi-
tions:

∂2u(b)(x, t)

∂t2
− a2

∂2u(b)(x, t)

∂x2
= 0 in Ωb, (3.1)

u(b)(x, t)
∣∣
t=b

= ϕ(b)(x),
∂u(b)(x, t)

∂t

∣∣∣
t=b

= ψ(b)(x), 0 � x � l, (3.2)

u(b)(x, t)
∣∣
x=0

= c

∫ t

b

∂u(b)(x, τ)

∂x

∣∣∣
x=0

dτ√
t− τ

+ g(b)(t), b � t � b+
l

a
, (3.3)

u(b)(x, t)
∣∣
x=l

= χ(b)(t), b � t � b+ l/a, (3.4)

where ϕ(b)(x) ∈ C2([0, l]), ψ(b)(x) ∈ C1([0, l]), χ(b)(t) ∈ C2([b, b+ l
a ]), g

(b)(t) ∈
C2([b, b+ l

a ]), a = const, a > 0, c = const, c > 0.

Theorem 1. Let classical solution u(b)(x, t) ∈ C2(Ωb) of problem (3.1)–(3.4)
exist and satisfy conditions

∂3u(b)(x, t)

∂t2∂x

∣∣∣
x=0

∈ L1([b, b+ δ1)), δ1 > 0. (3.5)

Let finite limit for the solution exist and have the form

lim
t→b

∫ t

b

∂3u(b)(x, τ)

∂x∂τ2

∣∣∣
x=0

dτ√
t− τ

= A, (3.6)

then coincidence conditions are fulfilled for initial and boundary functions in
the angular point (x, t) = (0, b) of domain Ωb

ϕ(b)(0) = g(b)(b), ψ(b)(0) = g(b)′(b), ϕ(b)′(0) = 0, ψ(b)′(0) = 0, (3.7)

and in the angular point (x, t) = (l, b) the following conditions are fulfilled

ϕ(b)(l) = χ(b)(b), ψ(b)(l) = χ(b)′(b), χ(b)′′(b) = a2ϕ(b)′′(l). (3.8)
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Proof. Let us proof fulfilment of coincidence conditions at the point (0, b). We
consider the first initial condition (3.2) when x = 0 and boundary condition
(3.3) when t→ b

ϕ(b)(0) = lim
t→b

u(b)(x, t)
∣∣
x=0

= c lim
t→b

∫ t

b

∂u(b)(x, τ)

∂x

∣∣∣
x=0

dτ√
t− τ

+ g(b)(b).

As u(b)(x, t) is the solution of the problem (3.1)–(3.4) hence ∂u(b)(x,t)
∂x ∈ C(Ωb).

Thus we obtain that ∂u(b)(x,t)
∂x |x=0 is bounded when b � t � b + δ1. It means

that there is such a constant M1 < ∞ that |∂u(b)(x,t)
∂x |x=0| � M1 and then

lim
t→b

∫ t

b

∂u(b)(x, τ)

∂x

∣∣∣
x=0

dτ√
t− τ

� lim
t→b

∫ t

b

∣∣∣∂u(b)(x, τ)
∂x

∣∣∣
x=0

∣∣∣ dτ√
t− τ

� M1 lim
t→b

∫ t

b

dτ√
t− τ

= 0.

Hence we obtain ϕ(b)(0) = g(b)(b).

Let us consider the second initial condition (3.2) when x = 0 and the first
boundary condition when t→ b

ψ(b)(0) = lim
t→b

∂u(b)(x, t)

∂t

∣∣∣∣
x=0

= c lim
t→b

∂G(t)

∂t
+

g(b)(t)

∂t

∣∣∣∣
t=b

, (3.9)

where

G(t) =

∫ t

b

∂u(b)(x, τ)

∂x

∣∣∣∣
x=0

dτ√
t− τ

. (3.10)

We integrate function G(t) by parts taking into account that ∂u(b)(x,b)
∂x =

ϕ(b)′(x), and thus we obtain

G(t) = 2
√
t− b ϕ(b)′(0) + 2

∫ t

b

∂2u(b)(x, τ)

∂x∂τ

∣∣∣∣
x=0

√
t− τ dτ.

We differentiate derived expression

G′(t) =
ϕ(b)′(0)√
t− b

+

∫ t

b

∂2u(b)(x, τ)

∂x∂τ

∣∣∣∣
x=0

dτ√
t− τ

, (3.11)

then coincidence condition (3.9) takes the form

ψ(b)(0) =
∂g(b)

∂t

∣∣∣∣
t=b

+ c lim
t→b

(
ϕ(b)′(0)√
t− b

)
+ c lim

t→b

(∫ t

b

∂2u(b)(x, τ)

∂x∂τ

∣∣∣∣
x=0

dτ√
t− τ

)
.

As u(b)(x, t) is the solution of the problem (3.1)–(3.4) then ∂2u(b)(x,t)
∂x∂t ∈

C(Ωb). Hence we obtain that ∂2u(b)(x,t)
∂x∂t |x=0 is limited when b � t � b + δ2, it

Math. Model. Anal., 17(3):309–329, 2012.
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means that there is such a constant M2 < ∞ that |∂2u(b)(x,t)
∂x∂t |x=0| � M2, then

lim
t→b

(∫ t

b

∂2u(b)(x, τ)

∂x∂τ
|x=0

dτ√
t− τ

)
� lim

t→b

(∫ t

b

|∂
2u(b)(x, τ)

∂x∂τ
|x=0| dτ√

t− τ

)
� M2 lim

t→b

∫ t

b

dτ√
t− τ

= 0.

As g(b)(t) is generally an arbitrary function hence for time derivative ∂u(b)(x,t)
∂t

be determined at the point (0, b) we suppose that

ϕ(b)′(0) = 0, (3.12)

then coincidence condition (3.9) takes the form ψ(b)(0) = g(b)′(b). Besides
coincidence condition of the second kind should be fulfilled. Let us consider
equation (3.1) at the point (0, b). Taking into account the first initial condition
(3.2), the first boundary condition (3.3) and expression (3.10) we obtain

cG′′(b) + g(b)′′(b)− a2ϕ(b)′′(0) = 0. (3.13)

Subject to condition (3.12) expression (3.11) takes the form

G′(t) =
∫ t

b

∂2u(b)(x, τ)

∂x∂τ

∣∣∣∣
x=0

dτ√
t− τ

.

Let us transform function G′(t) integrating it by parts and taking into account

that ∂2u(b)(0,b)
∂x∂t = ψ(b)′(0):

G′(t) = 2
√
t− b ψ(b)′(0) + 2

∫ t

b

∂3u(b)

∂x∂τ2

∣∣∣∣
x=0

√
t− τ dτ.

We differentiate function G′(t):

G′′(t) =
ψ(b)′(0)√
t− b

+

∫ t

b

∂3u(b)(x, τ)

∂x∂τ2

∣∣∣∣
x=0

dτ√
t− τ

.

Let us find

G′′(b) = lim
t→b

(
ψ(b)′(0)√
t− b

)
+ lim

t→b

(∫ t

b

∂3u(b)(x, τ)

∂x∂τ2

∣∣∣∣
x=0

dτ√
t− τ

)
.

As ψ(b)(x) is generally an arbitrary function hence for coincidence condition
(3.13) be determined at the point (0, b) when c �= 0 we suppose that ψ(b)′(0) =
0. Taking into account conditions (3.6) we obtain G′′(b) = A, and hence
condition (3.13) takes the form

a2ϕ(b)′′(0) = g(b)′′(b) + cA.

Let us prove coincidence condition at the point (l, b). We consider the first
initial condition (3.2) when x = l and the second boundary condition (3.4)
when t = b

ϕ(b)(l) = lim
t→b

u(b)(x, t)
∣∣
x=l

= χ(b)(b).



Classical Solution for Initial–Boundary Value Problem for Wave Equation315

Considering the second initial condition (3.2) and the second boundary condi-
tion (3.4) we obtain

ψ(b)(l) = lim
t→b

∂u(b)(x, t)

∂t

∣∣∣∣
x=l

= χ(b)′(b).

Second-order coincidence condition should be fulfilled at the point (l, b).
Let us consider equation (3.1) at the point (l, b). Taking into account the first
initial condition (3.2) and the second boundary condition (3.4) we obtain

a2ϕ(b)′′(l) = χ(b)′′(b).

Thus coincidence conditions (3.7), (3.8) are proved. 	


Let us find the solution of initial–boundary value problem (3.1)–(3.4). We
consider characteristics of equation (3.1) in domain Ωb

x− at+ ab = 0, l − x− at+ ab = 0. (3.14)

Figure 2. Division of domain Ωb into four subdomains.

Characteristics divide domain Ωb into four subdomains (see Fig. 2):

Db
1 :

{
(x, t)

∣∣ b < t < b+ l/2a, at− ab < x < l + ab− at
}
,

Db
2 :

{
(x, t)

∣∣ 0 < x < l/2, b+ x/a < t < b+ (l − x)/a
}
,

Db
3 :

{
(x, t)

∣∣ l/2 < x < l, b+ (l − x)/a < t < b+ x/a
}
,

Db
4 :

{
(x, t)

∣∣ b+ l/2a < t < b+ l/a, l + ab− at < x < at− ab
}
.

In each subdomain we solve equation (3.1) under its own boundary conditions.

Lemma 1. We suppose that ϕ(b)(x) ∈ C2([0, l]), ψ(b)(x) ∈ C1([0, l]), χ(b)(t) ∈
C2([b, b+ l/a]), g(b)(t) ∈ C2([b, b+ l/a]) and coincidence conditions

ϕ(b)(0) = g(b)(b), (3.15)

ϕ(b)(l) = χ(b)(b), (3.16)

Math. Model. Anal., 17(3):309–329, 2012.
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are fulfilled. Then solution u(b)(x, t) ∈ C(Ωb), u
(b)(x, t) ∈ C2(Db

i ), i = 1, 4 of
initial–boundary value problem (3.1)–(3.4) exists in domain Ωb and takes the
form

u(b)(x, t) = u
(b)
j (x, t) in Db

j , j = 1, . . . , 4, (3.17)

where

u
(b)
1 (x, t) =

ϕ(b)(x− at+ ab) + ϕ(b)(x+ at− ab)

2
+

1

2a

x+at−ab∫
x−at+ab

ψ(b)(ξ) dξ,

u
(b)
2 (x, t) =

ϕ(b)(x+ at− ab)− ϕ(b)(at− x− ab)

2
+

1

2a

x+at−ab∫
at−x−ab

ψ(b)(ξ) dξ

+ F (b)(x− at+ ab),

u
(b)
3 (x, t) = χ(b)

(
x− l

a
+ t

)
+
ϕ(b)(x− at+ ab)− ϕ(b)(2l − x− at+ ab)

2

+
1

2a

2l−x−at+ab∫
x−at+ab

ψ(b)(ξ) dξ,

u
(b)
4 (x, t) = χ(b)

(
x− l

a
+ t

)
− ϕ(b)(at− x− ab) + ϕ(b)(2l − x− at+ ab)

2

+
1

2a

2l−x−at+ab∫
at−x−ab

ψ(b)(ξ) dξ + F (b)(x− at+ ab),

F (b)(y) =
2
√
a

πc
g(b)(b)

√−y − 2

πc
√
a

∫ y

0

g(b)′
(
b− ξ

a

)√
ξ − y dξ

+

∫ y

0

e−
a

πc2
(y−ξ)

{
a

πc2
g(b)

(
b− ξ

a

)
− ϕ(b)′(−ξ)− ψ(b)(−ξ)

a

}
× erfc

(√
a(ξ − y)√
πc

)
dξ + g(b)(b)e−

a
πc2

y erfc

(√−ay√
πc

)
,

erfc(x) = 1− erf(x), erf(x) = 2√
π

∫ x

0
e−η2

dη – is a probability integral [1].

Proof. General solution of equation (3.1) in domain Ωb has the form

u(b)(x, t) = f1(x− at+ ab) + f2(l + ab− x− at), (3.18)

where f1(x), f2(x) are functions to determine.
Let us solve problem (3.1), (3.2) in domain Db

1. General solution of equation
(3.1) has the form (3.18). Let us satisfy initial conditions (3.2):

u(b)
∣∣
t=b

= f1(x) + f2(l − x) = ϕ(b)(x),

∂u(b)

∂t

∣∣∣∣
t=b

= −af ′1(x)− af ′2(l − x) = ψ(b)(x).
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Integrating the second equation and solving obtained system we have

f1(x) =
ϕ(b)(x)

2
− 1

2a

∫ x

0

ψ(b)(ξ) dξ − C

2
,

f2(x) =
ϕ(b)(l − x)

2
+

1

2a

∫ l−x

0

ψ(b)(ξ) dξ +
C

2
,

where C is an arbitrary constant. Substituting obtained expressions into gen-
eral solution (3.18) we get solution of the problem (3.1), (3.2) in domain Db

1 of
the kind

u
(b)
1 (x, t) =

ϕ(b)(x− at+ ab) + ϕ(b)(x+ at− ab)

2
+

1

2a

x+at−ab∫
x−at+ab

ψ(b)(ξ) dξ.

(3.19)
In domain Db

2 we solve problem (3.1) under integral boundary condition
(3.3) and condition on characteristic:

u(b)
∣∣
x=at−ab

= u
(b)
1 (at− ab, t) =

ϕ(b)(0) + ϕ(b)(2at− 2ab)

2

+
1

2a

2at−2ab∫
0

ψ(b)(ξ) dξ, b < t < b+
l

2a
. (3.20)

General solution of equation (3.1) has the form (3.18). Let us satisfy bound-
ary condition (3.3)

u(b)
∣∣
x=0

= f1(ab− at) + f2(l + ab− at)

= g(b)(t) + c

∫ t

b

{
f ′1(ab− aτ)− f ′2(l + ab− aτ)

} dτ√
t− τ

.

We make two changes of variables in obtained expression: y = ab− at and
change in subintegral expression η = ab− aτ then expression takes the form

f1(y) + f2(l + y) = g(b)
(
b− y

a

)
− c√

a

∫ y

0

{
f ′1(η)− f ′2(l + η)

} dη√
η − y

. (3.21)

Let us satisfy condition on characteristic (3.20). Taking into account coin-
cidence condition (3.15) we obtain

u(b)
∣∣
x=at−ab

= f1(0) + f2(l + 2ab− 2at)

=
g(b)(b) + ϕ(b)(2at− 2ab)

2
+

1

2a

2at−2ab∫
0

ψ(b)(ξ) dξ.

We change variable y = 2ab− 2at in obtained expression then

f2(l + y) =
g(b)(b) + ϕ(b)(−y)

2
+

1

2a

∫ −y

0

ψ(b)(ξ) dξ − f1(0). (3.22)

Math. Model. Anal., 17(3):309–329, 2012.
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Substituting expression (3.22) into (3.21) we obtain

f1(y) +
c√
a

∫ y

0

f ′1(η)
dη√
η − y

= G1(y), (3.23)

where

G1(y) = f1(0)− g(b)(b)

2
+ g(b)

(
b− y

a

)
− ϕ(b)(−y)

2
− 1

2a

∫ −y

0

ψ(b)(ξ) dξ

− c

2
√
a

∫ y

0

{
ϕ(b)′(−ξ) + ψ(b)(−ξ)

a

}
dξ√
ξ − y

.

Let us integrate expression (3.23) by y in the range from 0 to z∫ z

0

f1(y) dy +
c√
a

∫ z

0

∫ y

0

f ′1(η)
dη√
η − y

dy =

∫ z

0

G1(y) dy.

Changing order of integration in double integral and finding inner integral we
get ∫ z

0

f1(y) dy − 2c√
a

∫ z

0

f ′1(η)
√
η − z dη =

∫ z

0

G1(y) dy.

We integrate the second integral by parts. Hence obtained expression takes the
form ∫ z

0

f1(y) dy +
c√
a

∫ z

0

f1(η)
dη√
η − z

= G2(z), (3.24)

where

G2(z) = − 2c√
a
f1(0)

√−z +
(
f1(0)− g(b)(b)

2

)
z

− z

2

(
ϕ(b)(−z) + 1

a

∫ −z

0

ψ(b)(ξ) dξ

)
+

∫ z

0

g(b)
(
b− ξ

a

)
dξ

+
1

2

∫ z

0

{
ϕ(b)′(−ξ) + ψ(b)(−ξ)

a

}(
−ξ + 2c√

a

√
ξ − z

)
dξ.

We multiply expression (3.23) by 1√
y−z

and integrate by y from 0 to z∫ z

0

f1(y)
dy√
y − z

+
c√
a

∫ z

0

∫ y

0

f ′1(η)
dη√
η − y

dy√
y − z

=

∫ z

0

G1(y)
dy√
y − z

.

Changing order of integration in double integral and finding inner integral
we get ∫ z

0

f1(y)
dy√
y − z

=
πc√
a
f1(z) +G3(z), (3.25)

where

G3(z) =
πc√
a

(
g(b)(b)

2
− f1(0)

)
+ 2

(
g(b)(b)− f1(0)

)√−z

− πc

2
√
a

(
ϕ(b)(−z) + 1

a

∫ −z

0

ψ(b)(ξ) dξ
)

−
∫ z

0

(
ϕ(b)′(−ξ) + ψ(b)(−ξ)

a

)√
ξ − z dξ +

∫ z

0

g(b)
(
b− ξ

a

)
dξ√
ξ − z

.
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Substituting expression (3.25) into (3.24) we obtain

f1(z) +
a

πc2

∫ z

0

f1(ξ) dξ = G4(z), (3.26)

where

G4(z) =

(
f1(0)− g(b)(b)

2

)(
1 +

a

πc2
z
)
− 2

√
a

πc
g(b)(b)

√−z

+
a

πc2
×

∫ z

0

g(b)
(
b− ξ

a

)(
1− c√

a

1√
ξ − z

)
dξ

+
1

2

(
ϕ(b)(−z) + 1

a

∫ −z

0

ψ(b)(ξ) dξ

)
×

(
1− a

πc2
z
)

+
a

2πc2

∫ z

0

{
ϕ(b)′(−ξ) + ψ(b)(−ξ)

a

}(
−ξ + 4c√

a

√
ξ − z

)
dξ.

Equation (3.26) is a Volterra integral equation of the second kind. Let us
solve it. We suppose that f1(z) = − a

πc2C(z)+G4(z) where C(z) =
∫ z

0
f1(ξ) dξ

and C ′(z) = f1(z), C(0) = 0. Thus solution of integral equation (3.26) is
equivalent to solution of Cauchy problem for ordinary differential equation:

C ′(z) +
a

πc2
C(z) = G4(z), C(0) = 0.

Solution of Cauchy problem has the form

C(z) =

∫ z

0

e−
a

πc2
(z−ξ)G4(ξ) dξ,

then solution of integral equation (3.26) takes the form

f1(z) = − a

πc2

∫ z

0

e−
a

πc2
(z−ξ)G4(ξ) dξ +G4(z).

Taking into account expression G4(z) and performing some transformations we
obtain

f1(z) = f1(0)− g(b)(b)

2
+ g(b)(b)e−

a
πc2

z erfc

(√−az√
πc

)
−

√
a

πc

∫ z

0

g(b)
(
b− ξ

a

)
dξ√
ξ − z

− ϕ(b)(−z)
2

− 1

2a

∫ −z

0

ψ(b)(ξ) dξ

+

∫ z

0

e−
a

πc2
(z−ξ)

{
a

πc2
g(b)

(
b− ξ

a

)
− ϕ(b)′(−ξ)− ψ(b)(−ξ)

a

}
× erfc

(√
a(ξ − z)√
πc

)
dξ.
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Calculating integral
∫ z

0
g(b)(b− ξ

a )
dξ√
ξ−z

by parts and marking

F (b)(y) =
2
√
a

πc
g(b)(b)

√−y − 2

πc
√
a

∫ y

0

g(b)′
(
b− ξ

a

)√
ξ − y dξ

+

∫ y

0

e−
a

πc2
(y−ξ)

{
a

πc2
g(b)

(
b− ξ

a

)
− ϕ(b)′(−ξ)− ψ(b)(−ξ)

a

}
× erfc

(√
a(ξ − y)√
πc

)
dξ + g(b)(b)e−

a
πc2

y erfc

(√−ay√
πc

)
,

we obtain

f1(z) = f1(0)− ϕ(b)(−z)
2

− 1

2a

∫ −z

0

ψ(b)(ξ) dξ + F (b)(z). (3.27)

Performing change of variable z = l + y in expression (3.22) we get

f2(z) =
g(b)(b)− ϕ(b)(l − z)

2
+

1

2a

∫ l−z

0

ψ(b)(ξ) dξ − f1(0). (3.28)

Substituting expressions (3.27), (3.28) into solution (3.18) and performing
transformations we derive solution of problem with integral boundary condition
in domain Db

2

u
(b)
2 (x, t) =

ϕ(b)(x+ at− ab)− ϕ(b)(at− x− ab)

2

+
1

2a

x+at−ab∫
at−x−ab

ψ(b)(ξ) dξ + F (b)(x− at+ ab). (3.29)

In domain Db
3 we have to solve problem (3.1), (3.4) with condition on char-

acteristic

u(b)
∣∣
x=l+ab−at

= u
(b)
1 (l + ab− at, t) =

ϕ(b)(l − 2at+ 2ab) + ϕ(b)(l)

2

+
1

2a

l∫
l−2at+2ab

ψ(b)(ξ) dξ, b < t < b+
l

2a
. (3.30)

General solution of equation (3.21) has the form (3.18). Let us satisfy boundary
condition (3.4)

u(b)
∣∣
x=l

= f1(l − at+ ab) + f2(ab− at) = χ(b)(t). (3.31)

Taking into account coincidence conditions (3.16) in condition on charac-
teristic (3.30) we obtain

f1(l + 2ab− 2at) + f2(0) =
ϕ(b)(l + 2ab− 2at) + χ(b)(b)

2

+
1

2a

l∫
l−2at+2ab

ψ(b)(ξ) dξ. (3.32)
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Performing change of variable y = l + 2ab− 2at in expression (3.32) we get

f1(y) =
χ(b)(b)

2
− f2(0) +

ϕ(y)

2
+

1

2a

∫ l

y

ψ(ξ) dξ. (3.33)

Taking into account (3.33) in (3.31) and performing change of variable we
obtain

f2(y) = χ(b)
(
b− y

a

)
−χ(b)(b)

2
+f2(0)−ϕ(b)(l + y)

2
− 1

2a

∫ l

l+y

ψ(b)(ξ) dξ. (3.34)

Substituting expressions (3.33), (3.34) into general solution (3.18) we derive
solution in domain Db

3

u
(b)
3 (x, t) = χ(b)

(
x− l

a
+ t

)
+
ϕ(b)(x− at+ ab)− ϕ(b)(2l − x− at+ ab)

2

+
1

2a

2l−x−at+ab∫
x−at+ab

ψ(b)(ξ) dξ. (3.35)

In domain Db
4 we solve problem (3.1) with conditions on characteristics

u(b)
∣∣
x=at−ab

= u
(b)
3 (at− ab, t) = χ(b) (2t− b− l/a)

+
ϕ(b)(0)− ϕ(b)(2l − 2at+ 2ab)

2
+

1

2a

2l−2at+2ab∫
0

ψ(b)(ξ) dξ,

(3.36)

u(b)
∣∣
x=l−at+ab

= u
(b)
2 (l − at+ ab, t) =

ϕ(b)(l)− ϕ(b)(2at− l − 2ab)

2

+
1

2a

l∫
2at−l−2ab

ψ(b)(ξ) dξ + F (b)(l − 2at+ 2ab). (3.37)

General solution of equation (3.1) has the form (3.18). Let us satisfy condi-
tion on characteristic (3.36). Taking into account coincidence condition (3.15)
we obtain

f1(0) + f2(l + 2ab− 2at) = χ(b)

(
2t− b− l

a

)
+
g(b)(b)− ϕ(b)(2l − 2at+ 2ab)

2

+
1

2a

2l−2at+2ab∫
0

ψ(b)(ξ) dξ. (3.38)

Math. Model. Anal., 17(3):309–329, 2012.



322 V.I. Korzyuk, V.T. Erofeenko and J.V. Sheika

Let us satisfy condition on characteristic (3.37). Taking into account coin-
cidence condition (3.16) we obtain

f1(l − 2at+ 2ab) + f2(0) =
χ(b)(b)− ϕ(b)(2at− l − 2ab)

2

+
1

2a

l∫
2at−l−2ab

ψ(b)(ξ) dξ + F (b)(l − 2at+ 2ab). (3.39)

By changing variable y = l + 2ab− 2at in expression (3.38) we obtain

f2(y) = χ(b)
(
b− y

a

)
−f1(0)+ g(b)(b)− ϕ(b)(l + y)

2
+

1

2a

∫ l+y

0

ψ(b)(ξ) dξ. (3.40)

By changing variable y = l + 2ab− 2at in expression (3.39) we get

f1(y) =
χ(b)(b)

2
− f2(0)− ϕ(b)(−y)

2
+

1

2a

∫ l

−y

ψ(b)(ξ) dξ + F (b)(y). (3.41)

Taking into account coincidence conditions (3.16) in (3.40) we obtain

f2(0) =
g(b)(b) + χ(b)(b)

2
− f1(0) +

1

2a

∫ l

0

ψ(b)(ξ) dξ. (3.42)

Substituting expressions (3.40)–(3.42) into general solution (3.18) and per-
forming transformations we derive solution in domain Db

4

u
(b)
4 (x, t) = χ(b)

(
x− l

a
+ t

)
− ϕ(b)(2l − x− at+ ab)

2
− ϕ(b)(at− x− ab)

2

+
1

2a

2l−x−at+ab∫
at−x−ab

ψ(b)(ξ) dξ + F (b)(x− at+ ab). (3.43)

Thus we have found solution of initial–boundary value problem (3.1)–(3.4)
in the form (3.19), (3.29), (3.35), (3.43). Solution is obviously twice continu-
ously differentiable in domains Db

i , i = 1, 4. It is also obviously continuous on
characteristics x− at+ ab = 0, l − x− at+ ab = 0. Hence u(b)(x, t) ∈ C(Ωb),

u
(b)
i (x, t) ∈ C2(Db

i ). 	


Let us show that solution continuity up to second-order derivatives remains
on characteristics (3.14) when coincidence conditions (3.7), (3.8) are fulfilled.

Lemma 2. If ϕ(b)(x) ∈ C2([0, l]), ψ(b)(x) ∈ C1([0, l]), χ(b)(t) ∈ C2([b, b+ l
a ]),

g(b)(t) ∈ C2([b, b+ l
a ]) and there exists the solution u(b)(x, t) of initial–boundary

value problem (3.1)–(3.4) of the kind (3.17) then fulfillment of coincidence con-
ditions (3.7), (3.8) is sufficient for u(b)(x, t) ∈ C2(Ωb).
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Proof. Under conditions of lemma the conditions of Lemma 1 are satisfied.

Thus u(b)(x, t) ∈ C(Ωb) and u
(b)
i (x, t) ∈ C2(Db

i ), i = 1, 4. Let us show
that u(b)(x, t) ∈ C2(Ωb). Comparing solutions u1(x, t) and u2(x, t) and their
first and second-order derivatives between domains Db

1, D
b
2 and also solutions

u3(x, t) and u4(x, t) and their first and second-order derivatives between do-
mains Db

3, D
b
4 when x = at − ab, we arrive at the conclusion that solution

of initial–boundary value problem (3.1)–(3.4) is continuous on characteristic
x− at− ab = 0 up to second-order derivatives.

Similarly comparing solutions u1(x, t) and u3(x, t) and their first and sec-
ond-order derivatives between domains Db

1, D
b
3 and also solutions u2(x, t) and

u4(x, t) and their first and second-order derivatives between domains Db
2, D

b
4

when x = at−ab+ l we can draw a conclusion that solution of initial–boundary
value problem (3.1)–(3.4) is continuous on characteristic l− x− at+ ab = 0 up
to second-order derivatives.

Hence solution of initial–boundary value problem (3.1)–(3.4) is continuous
up to second-order derivatives in the whole domain Ωb i.e. u

(b)(x, t) ∈ C2(Ωb).
	


Lemma 3. If ϕ(b)(x) ∈ C2([0, l]), ψ(b)(x) ∈ C1([0, l]), χ(b)(t) ∈ C2([b, b+ l
a ]),

g(b)(t) ∈ C2([b, b+ l
a ]) and there exists the solution u(b)(x, t) of initial–boundary

value problem (3.1)–(3.4) of the kind (3.17) then fulfillment of coincidence con-
ditions (3.7), (3.8) is necessary for u(b)(x, t) ∈ C2(Ωb).

Proof. It is evident that u(b)(x, t) ∈ C2(Db
i ), i = 1, 4. Let us find conditions

necessary for solution u(b)(x, t) continuity up to second-order derivatives in the
whole domain Ωb. We notice that u(b)(x, t) satisfies equation (3.1). Hence we

obtain that conditions necessary for continuity of derivatives ∂2u(b)

∂x2 and ∂2u(b)

∂t2

coincide.
Setting equal solutions u

(b)
1 (x, t), u

(b)
2 (x, t) and u

(b)
3 (x, t), u

(b)
4 (x, t) (3.17) as

well as their first and second-order derivatives on characteristic x−at+ab = 0
we find that for continuity of the solution and the first-order derivatives on
characteristic x− at+ ab = 0 the following conditions

ϕ(b)(0) = g(b)(b), ϕ(b)′(0) = 0 (3.44)

should be fulfilled. For continuity of the second-order derivatives condition

ψ(b)′(0) = − a

πc2
(
ψ(b)(0)− g(b)′(b) + aϕ(b)′(0)

)(
1− c√

a
lim
y→0

1√−y
)

(3.45)

should be fulfilled. By the assumptions of theorem ψ(b)(x) ∈ C1([0, l]) that
is ψ(b)′(x) ∈ C([0, l]) then ψ(b)′(x) is limited on interval [0, l] i.e. there exists
C � 0, C < ∞ such that |ψ(b)′(x)| < C for all x ∈ [0, l]. But we have that(

1− c√
a
lim
y→0

1√−y
)
−→
y→0

∞.

To solve this contradiction we require that

ψ(b)(0)− g(b)′(b) + aϕ(b)′(0) = 0.
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Taking into account condition (3.44) and (3.45) we obtain

ψ(b)(0) = g(b)′(b), ψ(b)′(0) = 0. (3.46)

Thus for continuity of second-order derivatives conditions (3.46) should be ful-
filled.

Setting equal solutions u
(b)
1 (x, t), u

(b)
3 (x, t) and u

(b)
2 (x, t), u

(b)
4 (x, t) (3.17) as

well as their first and second-order derivatives on characteristic l−x−at+ab =
0 we obtain that for continuity of solution, its first-order and second-order
derivatives on characteristic l − x− at+ ab = 0 the following conditions

ϕ(b)(l) = χ(b)(b), ψ(b)(l) = χ(b)′(b), a2ϕ(b)′′(l) = χ(b)′′(b) (3.47)

should be fulfilled. Hence for solution continuity up to second-order deriva-
tives conditions (3.44), (3.46) and (3.47) should be fulfilled i.e. coincidence
conditions (3.7), (3.8) should be fulfilled. 	


Theorem 2. If ϕ(b)(x) ∈ C2([0, l]), ψ(b)(x) ∈ C1([0, l]), χ(b)(t) ∈ C2([b, b+ l
a ]),

g(b)(t) ∈ C2([b, b+ l
a ]) and coincidence conditions (3.7), (3.8) are fulfilled then

there exists a unique solution u(b)(x, t) ∈ C2(Ωb) of initial–boundary value
problem (3.1)–(3.4) in domain Ωb that takes the form (3.17).

Proof. Conditions of theorem yield the conditions of Lemma 1 and Lemma 2.
Thus solution u(b)(x, t) of initial–boundary value problem (3.1)–(3.4) exists,
takes the form (3.17) and u(b)(x, t) ∈ C2(Ωb). Uniqueness of the solution comes
from the way of its construction as a particular solution of initial-boundary
value problem from general solution of the differential equation. 	


4 Solution of Initial–Boundary Value Problem for Wave
Equation with Integral Condition by Method of Char-
acteristic

In order to find solution of initial–boundary value problem (2.6)–(2.8) in do-
main Ω we divide time frame into intervals with the length l/a (Fig. 3).

Solutions in rectangles Ω[k] = {kl
a < t < (k+1)l

a , 0 < x < l}, k ∈ N ∪
{0} can be found in sequence by formulas (3.17). Here initial and boundary
conditions in domain Ω[0] have the form (2.7), (2.8) and initial and boundary
conditions in domain Ω[k], k ∈ N are found from solution in domain Ω[k−1] by
formulas

u[k] (x, kl/a) = ϕ[k](x) ≡ u
[k−1]
4 (x, kl/a) , 0 � x � l, (4.1)

∂u[k](x, kl/a)

∂t
= ψ[k](x) ≡ ∂u

[k−1]
4 (x, kl/a)

∂t
, 0 � x � l, (4.2)

u[k](l, t) = χ(t),
kl

a
� t � (k + 1)l

a
,
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Figure 3. Division of domain Ω into intervals with the length l/a.

u[k](0, t) = c

∫ t

kl
a

∂u
[k]
2 (0, τ)

∂x

dτ√
t− τ

+ g[k](t),
kl

a
� t � (k + 1)l

a
, (4.3)

where f [k] = f(
kl
a ),

g[k](t) = g(t) + c

k−1∑
j=0

∫ (j+1)l/a

jl/a

∂u
[j]
2 (0, τ)

∂x

dτ√
t− τ

. (4.4)

Finally, we have the following theorem.

Theorem 3. If ϕ(x) ∈ C2([0, l]), ψ(x) ∈ C1([0, l]), χ(t) ∈ C2([0,∞)), g(t) ∈
C2([0,∞)) coincidence conditions at the point (x, t) = (0, 0)

ϕ(0) = g(0), ψ(0) = g′(0), ϕ′(0) = 0, ψ′(0) = 0 (4.5)

and at the point (x, t) = (l, 0)

ϕ(l) = χ(0), ψ(l) = χ′(0), χ′′(0) = a2ϕ′′(l) (4.6)

are fulfilled then there exists unique solution u(x, t) ∈ C (Ω) of initial–boun-
dary value problem (2.6)–(2.8) in domain Ω. At that in domain Ω[0] solution

u(x, t) ∈ C2(Ω[0]) and in domain Ω[k], k ∈ N solution u(x, t) ∈ C2(D
[k]
i ),

i = 1, 4 and has derivative discontinuity on characteristics x − at − kl = 0,
(k + 1)l − x− at = 0.

Proof. Conditions of Theorem 2 are fulfilled in domain Ω[0] thus there ex-
ists a unique solution of initial–boundary value problem (2.6)–(2.8) u(x, t) ∈
C2

(
Ω[0]

)
in domain Ω[0] and has the form (3.17) when b = 0.

First, let us show that coincidence conditions (4.5), (4.6) are sufficient for
fulfillment of coincidence conditions:

ϕ[k](0) = g[k]
(
kl

a

)
, ϕ[k](l) = χ

(
kl

a

)
(4.7)
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in each domain Ω[k], k ∈ N.
We shall use mathematical induction method to prove theorem. In domain

Ω[0] coincidence conditions (4.7) are fulfilled by the theorem data as they cor-
respond to coincidence conditions (4.5), (4.6). We suppose that coincidence
conditions (4.7) are fulfilled in domain Ω[k−1]. Let us show that in that case
they are also fulfilled in domain Ω[k].

Expression (4.4) for boundary function g[k](t) can be presented in the form

g[k](t) = g[k−1](t) + c

∫ kl/a

(k−1)l/a

∂u
[k−1]
2 (0, τ)

∂x

dτ√
t− τ

. (4.8)

Let us derive the form of initial and boundary functions ϕ[k](x), ψ[k](x),
g[k](t) via functions ϕ[k−1](x), ψ[k−1](x), g[k−1](t). We shall use formulas (4.1),
(4.2), (4.8) and solution of initial–boundary value problem (2.6)–(2.8) in do-
main Ω[k−1].

ϕ[k](x) = χ

(
x+ (k − 1)l

a

)
− ϕ[k−1](l − x) + F [k−1](x− l), (4.9)

ψ[k](x) = χ′
(
x+ (k − 1)l

a

)
+ aϕ[k−1]′(l − x) (4.10)

− a2

πc2
g[k−1]

(
kl − x

a

)
+

a2

πc2
F [k−1](x− l) +

a
√
a

πc

×
∫ l−x

0

{
ϕ[k−1]′(−ξ) + ψ[k−1](−ξ)

a
+
1

a
g[k−1]′

(
b− ξ

a

)}
dξ√
ξ−l+x,

g[k](t) = g[k−1](t) +
a

πc

∫ kl/a

(k−1)l/a

g[k−1](τ)
dτ√
t− τ

− 2
√
a

π
(4.11)

×
{

a

πc2
g[k−1] ((k − 1)l/a) +

1

a
g[k−1]′

(
(k − 1)l

a

)
− ϕ[k−1]′(0)

− ψ[k−1](0)

a

}∫ kl/a

(k−1)l/a

√
aτ − (k − 1)l√

t− τ
dτ − a

πc
g[k−1]

(
(k − 1)l

a

)
×

∫ kl/a

(k−1)l/a

e−
a

πc2
((k−1)l−aτ) erfc

(√
a(aτ − (k − 1)l)√

πc

)
dτ√
t− τ

− 2
√
a

π

∫ −l

0

{
− 1

πc2
g[k−1]′

(
(k−1)l−ξ

a

)
− 1

a2
g[k−1]′′

(
(k−1)l−ξ

a

)
+ ϕ[k−1]′′(−ξ) + ψ[k−1]′(−ξ)

a

}∫ kl/a

(k−1)l−ξ/a

√
ξ + aτ − (k − 1)l√

t− τ
dτ dξ

− a

πc

∫ −l

0

{
a

πc2
g[k−1]

(
(k−1)l−ξ

a

)
−ϕ[k−1]′(−ξ)− ψ[k−1](−ξ)

a

}
×

∫ kl/a

(k−1)l−ξ/a

e−
a

πc2
((k−1)l−aτ−ξ) erfc

(√
a(ξ+aτ−(k − 1)l)√

πc

)
dτ√
t−τ dξ

Substituting expressions (4.9), (4.11) into coincidence condition (4.7) and
performing transformations, we prove fulfillment of coincidence condition (4.7)
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in domain Ω[k]. Similarly substituting expression (4.9) into the second condi-
tion condition (4.7) we prove fulfillment of coincidence conditions (4.7) in do-
main Ω[k] under the assumption that coincidence conditions (4.7) are fulfilled
in domain Ω[k−1]. Thus conditions of Lemma 1 are fulfilled in domain Ω[k],

k ∈ N. Hence there exists unique solution u(x, t) ∈ C(Ω[k]), u(x, t) ∈ C2(D
[k]
i ),

i = 1, 4 in domain Ω[k] and has the form (3.17) when b = kl/a.

We can show that coincidence conditions ψ[k](0) = g[k]′(kla ), ϕ
[k]′(0) = 0,

ψ[k]′(0) = 0 are not fulfilled in the general case in domain Ω[k] when they are
fulfilled in domain Ω[k−1], k ∈ N. Then according to proof of Lemma 3 solution
u(x, t) /∈ C1(Ω[k]).

Thus solution u(x, t) ∈ C(Ω[k]), u(x, t) ∈ C2
(
D

[k]
i

)
, i = 1, 4 and first-order

and second-order derivatives has discontinuity on characteristics x−at+kl = 0,
l − x + at + kl = 0, k ∈ N. This solution is obviously unique in each domain

D
[k]
i .

Let us show that derivatives up to second-order remain continuous when
coming through border t = kl/a between domains Ω[k−1] and Ω[k]. Continuity
of solution and first-order time derivative obviously comes from expression for
initial functions ϕ[k](x) ψ[k](x) (4.1), (4.2).

Let us prove a continuity of the first-order derivative by x.

∂u
[k]
1 (x, kl/a)

∂x
=

{
ϕ[k]′(x− at+ kl) + ϕ[k]′(x+ at− kl)

2

+
ψ[k](x+ at− kl)− ψ[k](x− at+ kl)

2a

}∣∣∣∣
t=kl/a

= ϕ[k]′(x).

Using identity (4.1) we obtain

∂u
[k]
1 (x, kl/a)

∂x
= ϕ[k]′(x) =

∂u
[k−1]
4 (x, kl/a)

∂x
,

that means that the first-order derivative by x is continuous. Let us prove a
continuity of the second-order derivative by x.

∂2u
[k]
1 (x, kl/a)

∂x2
=

{
ϕ[k]′′(x− at+ kl) + ϕ[k]′′(x+ at− kl)

2

+
ψ[k]′(x+ at− ab)− ψ[k]′(x− at+ kl)

2a

}∣∣∣∣
t=kl/a

= ϕ[k]′′(x).

Using identity (4.1) we obtain

∂2u
[k]
1 (x, kl/a)

∂x2
= ϕ[k]′′(x) =

∂2u
[k−1]
4 (x, kl/a)

∂2x
,

that means that second-order derivative by x is continuous. Let us show a
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continuity of the second-order derivative by t.

∂2u
[k]
1 (x, kl/a)

∂t2
=

{
a2
ϕ[k]′′(x+ at− kl) + ϕ[k]′′(x− at+ kl)

2

+ a
ψ[k]′(x+at−kl)− ψ[k]′(x−at+kl)

2

}∣∣∣∣
t=kl/a

= a2ϕ[k]′′(x).

Using identity (4.1) we get

∂2u
[k]
1 (x, kl/a)

∂t2
= a2ϕ[k]′′(x) = a2

∂2u
[k−1]
4 (x, kl/a)

∂x2
.

Using identity (2.6) we obtain

∂2u
[k]
1 (x, kl/a)

∂t2
= a2

∂2u
[k−1]
4 (x, kl/a)

∂x2
=
∂2u

[k−1]
4 (x, kl/a)

∂t2
,

that means that second-order derivative by t is continuous.
Let us prove a continuity of the mixed derivative.

∂2u
[k]
1 (x, kl/a)

∂x∂t
=

{
a
ϕ[k]′′(x+ at− kl)− ϕ[k]′′(x− at+ kl)

2

+
ψ[k]′(x+ at− kl) + ψ[k]′(x− at+ kl)

2

}∣∣∣∣
t=kl/a

= ψ[k]′(x).

Using identity (4.2) we get

∂2u
[k]
1 (x, kl/a)

∂x∂t
= ψ[k]′(x) =

∂2u
[k−1]
4 (x, kl/a)

∂x∂t
,

that means that mixed derivative is continuous. Hence solution is continuous
up to the second-order derivatives when coming through borders of domain.

Thus we have proved that solution u(x, t) ∈ C2(Ω[0]), u(x, t) ∈ C(Ω[k]),

k ∈ N, u(x, t) ∈ C2(D
[k]
i ), i = 1, 4 and first-order and second-order derivatives

have discontinuity on characteristics x− at+ kl = 0, l − x+ at+ kl = 0. 	


Hence we have proved the unique existence of classical solution of initial–
boundary value problem (2.6)–(2.8) when coincidence conditions (4.5), (4.6)
were fulfilled. We have also found analytical solution of the problem.
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