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Abstract. We describe an algorithm for computing a large number of coefficients in
the asymptotic expansion of the median of the Erlang distribution. In particular, in
this paper we present the values of the first sixty coefficients which allow us to assess
the importance of the higher-order terms in the behavior of the partial sums of that
asymptotic expansion. As a consequence, we provide tight bounds for the median
of the Erlang distribution and we also see that a conjecture concerning the complete
monotonicity of a sequence of medians of the Erlang distributions is supported by
numerical results.
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1 Introduction

Foranyn =0,1,2,..., let X, be a random variable having the Erlang distribu-
tion with shape parameter n + 1 and scale parameter 1, that is, its cumulative
distribution function F,(z) := P(X,, < z) is given by

1 x
F,(x) = —'/ thetdt, x=>0.
n! Jo

The median of X,,, hereafter denoted by \,, is defined as the unique solution
of the equation F,(\,) = 1/2. Analytical solutions of this equation are known
only for the simplest cases n = 0 and n = 1. For the former case, it is trivial
that Ag = log2, and, for the latter case, Jiménez and Jodra [11] have shown
that Ay = —W_1(—1/2e) — 1, where W_; denotes the negative branch of the
Lambert W function. Accordingly, over the last two decades several authors
have given upper and lower bounds for A,, instead of analytical solutions,
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282 P. Jodra

and, in this respect, tight bounds for A, have been obtained by considering
appropriate partial sums of the asymptotic expansion of \,.

In 1986, Chen and Rubin [7] conjectured the following bounds for the me-
dian of X,,;: n+2/3 <\, <n+log2, for n=0,1,2,.... Choi [9] proved this
conjecture by showing that

2 ) 2 1
n+§</\n§m1n n+log2,n+ -+

—0,1.2.....
3 2n+2>’ nERRS

These bounds were subsequently improved by Adell and Jodr4 [1], namely,

2 8 64 2 8
N <nt ot ——) n=1,2,.... 1.1
"3 1050 510302 "3t s " (L)
It is interesting to note that the bounds in Eq. (1.1) are partial sums of the
asymptotic expansion of A, and, in this regard, Choi [9] deduced the first four
coefficients in that expansion

2 8 64 2944 ( 1 > (1.2)

An =nF 3 {050 510302 T 40207508 nt
Throughout this paper, for integers j > 0 we denote by ¢; the coefficient of
n~7 in the asymptotic expansion of Ay, i.e., A, =n+ 37 ¢;/n’, where it is
understood that go := 2/3.

In order to obtain formula (1.2), Choi established a relation between the
median of X,, and a sequence {6, },>0 introduced by Ramanujan [13] in 1911
(cf. also Ramanujan [14]) and defined as the solution of the equation

n—1
nl [ e nk
9n=nn<2— E k')’ TL:1,2,...,

k=0

and setting 6y = 1/2. More precisely, Choi [9] pointed out the following relation
between 6,, and A,

en [An
17911: 7/ tneitdta n= 1327"" (13)
n" Jn

and he deduced formula (1.2) by considering an asymptotic expansion of 6,
on the left-hand side of Eq. (1.3). Asymptotic expansions of 6,, have been
obtained by several authors, beginning with Ramanujan [13] who gave the first

four terms
o _ 1 N 4 8 16 Lo 1
"3 7 1350  2835n2  8505n3 nt )’

In the middle 1980s, Bowman et al. [6] found the 5th and 6th coefficients and
finally Marsaglia [12] developed a numerically stable procedure to compute a
large number of coefficients in that asymptotic expansion.

With the aim of refining the bounds given in Eq. (1.1), Adell and Jodr4 [2]
computed the first seven coefficients ¢; in the asymptotic expansion of A, (see
Table 1) and then they derived the following upper and lower bounds for A,:




Computing the Asymptotic Expansion of the Median 283

n+2/3+2?=1 qi/n? < A, < n+2/3+2§=1 q;j/n’, forn =1,2.... In addition,
they considered that sharper bounds for A\, can be obtained in a similar way by
considering more terms in the asymptotic expansion of A,,. But, as we can see
in Table 1, the coefficients ¢; have a value very close to 0 for j = 5,6 and 7, so
that if the values of the g¢;’s are also very close to 0 for all j > 8 it is not clear
that sharper bounds for A, valid for all positive integers n, can be successively
obtained by considering more terms in that asymptotic expansion.

Table 1. Coefficients ¢;, j =1,...,7.

J qj

1 o=~  0.019753086419
2 -84 &~ —0.012541642171
3 ol &~ 0.005982827820
4 — 282528 .~ —0.001315220332
5 —5ogoR00s808 &~  —0.000673592168
6 ToalBLIo8I 12—~ 0.000310970794
7 101756461251198976 ~ 0.000746649091

136284182692454671875

In view of the above considerations, in this paper we pose the following
questions:

(i) Does the sequence {|g;j|};>1 converge to 0 such as the numerical results
in Table 1 may be suggesting (| - | denotes the absolute value)?

(ii) Which is the partial sum of the asymptotic expansion of A,, closest to the
true value of \,, as well as its number of significant digits?

(iii) Can sharper bounds for A, be obtained by considering more terms in the
asymptotic expansion of A, as it is proposed in Adell and Jodrd [2]?

Unfortunately, as far as we know, the coefficients ¢; cannot be expressed
in closed form. In this paper, we study the above questions from a numerical
point of view and, to this end, first we need to compute more coefficients in
the asymptotic expansion of A\,. In Section 2, we develop an algorithm for
computing a large number of coefficients in the asymptotic expansion of A,.
In Section 3, we present the numerical results obtained and, in particular, we
give tight upper and lower bounds for A,. Finally, we see that a conjecture
proposed by Alzer [4] concerning the complete monotonicity of the sequence
{An — n}p>o is supported by numerical results.

2 An Algorithm for Computing the Asymptotic Expan-
sion of the Median

In this section, we present an algorithm for computing the asymptotic expan-
sion of A,, which is an improved version of Choi’s procedure. First, we briefly

Math. Model. Anal., 17(2):281-292, 2012.
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describe the method outlined by Choi [9]. From Eq. (1.3), Choi showed the
following relationship between 6,, and A,

cr(n
en—1zz(k’“+<1))!(n—An)k+1, n=12..., (2.1)
k=0

where the coefficients c(n) satisfy the recurrence relation ncg(n)/(1 — k) =
(ck—1(n) + ck—2(n)), for integers k > 2, with initial conditions c¢o(n) := 1 and
c1(n) := 0. By considering Eq. (2.1), Choi proposed to compute the coefficients
in the asymptotic expansion of A, as follows. On the left-hand side of Eq. (2.1)
it is considered the asymptotic expansion of 6,,, and, on the right-hand side of
Eq. (2.1) the series involved is decomposed into a partial fraction expansion of
terms of order n~7, with j > 0. After that decomposition step, the coefficients
corresponding to each term of order n=7 in both sides of Eq. (2.1) are equated
and thereby the g;’s in the asymptotic expansion of A, can be obtained.

In addition, Adell and Jodra [2] noted that the terms cx(n) in Eq. (2.1)
are Charlier polynomials. We recall that Charlier polynomials can be explicitly
defined by (cf. Chihara [8, Chap. VI))

Op(t:n) = Ek: (k> <T_”>j!(—t)j, k=0,1,..., (2.2)

= \i/\J

where t > 0 and n = 0,1,.... More specifically, Adell and Jodrd [2] noticed
that c(n) = Ck(n;n) so that the coefficients ci(n) in Eq. (2.1) can also be
computed by means of Eq. (2.2).

With the help of the symbolic computer algebra system Maple Release 12,
and based on the above considerations, we have implemented the brute force
algorithm outlined by Choi. We have chosen Maple because it yields a suitable
fraction decomposition of the right-hand side of Eq. (2.1) as a sum of terms of
order n~7, with j > 0. However, the running time and space required increases
dramatically and only a few coeflicients in the asymptotic expansion of \,, can
be computed.

Table 2. CPU time used for computing g;, j =1,...,14.

Brute force algorithm

Computing {g; }]i.:1 CPU time (in seconds)
1=25 1.7
1=10 19.4
1 =15 466.1
1=19 4188.5

Table 2 displays the CPU time used for computing some coefficients g;.
In particular, the coefficients g;, for j > 20, could not be obtained using the
brute force algorithm due to memory limitations; Maple exceeded the amount
of memory available (2.0 GB) and the execution of the algorithm was aborted.
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All of the computations were performed on an Intel Core2 Quad Q8200 at
2.33 GHz with 4 GB RAM.

In the remainder of this section, we improve Choi’s brute force algorithm.
To start with, we introduce some notation. Denote by

2 Cr(n;n)

Ei(n) = ;0 m(n —xm) =12, (2.3)

where

For our purpose, we need to express the function F;(n) as a fraction decomposi-
tion of terms of order n=7, with j > 0. To this end, first it can be checked from
Eq. (2.2) that the Charlier polynomials Cy(n;n), for k > 2, can be expressed
as below

k—1 b(_k)
Cr(nin) = Y # k=23,..., (2.4)
i=[k/2]

where the coeflicients b;k) are rational numbers; as usual, [z] denotes the ceiling
of a real number z, that is, the smallest integer not less than x. Then, by
considering Eq. (2.3) together with Eq. (2.4), it is clear that E;(n) can be
expressed as follows

2i243i—1 3@
J

Eiln)= ) - i=12, (2.5)

j=0
where the coefficients BJ@ are rational numbers. Unfortunately, we do not know

a closed-form expression for computing the coefficients ﬁj(.l) in Eq. (2.5).

In addition to the previous notation, throughout this paper we also consider
Ey(n) := —2/3, Béo) = —2/3, Mo(n) :== n+ 2/3 and, finally, we assume that
bgl) := 0 since Ci(n;n) = 0.

The algorithm that we propose is sequential so that ¢; is calculated only
after ¢i1,...,q;_1 have been obtained. For any integer ¢ > 1, it can be checked
that all of the summands on the right-hand side of Eq. (2.3) are meaningful
to compute ¢; because each one of these summands contributes to the finite
sum on the right-hand side of Eq. (2.5) with terms of order n=7 for some
j < 4. In order to compute qi,...,q; we shall need to compute successively
the functions Ey(n),. .., E;(n) by means of formula (2.3), which implies a large
computational effort, and to obtain these functions in a more efficient way we
derive the following relation.

Theorem 1. For any integer n > 1 and i = 1,2,..., we have

Cai—1(n;m) 2i  Coi(n;n)

——(n— A\i_ e
Qi (T Amm) T e

+ igf(—w(’“ PO @) (L) e

k=0r=1

2i+1

EZ(n) = Ei_l(n) + - )\i_l(n))

Math. Model. Anal., 17(2):281-292, 2012.
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with initial conditions Eg(n) := —2/3 and Ao(n) :==n+2/3.

Proof. From Eq. (2.3) and taking into account that \;(n) = \;_1(n) + ¢;/n’,
we can write F;(n) as follows

2(i—1)

B Cr(n;n) ikl
Cai—1(n;m) } oin2i | Cai(nsn) , i) 26+
+ W(n Aic1(n) —qi/n")" + m(n Aic1(n) —qi/n')" .
Moreover, by Newton’s binomial formula, for j = 1,2, ... we know
J . r
i\J J j—r q;
(n — )\i_l(n) — Qi/n ) = Z (7“) (’I’I, — )\z_l(n)) (_TLZ> . (28)

r=0

The statement of the theorem readily follows by considering formula (2.8) into
Eq. (2.7) and a bit of algebra. The proof is complete. O

From a computational point of view, Eq. (2.6) highlights the large amount
of calculations required to obtain E;(n) even when E;_;(n) has been previously
computed. We also remark that the coefficient g; appears explicitly only in the
last term of Eq. (2.6) and it is easy to see that ¢; contributes to the value
of B](-Z) in Eq. (2.5) only for j > i. In addition, as we see in the following

result, the values of the coefficients BJ(»Z) are known a priori for j = 0,1,... 4.
Denote by c¢; the coefficient of n™7 in the asymptotic expansion of (6, — 1),
that is, 0, — 1 = Z;io cj/n?. 1t is interesting to recall that a large number of
coeflicients ¢; can be efficiently computed by using the algorithm proposed by
Marsaglia [12].

Corollary 1. For any integer 7 > 1, we have Bj(.i) =cjfor j=0,1,...,1.
Proof. For any integer ¢ > 1, from the relation between 6, and )\, given

in Eq. (2.1) and taking into account Eq. (2.3) together with the asymptotic
expansion of (6,, — 1) and Theorem 1, we get

i:cj/nj = iﬁj(i)/ﬂj?
=0 =0

which implies the result. 0O

On the other hand, the value of each coefficient ﬁj(l) in Eq. (2.5), for j =
i+1,...,2i243i—1, can be calculated by virtue of Theorem 1 as we see below.
Before we introduce a more compact notation for the last term in Eq. (2.6).
For integers n > 1 and 7 > 1, and £k = 0,1, ...,2¢, denote by

Dtk o= (-1 (M) S ()
r=1,... k+1.
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Denote by [n’]f(n) the coefficient of n~7 in a function f(n) = 2250 s;/nd.
With the preceding notations, we state the following. -

Corollary 2. For any integer ¢ > 1, we have

% i— o C i— N i . C‘z ;
BJ(') = IBJ(' Ut [”]]W(n ~Aima () + [nj](;z(ff;')
4 2i k+1
X (”—/\i—1(n))21+1+z > [W]Di(k,rin), j=it+l,...,2°+3i—1, (2.9)
k=07r=1

with initial condition ﬁj(o) :=0 for j = 2,3 and 4.
Finally, below we give a formula to obtain the value of ¢; assuming that

the coefficients g1, ..., ¢;—1 have been previously computed and, therefore, the

1)

value of ,Bi(i has also been obtained by virtue of Corollary 2.

Corollary 3. For any integer i > 1, we have

2 2i+1
_ i) 2 1 p(2i-1) _ 2 #b(gi) o
G@=0 (3> 20! 3 Qi+nlt

where it is assumed that ﬂ§0) = 0.

Proof. Let us now consider Eq. (2.6). For any integer ¢ > 1, by taking into
account Eq. (2.4), it can be checked the following

i1 C2i—1(n;n) 2 (2 Zg (2i—1)
[n]w(n—)\iq(n)) —<3> (Zi)!bi ;

1 Cai(n;n) vt _ 2\ 1
Gy = A ) () @™

and it is also clear that Zii:o fi% [n!]D;(k,r;n) = —¢;. Then, from Eq. (2.6)
we have

(_ 1) 9 21 1 (2_ 1) 2 2i+1 1 (2)
4 ) _ pli— 4 (2i-1) _ (2 (29) _
[} E(n) = 577 + (3) ik (3) @iy @

and, on the other hand, from Corollary 1 we also know that Bi(i) = ¢;, which
implies the result. O

Next, we give a brief description of the algorithm. In order to compute the
first m coeflicients g1, ..., gm, first, in a preprocessing step, the coeflicients c;,
for j = 1,...,m, are computed using the algorithm given by Marsaglia [12].
Moreover, the coefficients b§2j71) and b;gj), for j = 1,2,...,m, can also be
computed from Eq. (2.2) in a preprocessing step. Now, let us consider a step
© < m of the algorithm and let us assume that q1, ..., q;—1 together with 5;1_1),
for j =1i,...,m, are known. Then, the coefficient g; can be calculated by virtue

Math. Model. Anal., 17(2):281-292, 2012.
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of Corollary 3. In the case i = m, \,;,(n) has been obtained and the algorithm
terminates. On the contrary, in the case i < m, after computing the coefficient

q; we calculate the value of ﬁJ(i), for j =1¢+1,...,m, according to Corollary 2.

It must also be noted that the coefficients B](.l), for j=m+1,...,2% +3i -1,
can be disregarded if we calculate only the first m coefficients ¢q,...,¢;,. In
this respect, an additional simplification reduces significantly the running time
and space requirements of the algorithm. For k = 0,...,2¢, it can be checked
that each term D;(k,m;n), r = 1,...,k+ 1, in Eq. (2.9) can be removed if
ir + [k/2] > m because, in this case, the fraction decomposition of D;(k,r;n)
contains only terms of order n~7 for some j > m.

Remark 1. In order to compute the first m coefficients ¢, . . ., g, in the asymp-
totic expansion of A,, in each step i < m of the algorithm we have to calculate

and store only the coefficients ,8;1) for j =4+ 1,...,m. In particular, this im-
plies that for k = 0,...,2i, each term D;(k,r;n), r=1,...,k+ 1, in Eq. (2.9)
can be disregarded if ir + [k/2] > m.

As a summary, Figure 1 below shows a way of doing the computations in a
pseudocode.

We have implemented in Maple Release 12 the algorithm described in this
section. With the help of Maple, each function involved in Theorem 1 can

Algorithm
comment: the algorithm computes Ay, (n).
comment: c;, b'* ™Y
70 Y5
begin
inicialize \o(n) = n + 2/3;
for i fro(riri11> to m do (2ic1) _ 29)
7% =B, + (%)21ﬁbi - (%)QHI (Qiil)!bi - G
comment: ¢; has been computed.
Ai(n) = Ai—1(n) + i /n%;
if (¢ = m) then
return A\, (n);

and b;zﬂ, j=1,...,m, computed in a preprocessing step.

break;
comment: the algorithm has terminated.
end if )
comment: ,8;1), j=144+1,...,m, must be updated.

for j from i+ 1 to m do

i i— i1g C2i—1(n; i i(nin i
87 = 87 & WG (0 = A () + BEHRR (0 = A ()1

end for
for j from i+ 1 to m do
for k from 0 to 2i do
inicialize r = 1;
while (r < k+ 1) and (ir + [k/2] <m) do
B = B + [ Di(k, 75 m);
r=r+1;
end while
end for
end for
end for

end

Figure 1. Algorithm for computing A, (n).
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Table 3. The rational coefficients ¢;, ¢ = 1,...,20, and their approximate values.

% qi
1 o=~ 0.019753086419
2 — 94 ~ —0.012541642171
3 24l ~  0.005982827820
4 — 20182528~ 0.001315220332
5 — 155265604608 ~ —0.000673592168
6 TEa2T611584512_ ~  (.000310970794
7 ToaLT50481951198970 ~ ~  0.000746649092
8 - 21110895198965567793807949171731172168475 ~ —0.000515371482
9 113445250854901086814208 ~ —0.001092690197

T 103821971796025431307734375

10 T735853505 37431 740050508305125 ~  0-001088742793
0 SIS, ~ 0000120581
2 - BT, ~ 0003415000603
1 USRI, ~ —o0.00010612171
14 T60TOTS0 MR IR 30822051 1512080851 7570 To1TisTs ~  0-015088458621
15 STOTIAFATIT 70028028551 1600416 156050155 T008s50375 ~ 0-045710323683
16 — ST TREORD A T KAS S A OGRO SRR 00 115 10550561 7 iars ~ —0-087461904879
17 — 11701541 116 1051 106103047005 12155 1563008361 13868 14482421875 ~ —0-291608344122
18 MU RTINS ~  o.crsTasssaats
19 58153150 1001031 73847530085 775007006078260013 530016051 33050640655 ~  2-362273443976
90  — AT2179990608599254283064265692787651720098971554386635000540924215296 1 _5 0047RE480871

78765105665611998548254902597668180944217109752461628359954833984375

be decomposed into a partial fraction of terms of order n=7, with 5 > 0. In
particular, we have used some functions provided in the Maple-package Poly-
nomialTools (cf. Heck [10, Chap. 5]). As a result, we have obtained exactly,
that is, as rational numbers, a large number of coefficients in the asymptotic
expansion of \,. In this paper we present only the first sixty coefficients and,
as numerators and denominators become large, for the sake of space we display
the first twenty rational coefficients in Table 3, which were computed in less
than 24.5 seconds CPU time, and approximate values for the other coefficients
in Table 4.

3 Numerical Consequences

At the end of Section 1 three questions were posed. As analytical expressions
for the coefficients in the asymptotic expansion of A, have not been found,
we use the numerical results obtained in the previous section to answer those
questions.

To answer question (i) concerning the convergence to 0 of the sequence
{lgi|}i>1, from Tables 3 and 4 we see that the value of |¢;| strictly increases as i
increases for ¢ > 10. Thereby, based on the numerical evidence, we assert that
the sequence {|g;|}i>1 does not converge to 0, on the contrary, we conjecture
that {|¢;|}i>1 diverges.

Math. Model. Anal., 17(2):281-292, 2012.
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Table 4. The approximate value of g;, for ¢ = 21,...,60.

i

qi

i

qi

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

—23.684361348669
67.5418513427755
287.85895156268050
—911.509961320613176
—4169.4873282691158125
14517.51062315480054612
70954.77947196402774553
—2.69458840306955185 - 10°
—1.40159861100601650 - 106
5.76579884987129503 - 106
3.18048234453219928 - 107
—1.40899461576200422 - 108
—8.21609794289168550 - 108
3.89998255563806189 - 109
2.3971739322341164 - 1010
—1.2138276743182051 - 1011
—7.8442406406263566 - 1011
4.2206394905418625 - 1012
2.8609375093053603 - 1013
—1.6300691594774892 - 1014

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

—1.1564885959677822668958501234319231 -
6.9561716365916852165241531460296780 -
5.1553534410496517825406144072457824 -

—3.2644933042045415863738250108794785 -

—2.5227468509246430418663688747868782 -
1.6775405047079434174954084653643242 -
1.3495185248199705999283863810313058 -

—9.4023020801550544877879262847600277 -

—17.8617762090166445430502188919197474 -
5.7270790609799904579501055404994538 -
4.9702887257257575962402656022736164 -

—3.7785791960159019135070330313173696 -

—3.3990989824854793566420201466586793 -
2.6920880364957272549758657789254373 -
2.5071217823317726158976924227246943 -

—2.0652973718779740795700093359996914 -

—1.9889278856682013624948681734354735 -
1.7016236284887685450280925006068876 -
1.6927062244703204737287295257032487 -

—1.5019853275923149545469547291382864 -

To answer question (ii), that is, which is the partial sum A;(n) of the asymp-
totic expansion of A, closest to the true value of \,, for small values of n we
have checked that the series of partial sums {\;(n)};>1 behaves as asymptotic
series often do. The partial sums A;(n) approach the true value of \,,, reach the
point of closest approach and then become increasingly worse. Table 5 shows
the results obtained for a few small values of n. We highlight that small values
of n are the most frequent cases in real applications of the Erlang distribution.

Table 5. Partial sums \;(n) approaching Ay, for n =1,...,9.

Partial sum \;(n) closest to A,

Number of correct

n i significant digits
1 10th 3
2 16th 6
3 22nd 10
4 28th 11
5 34th 15
6 40th 17
7 48th 21
8 54th 24
9 60th 27

Now, we answer question (iii) related to the bounds of the median of the
Erlang distribution. As it was said in Section 1, Adell and Jodr4 [2] have given
upper and lower bounds for \,, specifically Ag(n) < A, < A7(n) for n > 1.
Moreover, Adell and Jodra [2, Section 4] remark that the same methodology
can be used to obtain sharper bounds for A, if we consider more terms in the
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asymptotic expansion of A,,. From the numerical results presented in Tables 3
and 4, we have assessed the importance of the higher-order coefficients in that
asymptotic expansion in order to derive sharper bounds for A\, and, in this
regard, we have checked that those bounds are not always valid for small values
of n. This possibility has not been considered by Adell and Jodra [2] and,
accordingly, the results obtained using their methodology must be rewritten in
a more convenient form. To this end, from Tables 3 and 4, we observe that the
sequence {¢; };>1 has a sign pattern of period four (— — ++) for ¢ > 4. Then,
taking into account this sign pattern, we enunciate the following.

Theorem 2. For any integer m > 5, there exists a positive integer n(m) such
that:

(1) if gm—1 > 0 and g, > 0, then )\m—l(n) <A < Am(“) forn > n(m);
and

(ii) #f gm-1 < 0 and gm < 0, then Ap(n) < Ap < Am—1(n) for n > n(m),
where A\p,(n) :==n+2/3+ 3" ¢/n'.

The proof of Theorem 2 follows exactly the same lines of reasoning that led
to the results given in Adell and Jodrd [2]. Table 6 presents tight upper and
lower bounds for A, together with a few values n(m). As we can see, the best
rational bounds for A, valid for all integers n > 1 are obtained by considering
the first nine coefficients in the asymptotic expansion of \,.

Table 6. Upper and lower bounds for A,.

Sharper bounds for A, for n > n(m)

Ag(n) < Ap < Ag(n) n>1
)\14(77,) < Ap < /\15(71) n>2
/\Qg(n) < Ap < /\23(77,) n>3
A29(n) < Ap < )\gg(n) n>4
)\34(77,) < An < A3s (n) n>>5
A1(n) < An < Ago(n) n>6
)\46(77,) < An < )\47(71) n>7
)\53(71,) < Ap < /\52(n) n>8
As8(n) < An < Asg(n) n>9

Final remark. Chen and Rubin [7] conjectured that the sequence {\, —
n}n>0 is strictly decreasing, which was proved by Alm [3] (cf. also Alzer [4] and
Adell and Jodra [1] for alternative proofs). In addition, Alzer [4] conjectured
that the sequence {\, — n},>0 is completely monotone and, in this respect,
Alzer [5] has shown that the sequence {\,, —n},>¢ is strictly convex. We recall
that a sequence {a, }n>0 is said completely monotone if (—1)*A*a,, > 0 for k =
0,1,...andn = 0,1,..., where Aq, := o, and AFa,, := A* o, —AFla,
(k=1,2,...; n=0,1,...); in particular, the case k = 1 (k = 2) corresponds
to a decreasing (convex) sequence. By using the upper and lower bounds for
A\, presented in this paper, we have checked that (—1)* A% (), —n) > 0 for
k=3,4,...,60, which strongly suggests that Alzer’s conjecture is true.
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