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Abstract. Gyrotrons are microwave sources whose operation is based on the stim-
ulated cyclotron radiation of electrons oscillating in a static magnetic field. This
process is described by the system of two complex differential equations: nonlinear
first order ordinary differential equation with parameter (averaged equation of elec-
tron motion) and second order partial differential equation for high frequency field
(RF field) in resonator (Schrödinger type equation for the wave amplitude).

The stationary problem of the single mode gyrotron equation in short time interval
with real initial conditions was numerically examined in our earlier work. In this
paper we consider the stationary and nonstationary problems in large time interval
with complex oscillating initial conditions.

We use the implicit finite difference schemes and the method of lines realized
with MATLAB. Two versions of gyrotron equation are investigated. We consider
different methods for modelling new and old versions of the gyrotron equations. The
main physical result is the possibility to determine the maximal value of the wave
amplitude and the electron efficiency coefficient.

Keywords: finite difference scheme, gyrotron equation, method of lines, oscillation of
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1 Introduction

Temporal evolution of the amplitude of nonstationary gyrotron oscillations can
be described by the following system of two partial differential equations [1,
15, 16, 17] (old version):⎧⎪⎪⎨⎪⎪⎩

∂p

∂x
+ i
(
Δ+ |p|2 − 1

)
p = if(t, x),

∂2f

∂x2
− i

∂f

∂t
+ δf = I〈p〉,

(1.1)

where i =
√−1 is the imaginary unit, x ∈ [0, L] and t ∈ [0, tf ] are the norma-

lized axial and temporal coordinates, L is the exit from the interaction space,
tf is the final time, p = p(t, x, θ0) is the dimensionless complex transverse
orbital momentum of the electron with the initial angle θ0, 0 ≤ θ0 < 2π,
the complex function f = f(t, x) is the normalized amplitude of RF field in
a resonator, Δ is the cyclotron resonance mismatch (real constant), δ is the
frequency mismatch, I is the dimensionless beam current parameter. Here at
t = 0 the initial condition f0(x) = f(0, x) is given in the form [15] of a complex

function, 〈p〉 = 1
2π

∫ 2π

0
p(t, x, θ0) dθ0 is the averaged value of p.

The new version [5] of these equations reads:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂p

∂x
+ i
(
Δ+ |p|2 − 1− gb(x)

)
p = if(t, x),

∂2f

∂x2
− i(1 + δω)

∂f

∂t
+
(
1 + 0.5

(
δω + gc(x)

))
gd(x)f

= I
(
1 + gc(x)

)2
(1 + δω)〈p〉,

(1.2)

where gb(x), gc(x) and gd(x) are given empirical functions, δω = 0.046565,
I = 0.002249, Δ = 0.538374. The new version of equations takes into account
two physical effects:

1. Dependence of the electron relativistic factor on the axial coordinate;

2. Dependence of the magnetic field on the axial coordinate (magnetic field
tapering).

Usually these dependencies are weak and are ignored. In such a case the old
version of equations can be used. The difficulties arise in solving the nonsta-
tionary problem (1.2) for large time interval t ∈ (0, 1000) with the oscillating
complex initial function f0(x) = f(0, x). The graphs of the initial functions
Re(f0(x)), Im(f0(x)), |f0(x)| and auxiliary functions gb(x), gc(x), gd(x) for
L = 113.7 are shown in Fig. 1 and Fig. 2. In the calculations we use a uniform
spatial grid with 536 mesh points. In order to reduce numerical computations
we also decrease the number of grid points to 268 deleting every second f0(x)
grid point. Similarly we obtain the grid with 134 mesh points. The equation of
electron momentum has to be supplemented by the standard initial condition
with the parameter θ0

p(t, 0, θ0) = exp(iθ0) (1.3)
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Figure 1. Complex initial function f0. Figure 2. Auxiliary functions gb, gc, gd.

and the equation of RF field by the boundary conditions at the entrance and
exit of the interaction space

f(t, 0) = 0,
∂f

∂x
(t, L) = −iγf(t, L), (1.4)

where γ is a positive parameter (L = 113.7, γ = 1.193498).

η = 1− 1

2π

∫ 2π

0

∣∣p(t, L, θ0)
∣∣2 dθ0 (1.5)

is the electron perpendicular efficiency which describes the transfer of the elec-
tron orbital momentum from the beam to RF.

Using implicit finite difference scheme with constant time step τ in order
to solve the initial boundary value problem (1.2)–(1.4) (new version) we have
difficulties to choose the value τ . The maximal number of mesh points (536)
was chosen for the spatial variable x and computations were performed for
(tf ≈ 1000). This was repeated with smaller time steps. Against all the
expectations that oscillations of amplitude will vanish with decreasing temporal
step length, we observe that oscillations of the function |f(t, x)| increase both
in time and in space (see, Fig. 3). So, the question arises about the origin of
these oscillations: are they physical or a product of numerical effects? In order
to answer this question we have discretized only the space leaving the time
continuous (the method of lines) and have solved the corresponding systems of
differential equations with the build-in MATLAB solvers with automatic time
step selection. This was done for both versions of gyrotron equations.

Our goal in this work is the numerical analysis of the stationary and nonsta-
tionary equations (1.1) and (1.2). We can write these equations in the following
form: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂p

∂x
= F1(p, f), p(t, 0, θ0) = exp(iθ0),

∂f

∂t
= Lf + F2

(〈p〉),
f(t, 0) = 0,

∂f

∂x
(t, L) = −iγf(t, L), f(0, x) = f0(x),

(1.6)

Math. Model. Anal., 17(2):251–270, 2012.
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Figure 3. |f | as a function of time t for different dimensional temporal steps. Here the
dimensionless time scale is equal 50, δω = 0.046565, I = 0.002249, Δ = 0.538374,

γ = 1.193498, L = 113.7.

where F1(p, f) is a nonlinear complex function of p, f , x, t, θ0, F2(〈p〉) is
complex function of 〈p〉, x, t, L is the second order linear differential operator
with variable coefficients. For equations (1.1) we have:

F1(p, f) = −i
(
Δ+ |p|2 − 1

)
p+ if(t, x),

Lf = −i
(
∂2f

∂x2
+ δf

)
,

F2

(〈p〉) = iI〈p〉 (1.7)

and for equations (1.2):

F1(p, f) = −i
(
Δ+ |p|2 − 1− gb(x)

)
p+ if(t, x),

Lf = −i
(
∂2f

∂x2
+
(
1 + 0.5

(
δω + gc(x)

))
gd(x)f

)
(1 + δω)

−1,

F2

(〈p〉) = iI
(
1 + gc(x)

)2〈p〉. (1.8)

The expressions (1.7) follow from (1.8) in the case of gb(x) = gc(x) = 0, gd = δ,
δω = 0. For numerical analysis we consider separately equations (1.1) and (1.2).
The main attention was paid to the second RF field equation because the
first nonlinear momentum equation can be solved numerically with the Runge–
Kutta method. Let us note that the model equation

dp

dx
+ i
(
Δ+ |p|2 − 1

)
p = iF0 exp(−iλπx/L), (1.9)

which describes the case of an infinitely long idealized resonator in which RF
field is represented by a propagating wave was analyzed using qualitative meth-
ods in [2, 12, 13]. Here F0 and λ are the RF amplitude and frequency. This
equation can be used also for equation (1.2) because gb(x) ≈ 0. The numerical
analysis of (1.9) for L = 15 shows that the electron perpendicular efficiency η
as a function of parameters F0, Δλ = Δ−λπ/L considerably oscillates and the
maximal value η = 0.3262 is obtained for F0 = 0.25 and Δλ = 0.83.
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2 Conservation Equations and Some Estimates for the
Continuous Problem

The RF – field equation for fixed value 〈p〉 is 1D linear time-dependent Schrö-
dinger type equation in bounded domain with boundary conditions (1.4). A
review of different boundary conditions for linear and nonlinear Schrödinger
equations in unbounded domain is given in [3]. There are many papers devoted
to theoretical and numerical studies [4, 8, 9, 14, 18]. Using ideas of [8] where
absorbing boundary conditions are considered, we obtain some estimates for
microwave energy

W (t) =

∫ L

0

f(t, x)f∗(t, x) dx =

∫ L

0

∣∣f(t, x)∣∣2 dx
stored in the resonator, where f∗(t, x) is complex conjugate value of f(t, x) and
|f(t, x)|2 = f(t, x)f∗(t, x). From the first complex and complex conjugated
equation of (1.6) we obtain the expression

∂

∂x
|p|2 =

∂p

∂x
p∗ + p

∂p∗

∂x
= 2 Im(pf∗). (2.1)

Similarly, from the second complex and complex conjugated equation of
(1.6) using boundary conditions (1.4) and integrating with respect to x ∈ [0, L]
the diffraction term, we obtain the conservation equation

dW

dt
+ 2δ1γ

∣∣f(t, L)∣∣2 = −2I Im
∫ L

0

g2(x)f
∗〈p〉 dx, (2.2)

where δ1 = 1/(1 + δω), g2(x) = (1 + gc(x))
2. By integrating (2.1) with respect

to x ∈ [0, L] and θ0 ∈ [0, 2π], with and taking into account initial conditions
(1.3) and expression (1.5), we obtain

η(t) = −2 Im
∫ L

0

f∗〈p〉 dx. (2.3)

Then from (2.2) it follows, that

Iη =
dW

dt
+ 2δ1γ

∣∣f(t, L)∣∣2 − 2I Im

∫ L

0

(
1− g2(x)

)
f∗〈p〉 dx. (2.4)

For the equation (1.1) from (2.4) follows the law of conservation of power in
the system “electron beam + microwave field”

Iη =
dW

dt
+ Prad ,

where Prad = 2γ|f(t, L)|2 is the microwave power radiated through the output
cross-section of the resonator x = L [6].

If g2(x) �≡ 1, then from (2.1) by integrating with respect to θ0 ∈ [0, 2π] we
obtain

2 Im
(
f∗〈p〉) = 1

2π

∂

∂x

∫ 2π

0

∣∣p(t, x, θ0)∣∣2 dθ0.
Math. Model. Anal., 17(2):251–270, 2012.



256 A. Reinfelds, O. Dumbrajs, H. Kalis, J. Cep̄ıtis and D. Constantinescu

By integrating by parts with respect to x ∈ [0, L] and using (1.3), (1.5), we
obtain

2 Im

∫ L

0

g2(x)f
∗〈p〉 dx =

1

2π

∫ L

0

g2(x)
∂

∂x

∫ 2π

0

∣∣p(t, x, θ0)∣∣2 dθ0 dx
= − 1

2π

∫ L

0

g′2(x)
∫ 2π

0

∣∣p(t, x, θ0)∣∣2 dθ dx+ g2(L)(1− η)− g2(0).

Therefore from (2.2) the conservation equation follows

dW

dt
+2δ1γ

∣∣f(t, L)∣∣2− I

∫ L

0

g′2(x)
〈|p|2〉 dx = I

(
g2(0)− g2(L)+ηg2(L)

)
, (2.5)

where g′2(x) = 2(1+gc(x))g
′
c(x) < 0, gc(L) = −0.021892, g2(0)−g2(L) ≈ 0, 29.

If I = 0, then the microwave energy is not increased in time

W (t) = W (0)− 2δ1γ

∫ t

0

|f(t, L)|2 dt ≤W (0).

We can similarly as in [8] obtain also the conservation equation for the
function

E(t) = δ1

∫ L

0

∣∣∣∣∂f∂x (t, x)
∣∣∣∣2 dx− ∫ L

0

g1(x)
∣∣f(t, x)∣∣2 dx

where g1(x) =
1+0,5(δω+gc(x))

1+δω
gd(x). From second complex and complex conju-

gated equation of (1.6) using boundary conditions (1.4) and integrating with
respect to x ∈ [0, L] the diffraction term, we obtain

0 = δ1

∫ L

0

(
∂f

∂x

∂2f∗

∂t∂x
+

∂f∗

∂x

∂2f

∂t∂x

)
dx− 2δ1γ Im

(
f(t, L)

∂f∗

∂t
(t, L)

)
−
∫ L

0

g1(x)
∂

∂t

∣∣f(t, x)∣∣2 dx+ 2I Re

∫ L

0

g2(x)〈p〉∂f
∗

∂t
(t, x) dx

or

dE(t)

dt
= 2δ1γ Im

(
f(t, L)

∂f∗

∂t
(t, L)

)
− 2I Re

∫ L

0

g2(x)〈p〉∂f
∗

∂t
(t, x) dx. (2.6)

From (2.1), (2.2) we obtain a priori estimates. From (2.1) in accordance with
Young’s type inequality it follows that〈|p|2〉 = 1 + 2 Im

∫ x

0

f∗〈p〉 dx ≤ 1 + 2L

∫ x

0

∣∣f(t, x)∣∣2 dx+
1

2L

∫ x

0

∣∣〈p〉∣∣2 dx
for all x ∈ (0, L). Using Jensen’s inequality we get |〈p〉|2 ≤ 〈|p|2〉. Therefore∫ L

0

〈|p|2〉 dx ≤ L+ 2L2

∫ L

0

∣∣f(t, x)∣∣2 dx+
1

2

∫ L

0

〈|p|2〉 dx
or ∫ L

0

〈|p|2〉 dx ≤ 2L+ 4L2

∫ L

0

∣∣f(t, x)∣∣2 dx.
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From (2.2) it follows

d

dt

∫ L

0

∣∣f(t, x)∣∣2 dx+ 2δ1γ
∣∣f(t, L)∣∣2

≤ I max
x

∣∣g2(x)∣∣( ∫ L

0

∣∣f(t, x)∣∣2 dx+

∫ L

0

〈|p|2〉 dx).

Consequently

d

dt

∫ L

0

∣∣f(t, x)∣∣2 dx+ 2δ1γ
∣∣f(t, L)∣∣2

≤ I max
x

∣∣g2(x)∣∣[(1 + 4L2
) ∫ L

0

∣∣f(t, x)∣∣2 dx+ 2L

]
. (2.7)

Thus the solution f does not blow up in finite time. From (2.3) we obtain the
corresponding estimate∣∣η(t)∣∣ ≤ 2L

∫ L

0

∣∣f(t, x)∣∣2 dx+
1

2L

∫ L

0

〈|p|2〉 dx ≤ (4L+ 1)

∫ L

0

∣∣f(t, x)∣∣2 dx+ 1.

From (2.5) it follows

d

dt

∫ L

0

∣∣f(t, x)∣∣2 dx+ 2δ1γ
∣∣f(t, L)∣∣2 +min

x

(−g′2(x)
)
I

∫ L

0

〈|p|2〉 dx
≤ I

(
g2(0) + g2(L)(4L+ 1)

∫ L

0

∣∣f(t, x)∣∣2 dx).

3 RF Field Gyrotron Equation

The first problem of (1.6) is the nonlinear ordinary differential equation initial
value problem for complex function p(x) with fixed values of f , t and θ0. It can
be solved numerically with standard methods, for example, with the Runge–
Kutta method using MATLAB solver “ode45” at each time moment t and
a series of values of θ0 ∈ [0, 2π).

The second problem is the Schrödinger type linear partial differential equa-
tion initial-boundary value problem for a complex function f(t, x) for fixed
values of 〈p〉. It can be solved numerically with the method of lines with re-
spect to t and discretization in space for differential operator L by means of
finite difference second order approximation using MATLAB solver “ode15s”
(the stiff system of ordinary differential equation) or with the implicit finite
difference scheme using discretization also in time. The two problems must be
solved simultaneously at each time moment.

For the approximation of the derivatives in space we use a uniform grid with
the step h and grid points xj = (j− 1)h, j = 1,M , Nh = L, where M = N +1
is the number of grid points. Using these grid points we can approximate the

second order derivative d2f(t, x) = ∂2f
∂x2 (t, x) in the equations (1.6) with the

central finite difference of second order in the form

d2f(t, xj) ≈ 1

h2
(fj−1(t)− 2fj(t) + fj+1(t)), j = 2, N,

Math. Model. Anal., 17(2):251–270, 2012.
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where fj(t) = f(t, xj), f1(t) = 0. We consider three numerical approximations
of the boundary conditions at x = L for the boundary condition (1.4):

• From Taylor expansion fN = fM + ihγfM + h2

2 d2f(t, L) and finite dif-
ference expression for j = M , it follows that (approximation O(h2))
d2f(t, L) ≈ 2

h2 (fN (t) − fM (t) − ihγfM (t)). From (1.6) and (1.8) the
following ordinary differential equation at the boundary point can be
written:

dfM
dt

= 2α
(−fN (t) + (1 + ihγ)fM (t)

)
(3.1)

− i
(
1 + 0.5

(
δω + gc(L)

))
gd(L)(1 + δω)

−1fM (t) + iI
(
1 + gc(L)

)2〈p〉M ,

where α = i/(h2(1 + δω));

• From Taylor expansion fN = fM +ihγfM + h2

2 d2f(t, L)+O(h3), fN−1 =

fM + 2ihγfM + 4h2

2 d2f(t, L) + O(h3) the following three-point stencil
formula of second order O(h2) approximation can be written:

4fN − fN−1 = (3 + 2ihγ)fM ; (3.2)

• The first order O(h) approximation of boundary conditions can be written
in following form:

fN = (1 + ihγ)fM . (3.3)

We use discrete values of the parameter θ0 in the form θk = k 2π
K , k = 1,K,

where K is the number of angular grid points. Let pj(θk) = p(t, xj , θk) be
grid function values for a fixed time t. Using the trapezoid rule of the quadra-
ture formula in calculating the integral in 〈p〉j (1.6), we obtain the following
expression:

〈p〉j = 1

K

K∑
k=1

pj(θk), j = 1,M.

Similarly from (1.5) we can calculate the electron efficiency

η = 1− 1

K

K∑
k=1

∣∣pM (θk)
∣∣2.

3.1 Method of lines

First, we consider the method of lines in solving the Schrödinger type equa-
tions (1.2) in the form of the initial value problem for the following ordinary
differential equation system:

df(t)

dt
= Af(t) +G(t), f(0) = f0, (3.4)

where A is the M order 3-diagonal matrix with the elements

aj,j = 2α+ gj , aj,j+1 = aj,j−1 = −α, j = 2, N,

gj = −i(1 + 0.5(δω + gc(xj)))gd(xj)(1 + δω)
−1, a1,1 = 2α, a1,2 = 0,
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aM,N = −2α, aM,M = 2α(1 + ihγ) + gM , α = ih−2,

f(t), f0, G(t) are column vectors with the elements fj(t), f0(xj) and Gj(t) =
iI(1 + gc(xj))

2〈p〉j , j = 2,M , f1(t) = 〈p〉1 = 0.
The system of ordinary differential equations (3.4) is of M th order and

it can be solved with the MATLAB solvers “ode15s” or “ode23t” using the
mass-matrix (the first equation f1(t) = 0 is algebraic). With other solvers
(“ode45”, “ode113”, “ode23s”) we can solve the system of ordinary differential
equations of the N th order (without mass-matrix). We use the solver “ode15”
with relative error 10−6 and without mass-matrix.

3.2 Conservation equations and some estimates for the discrete
problem

Let us use the following finite differences operators:

∂fj =
fj+1 − fj

h
, ∂̄fj =

fj − fj−1

h
, ∂∂̄fj =

fj−1 − 2fj + fj+1

h2
= ∂̄∂fj .

The system of equations (3.4) with boundary conditions (3.1) can be rewritten
in the following form [8]:

∂fj
∂t

= −iδ1∂∂̄fj − ig1(xj)fj + iIg2(xj)〈p〉j , j = 2, . . . , N, (3.5)

∂fM
∂t

= −iδ1
(
− 2

h
∂̄fM − 2i

h
γfM

)
− ig1(L)fj + ig2(L)〈p〉M . (3.6)

From (3.6) and the central difference ∂f
∂x (t, L) = fM+1−fN

2h + O(h2) it follows
that − 2

h (∂̄fM + iγfM ) = ∂∂̄fM .
From complex and complex conjugated equations (3.5) and (3.6) multiply-

ing correspondingly with f∗ and f and summing, we obtain

∂

∂t
|fj |2 = iδ1

(
∂∂̄f∗

j fj − ∂∂̄fjf
∗
j

)
+ 2Ig2(xj) Im

(
f∗
j 〈p〉j

)
, j = 2, . . . , N,

∂

∂t
|fM |2 =

2δ1
h

(
i
(
∂̄fMf∗

M − ∂̄f∗
MfM

)− 2γ|fM |2
)− 2Ig2(L) Im

(
f∗
M 〈p〉M

)
.

Let us introduce the discrete inner products and the norms

(u, v) = h
N∑
j=2

ujv
∗
j , ‖u‖2h = (u, u),

(u, v]h = h
N∑
j=2

ujv
∗
j +

h

2
uMv∗M , ‖u|]2h = (u, u]h.

Applying the summation by parts of the discrete diffraction operator [19], we
obtain the discrete energy conservation equation

∂

∂t
‖f |]2h + 2δ1γ|fM |2 = −2I Im(g2f∗〈p〉, 1]

h
. (3.7)

Math. Model. Anal., 17(2):251–270, 2012.
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This form is analogue of (2.2) where the integral is approximated by a trape-
zoidal formula. For boundary conditions of first order (3.3) ∂̄fM = −iγfM ,
∂̄f∗

M = iγf∗
M it follows from (3.5)

∂

∂t
‖f‖2h = δ1(i

(
fM ∂̄f∗

M − f∗
M ∂̄fM

)− 2I Im
(
g2f

∗〈p〉, 1)
h

= −2δ1γ|fM |2 − 2I Im
(
g2f

∗〈p〉, 1)
h
, (3.8)

i.e., equality (3.7) conserves the norm ‖t, ·‖h which differs from norm ‖t, ·|]
by O(h).

For the boundary conditions (3.2) in the form ∂̄fM = −h
2∂∂̄fM − iγfM it

follows that in (3.8)

fM∂f∗
M − f∗

M ∂̄fM = 2iγ|fM |2 +Δ0,

where Δ0 = −h
2 (fM∂∂̄f∗

M − f∗
M∂∂̄fM ) = −hi Im(fM∂∂̄f∗

M ) �≡ 0 is the disbal-
ance term in the conservation law (3.7). For this reason the condition (3.2) is
no longer used.

Using the operator
∂f∗j
∂t

∂fj
∂t − ∂fj

∂t

∂f∗j
∂t for (3.5), (3.6) with boundary condi-

tions (3.1) and taking the imaginary part, we obtain

0 = −δ1

(
∂∂̄f∗

j

∂fj
∂t

+ ∂∂̄fj
∂f∗

j

∂t

)
− g1(xj)

∂

∂t
|fj |2 + 2I Re

(∂f∗
j

∂t
〈p〉j

)
,

0 =
2δ1
h

[
∂̄fM

∂f∗
M

∂t
+ ∂̄f∗

M

∂fM
∂t

+ 2γ Im
(
f∗
M

∂fM
∂t

)]
− g1(L)

∂

∂t
|fM |2 + 2I Re

(∂f∗
M

∂t
〈p〉
)
.

Applying the summation by parts of the discrete diffraction operator we obtain
the conservation equation

dEh

dt
(t) = 2δ1γ Im

(
fM

∂f∗
M

∂t

)
− 2I Re

(
g2〈p〉∂f

∗

∂t
, 1
]
, (3.9)

where Eh(t) = δ1‖∂̄f |]2h − (g1|f |2, 1]h is the discrete approximation of function
of E(t). The (3.9) is the discrete form of the conservation equation (2.6). For
boundary conditions (3.3) we have

CM = −δ1

(∂fM
∂t

∂̄fM +
∂f∗

M

∂t
∂̄fM

)
= 2γδ1 Im

(
fM

∂f∗
M

∂t

)
and in the conservation equation (3.9) the form of the norm ‖∂̄f‖h is conserved.

For boundary conditions (3.2) CM = 2γδ Im(fM ,
∂f∗M
∂t ) + Δ1, where Δ1 =

hRe(∂fM∂t ∂∂̄f∗
M ) is the disbalance term in the conservation law (3.9).

Similarly, the inequality (2.7) can be obtained in the discrete case when
W = ‖f |]2h.

3.3 Implicit finite difference schemes

For the implicit finite difference scheme we use discrete values of time t in the
form tn = nτ, where n = 0, 1, 2, . . . is the time number and τ is the temporal



Numerical Experiments with Single Mode Gyrotron Equations 261

step. Let fn
j = f(tn, xj), f

n = f(tn). Then from (3.4) the finite difference
scheme follows: (

fn+1 − fn
)
/τ = Afn+1 +Gn, (3.10)

where Gn = G(tn), n = 0, 1, . . ., f0 = f0. We can solve this problem with the
MATLAB “slash” operator in the following matrix form:

fn+1 = (E− τA)−1FA,

where FA = fn + τGn, n = 0, 1, . . . , is the column-vector of M th order.
We can also solve (3.10) with the factorization method. The finite difference

scheme can be written in the form

Ajyj−1 − Cjyj +Bjyj+1 = −Fj , j = 1,M,

where Aj = Bj = −ατ , Cj = 1 − (2α + gj)τ , j = 2, N , A1 = F1 = 0, B1 = 0,
BM = 0, C1 = 1, AM = −2ατ , CM = 1− (2α(1 + ihγ) + gM )τ , yj = fj(t

n+1),
Fj = fj(t

n) + τGj(t
n), j = 2,M .

We can use the finite difference scheme with the weight σ ∈ [0, 1] in following
form: (

fn+1 − fn
)
/τ = A

(
σfn+1 + (1− σ)fn

)
+Gn. (3.11)

Then fn+1 = (E− τσA)−1FA, where FA = (E+ τ(1− σ)A)fn + τGn.

4 Discrete Spectral Problems

In paper [11] we considered the quasi-stationary solution of the homogeneous
RF field equation (1.1) (I = 0) with boundary conditions (1.4). Using uniform
grid and numerical boundary condition with O(h) we solved the spectral prob-
lem for matrix Ã = A/i: Ãwk = μkw

k, where wk is the orthonormed eigen-

vector with elements wk
j = Ck sin(qkxj), C−2

k = 1
2 (L − h sin(qkL) cos(qk(L−h))

sin(qkh)
),

j = 1, N − 1, μk = 4h−2 sin2(qkh/2) is the eigenvalue obtained from the tran-
scendental equation sin(qkL) = (1+ ihγ)−1 sin(qk(L−h)), k = 1, N − 1, δ = 0.
This transcendental equation has a countable set of complex roots in the right
half-plane. The roots are ordered by increasing real parts.

Table 1. The values of Ak, Bk for L = 15, γ = 2, δ = 0, I = 0.

N0 Ak(old) Bk(old) Ak(new) Bk(new)

1 0.0437 0.0029 −0.0232 0.0638
2 0.1748 0.0118 0.2576 0.05530
3 0.3933 0.0272 0.6681 0.0826
4 0.6988 0.0497 1.0619 0.0998
5 1.0912 0.0807 1.4713 0.1320
6 1.5695 0.1228 1.9282 0.1894
7 2.1318 0.1803 2.4692 0.2599
8 2.7715 0.2627 3.0383 0.3814

For RF field equation (1.2) the coefficients of operator L are not constants
and the analytical solution of the spectral problem does not exist. We use

Math. Model. Anal., 17(2):251–270, 2012.
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the MATLAB operator “eig” and solve the spectral problem numerically. For
comparison for the first 8 eigenvalues in the paper [11] we solved the spectral
problems for L = 15, γ = 2, δ = 0, N = 300 (see Tab. 1, where Ak = Re(μk),
Bk = Im(μk)). The obtained values μk are in agreement within four digits with
the eigenvalues in [11].

Table 2. The values of Ak, Bk for L = 113.7, γ = 1.193498, δ = 0.

N0 Ak(old) Bk(old) Ak(new) Bk(new)

1 0.0008 0.0000 −1.3806 0.0037
2 0.0031 0.0000 −1.3152 0.0060
3 0.0069 0.0001 −1.2483 0.0078
4 0.0122 0.0002 −1.1806 0.0095
5 0.0191 0.0003 −1.1123 0.0110
6 0.0274 0.0004 −1.0436 0.0124
7 0.0374 0.0006 −0.9745 0.0138
8 0.0488 0.0007 −0.9049 0.0153

In Tab. 2 the results for L = 113.7, γ = 1.193498 and N = 268 are given.
The values of Ak are different for RF field equations (1.1) and (1.2). Comparing
the eigenvalues of the RF equations (1.1) and (1.2), we see that the values of
Ak have different signs (the first values of (1.2) are negative). The results do
not change much (four digits remain the same) by changing twice the spatial
step h. In [11] we obtained the stability condition of finite difference scheme
(3.10) for RF field problem (1.1) in the following form σ ≥ 0.5, Bk ≥ 0.

Figure 4. First 40 discrete (old)
eigenvalues in the plane (Reμ, Imμ),
N = 300, L = 15, γ = 2, δ = 0, I = 0.

Figure 5. First 40 discrete (new)
eigenvalues in the plane (Reμ, Imμ),

N = 300, L = 15, γ = 2, I = 0.

In Fig. 4 and Fig. 5 for L = 15, γ = 2, h = 0.1 the first 40 eigenvalues
(increasing Re(μk)) are shown in the plane Ak = Re(μk), Bk = Im(μk). In
Fig. 6 and Fig. 7 (L = 113.7, N = 268, γ = 1.193498) we can see that for
all values Bk ≥ 0 (min(Bk) = −2.6 10−14 for the new version of equations for
k > 240) and the implicit finite difference scheme is unconditionally stable for
σ ≥ 0.5 independent of τ . In [10] we obtained the following inequalities for
different weight σ:
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Figure 6. Discrete (old) eigenvalues in
the plane (Reμ, Imμ), N = 268, L = 113.7,

γ = 1.1934982, δ = 0, I = 0.

Figure 7. Discrete (new) eigenvalues in
the plane (Reμ, Imμ), N = 268, L = 113.7,

γ = 1.1934982, I = 0.

1. For σ < 0.5: τ ≤ 2Bk/[(1− 2σ)(A2
k +B2

k)].

2. For σ = 0.5: Bk ≥ 0.

3. For σ ∈ (0.5, 1] : τ ≥ 2Bk[(1− 2σ)(A2
k +B2

k)]. This condition is impor-
tant for Bk < 0.

For σ ≤ 0.5 the temporal step length τ is bounded because Bk > 0 and max(Ak)
is large (for L = 113.7 max(Ak) ≈ 24). The maximal value Mτ for 2Bk

A2
k+B2

k
is

53.09 (new) and 38.63 (old).
In the calculations with increasing amplitude f oscillations sometimes oc-

cur when Bk < 0. In such a case the condition τ ≥ 2Bk

(1−2σ)(A2
k+B2

k)
becomes

important. For (1.2) and k = 268 (σ = 1) we have BN = −3.10−14, AN ≈ 24
and the inequality τ ≥ 0.510−6 is no longer important.

5 Models of RF Field Equations

For numerical analysis we consider the model of RF field equation for problem
(1.6) with initial condition f0(x) and with given function 〈p〉 = exp(iλx) with
λ = 0 and λ = 1. The corresponding stationary problem is solved using the
MATLAB solver “bvp4c” and cubic spline interpolation for initial complex
function f0(x) and auxiliary functions gc(x) and gd(x).

In the stationary case from (1.6), (1.7) for δ = 0 we obtain the test problem
f ′′(x) = I exp(iλx), f(0) = 0, f ′(L) = −iγf(L) with the following analytical
solutions:

1. for λ = 0: f(x) = 0.5Ix2 + C1x, C1 = IL(1− 0.5iγL)/(1 + iγL),

2. for λ = 1: f(x) = −I exp(ix)+C1x+ I, C1 = iI(exp(iL)(1+γ)−γ)/(1+
iγL).

Using the approximation of boundary conditions of third kind (3.1), (3.2),
(3.3) we obtain for N = 134; 268; 536, L = 113.7 and I = 0.002249 the
following maximal value of |f |:

Math. Model. Anal., 17(2):251–270, 2012.
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Figure 8. Stationary solution |f | (old),
λ = 0, L = 113.7, N = 536, δ = 0,

I = 0.002249.

Figure 9. Stationary solution |f | (old),
λ = 1, L = 113.7, N = 536, δ = 0,

I = 0.002249.

1. for λ = 0: (Schrödinger type solution, see Fig. 8) 3.6380 (analytical
solution), 3.6372 for (3.3), 3.6374 for (3.2), 3.6374 for (3.1);

2. for λ = 1: (oscillating solution, see Fig. 9), N = 134: 0.005566 (analytical
sol.), 0.005849 for (3.3), 0.006152 for (3.2), 0.005775 for (3.1). N = 268:
0.005591 (analytical sol.), 0.005649 for (3.3), 0.005739 for (3.2), 0.005641
for (3.1), N = 536: 0.005608 (analytical sol.), 0.005626 for (3.3), 0.005646
for (3.2), 0.005621 for (3.1).

Hence, the boundary condition (3.1) fN − (1 + ihγ)fM = 0.5iIh2 exp(iλL) is
more accurate. In what follows we will use only the boundary conditions (3.1).

Figure 10. Stationary solution |f | (new),
λ = 0, L = 113.7, N = 134.

Figure 11. Stationary solution |f | (new),
λ = 1, L = 113.7, N = 536.

Using the stationary model equations for (1.6), (1.8), we obtain the following
maximal value of |f | for different N :

1. for λ = 0: 0.1342 (N = 134), 0.1730 (N = 268), 0.1750 (N = 536) (see
Fig. 10),

2. for λ = 1: 0.0794 (N = 134), 0.1074 (N = 268), 0.0980 (N = 536) (see
Fig. 11).
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Figure 12. Dependence of |f(t, L)| on t
(new), λ = 0, L = 113.7, τ = 0, 0496,

h = 0, 42.

Figure 13. Dependence of |f(t, L)| on t
(new), λ = 1, L = 113.7, τ = 0, 0496,

h = 0, 42.

For the corresponding nonstationary solution |f(t, L)| for the new version
of equations for tf = 1000, N = 536 the temporal behaviour is shown in Fig. 12
(λ = 0, τ = 0.0496), Fig. 13 (λ = 1, τ = 0.00496). These results have been
obtained by means of the implicit finite difference scheme with σ = 1 and the
method of lines.

6 The Stationary Solutions of Equations (1.6)

In [6, 7] we obtained the stationary solution of (1.6), (1.7) using the method
of stationarity in following way:⎧⎪⎪⎨⎪⎪⎩

∂p(s+1)

∂x
= F1

(
p(s), f (s)

)
,

f (s+1) − f (s)

τ
= Lf (s+1) + F2

(
ω〈p(s+1)〉+ (1− ω)〈p(s)〉), (6.1)

where s = 0, 1, . . . , S is the parameter of iterations, p(0) = exp(iθ0), f (0) =
f0(x), S is the number of iterations, ω ≤ 1 is the positive under relaxation
factor. The number S is determined from the following condition: max |f (S)−
f (S−1)| ≤ 10−4. For discretization in space nonuniform grid is used with the
grid points as the roots of the Chebyshev polynomials of the second kind. For
approximation of partial derivatives with respect to x the matrices of derivatives
are used. Calculations with f0(x) = 0.12 sin(πx/L), L = 15, τ = 1, δ = 0,
Δ = 0.5, I = 0.01, ω = 0.1, γ = 0.5, K = 40, S ≈ 500 result in the optimal
efficiency η = 0.7288.

We used MATLAB solvers “ode45, ode15s” for modified (6.1) (τ =∞)⎧⎪⎨⎪⎩
∂p(s+1)

∂x
= F1

(
p(s+1), f (s)

)
,

Lf (s+1) + F2

(
ω〈p(s+1)〉+ (1− ω)〈p(s)〉) = 0,

where p(0) = p(1), f (0) = f0(x), ω = 1; 0.5. The previous results can be
obtained with S ≈ 15. In real calculations with L = 113.7, ω = 1, N = 536
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Figure 14. Stationary solution |f | (new),
L = 113.7, N = 536.

Figure 15. Distribution Re(〈p〉), Im(〈p〉)
(new), L = 113.7, N = 536.

Figure 16. Distribution |〈p〉| (new),
L = 113.7, N = 536.

Figure 17. Stationary solution |f | (old),
L = 113.7, N = 268.

and I = 0.002249 we obtained the following distributions of stationary RF field
amplitude |f |, averaged electron momentum 〈p〉 in the plane Re(〈p〉), Im(〈p〉)
and |〈p〉| depending on x:

1. for new version η = 0.5860, max |f | = 0.0638 (see Fig. 14, Fig. 15, Fig. 16)
(for boundary conditions O(h) : η = 0.5862, max |f | = 0.0635),

2. for old version η = 0.1610, max |f | = 5.1979 (see Fig. 17, Fig. 18, Fig. 19)
(for N = 268: max |f | = 5.1984; for N = 134: max |f | = 5.1962).

The boundary value problem for RF field equation is also solved with MATLAB
solver “bvp4c”, using cubic spline approximation for 〈p〉, gb(x), gc(x), gd(x) and
initial value of f0. The results did not change within three decimal digits.

7 The Nonstationary Solutions of Equations (1.6)

For the numerical experiment with the real initial function f0(x) = 0.12 sin πx
L

computations were performed by means of MATLAB with solvers “ode15”,
“ode45” for L = 15, γ = 1.193498, K = 25, N = 25, I = 0.002249, tf = 1,
δω = 0.046565 and Δ = 0.538374.
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Figure 18. Distribution Re(〈p〉), Im(〈p〉)
(old), L = 113.7, N = 268.

Figure 19. Distribution |〈p〉| (old),
L = 113.7, N = 268.

The results of calculations for the efficiency η are the following: 0.4854 for
method of lines and with all MATLAB solvers (relative error 10−6); for finite
difference scheme with σ = 1: 0.4808 (τ = 0.15), 0.4800 (τ = 0.075).

Table 3. The values of η, max |f(tf , x)|, |f(tf , L)| by L = 113.7, γ = 1.193498, σ = 1.

σ = 1 τ = 1 τ = 0.5 τ = 0.25 τ = 0.125 τ = 0.1 Method
of lines

η .4625 .5056 .5523 .5359 .5277 .5254

max |f(tf , x)| .0982 .0982 .0982 .0982 .0982 .0982

|f(tf , L)| .0314 .0319 .0323 .0325 .0326 .0328

For the nonstationary problem with complex initial function f0(x), N =
134, K = 25, L = 113.7 and tf = 10 we used the finite difference scheme
with σ = 1 and σ = 0.5 and the method of lines (at each automatic step
size τ). In solving equations (2.1) and (2.3) with the MATLAB we solved
the first equation (1.6) with the solver “ode45” with automatic step size and
cubic spline interpolation for discrete values of f . The solution p is obtained
for a fixed time t at uniform grid points xj . In the Tab. 3, Tab. 4 we show
values of η, maxx |f(tf , x)|, |f(tf , L)| for τ = 1; 0.5; 0.25; 0.125; 0.1 and σ = 1,
σ = 0.5. The calculations with σ = 1/4 are unstable. We can see that the value
maxx |f(tf , x)| does not depend on τ if σ = 1 and decreases if σ = 0.5 (3.2).

Table 4. The values of η, max |(f(tf , x)|, |f(tf , L)| by L = 113.7, γ = 1.193498, σ = 0.5.

σ = 0.5 τ = 1 τ = 0.5 τ = 0.25 τ = 0.125 τ = 0.1

η .5234 .5036 .5196 .5265 .5225

max |f(tf , x)| .0986 .0984 .0983 .0983 .0982

|f(tf , L)| .0339 .0330 .0328 .0328 .0328

In a number of papers [3, 8, 9] accurate discretization of Crank-Nicolson
scheme (σ = 1/2) has been studied in relation to time dependent Schrödinger
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Figure 20. Finite difference scheme
solutions for |f(tf , x)|, tf = 10.

Figure 21. MATLAB solution for
|f(tf , x)|, Re(f(tf , x)), Im f(tf , x)), tf = 10.

type differential equations with different artificial boundary conditions, which
guarantee second order temporal approximation and are unconditionally stable.

In [19] it is emphasized that this scheme in solving Schrödinger type equa-
tions can be only conditionally temporarily stable, if the asymptotical stability
condition is not valid for t→∞. Since in gyrotron equation calculations long
temporal intervals are considered before the solution becomes stationary, it is
more convenient to use implicit difference scheme with σ = 1, because it is also
asymptotically stable.

In both cases it can be shown [19], that for a fixed function 〈p〉 ∈ L2 for
fixed t the discrete solution fh from (3.11) with condition (3.1) approaches the
continuous solution f if τ, h→ 0, because accuracy zh = fh−f can be estimated
as ‖zh‖ ≤ C(τα + h2), where α = 1 (σ = 1), α = 2 (σ = 1/2). In the special
case when δ1 = 1, g1 = I = 0, γ =∞ (boundary condition of first kind) [19] it
has been proved that ‖zh‖ ≤ C(τ2 + h4), if σ = 0.5− ih2/12τ .

We have for σ = 0.5 the following values of η: 0.5351 (τ = 0.125), 0.5336
(τ = 0.1). Fig. 20 and Fig. 21 show the discrete functions |f(tf , x)| and
Re(f(tf , x)), Im(f(tf , x)), |f(tf , x)|, depending on x as obtained with the finite
difference scheme (τ = 0.1, σ = 1) and MATLAB solvers. The calculation with
MATLAB program and method of lines lasts six times longer than implicit
calculations with finite difference scheme.

8 Conclusions

In the present work the stationary and nonstationary problems of single mode
gyrotron equations are investigated. The implicit finite difference schemes and
the method of lines are realized with MATLAB. Two versions of gyrotron equa-
tions are considered and it is proved that the discrete spatial approximation
satisfies the energy conservation law. The results of numerical experiments can
be summarized as follows:

• Spectral representations of new and old gyrotron equations are different;

• Method of lines with spatial discretization is an effective algorithm when
using MATLAB with sparse matrixes;
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• The implicit finite difference schemes are stable for solving gyrotron
equations. It is not useful to employ the three stencil boundary con-
ditions, because the discrete conservation equation holds only approxi-
mately;

• New version of gyrotron equation requires long computation times in
order to observe oscillations. The full implicit finite difference scheme
(σ = 1) can be used in calculations for long time intervals in those cases
when the solution becomes stationary;

• Oscillations are pronounced in the solutions of new equations and are
absent in the solutions of old equations (compare Fig. 14 and Fig. 17).
The use of numerical algorithms with a variable integration step length
and specified accuracy is preferable. Commercially available program
packages can be utilized.
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