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Abstract. We investigate the distribution of zeros of the Lerch transcendent func-
tion @(q,s,0) = > q"(n+a)”°. We find an upper and lower estimates of zeros of
the function &(g, s, @) in any rectangle {s : 01 < Re s <02 <1.73...,0<Im s < T}.
Further we are interested in a computer calculations concerning the zeros of &(q, s, @)
in {s:Re s>1,0<Ims <1000}.
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1 Introduction

Let s = o + it denotes a complex variable. The Lerch transcendent function is
the analytic continuation of the series

(o)
b(q,s,a) = Z " (n+a)?,
n=0

which converges for any real number a > 0 if g and s are complex numbers with
either |g| < 1, or |¢| = 1 and o > 1. Here we consider ¢(g, s, a) as a function
of s with the parameters ¢ € C, 0 < |¢| < 1, and 0 < a < 1. Special cases
include the Riemann zeta-function ((s) = ¢(1, s, 1), the Hurwitz zeta-function
((s,a) = &(1, s,a), the polylogarithm function Lis(q) = ¢®(q,s,1), and the
Lerch zeta-function L(\, «, s) = ®(exp(2mil), s, a).

The Riemann zeta-function has no zeros in the right-half-plane ¢ > 1. In
the left-half-plane ¢ < 0 it has only trivial zeros at even negative integers. The
famous Riemann hypothesis (RH) asserts that the remaining, nontrivial, zeros
lie on the critical line o = 1/2.

The Hurwitz zeta-function ¢(s, &) has infinitely many zerosin 1 < o < 14+«
if « is transcendental or rational # 1/2, 1 (Davenport and Heilbronn [2]). This
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result was extended by Cassels [1] for « algebraic irrational. Let 1/2 < 01 <
o9 < 1. Then Voronin [16] (for rational o # 1/2,1) and Gonek [10] (for
transcendental «) proved that the number of zeros of (s, ) in the rectangle
01 < 0 < 09,0 <t <T is approximately equal to T for sufficiently large T
Gonek [11] also showed that for certain values of « the proportion of zeros of
((s,a) on o = 1/2 is definitely less than 1. In the complex s-plane trajectories
of zeros p = p(«) of the Hurwitz zeta function were considered in [8] and [9].
Based on these trajectories, the classification of nontrivial zeros of the Riemann
zeta function were introduced. For the zero distribution of the Lerch zeta-
function see [4, 5, 6, 7, 12].

Fornberg and Kolbig [3] investigated trajectories of zeros p = p(q) of the
polylogarithm function Lis(q) for real ¢ with |¢| < 1. They found that some
trajectories tend towards the zeros of ((s) as ¢ — —1, and approach these zeros
closely as ¢ — 1 — 4 for small but finite § > 0. However, the later trajectories
appear to descend to the point s =1 as § — 0. Both, for ¢ = —1 and ¢ — 1,
there are trajectories which do not tend towards zeros of {(s).

Next we consider the zeros of #(q, s,a) for0 < a < land g€ C, 0 < |q] < 1.
Let Ng(01,092,T) = Ng(01,02,T, q, ) denote the number of zeros of &(q, s, a)
in the region {s: 07 < Res < 02, 0 < Ims < T}. Let 09 = 09(q, ) be a real
number defined by the equality

(oo}

It is easy to see that og < ¢=1.73..., where ((c) =)~ ;n~° =2, and that
o can take any value between —oo and c.

Theorem 1. Let ¢ € C, 0 < |g| < 1. Let 0 < o < 1 be a transcendental
number. Then we have that, for any fized strip o1 < o < g9 < 0y,

T< Nqs(O’l,O'Q,T) «T
and &(q, s, ) has no zeros for o > og.

The theorem is proved in Section 3.

Wiener and Wintner [17, Section 4] pointed to a possible relationship be-
tween the behaviour of the zeros in the right-half-plane o > 1 of the polyloga-
rithm function and the Riemann Hypothesis. They proved that the Riemann
Hypothesis is true if there exists a number 0 < ¢ < 1 such that Y > ; ¢"n~% # 0
for c > 1 and 1 —¢ < ¢ < 1. However, Montgomery [13] pointed that the poly-
logarithm function Li, (6*1/ N ) has zeros in the region ¢ > 1 for all sufficiently
large integers N, making Wiener and Winter theorem vacuous. Theorem 1
shows that the Lerch transcendent function @(g, s, «) also has zeros in the re-
gion o > 1 for 0.92 < ¢ < 1 and transcendental a, 1/2 < a < 1. In the next
section, we try to find explicit zeros in ¢ > 1. We see that it is relatively easy
to find zeros if o # 1. In the case o = 1 the zeros in the right half-lane, o > 1
currently are out of reach.
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2 Calculations

The calculations of this section were done with programme MATHEMATICA.
To calculate the number N of zeros of @(g, s, «) inside the contour I" we have
used the well known formula

L[ @gsa))
B 2mi r gp(Qv‘%a)

If the interior of the contour I" contains one zero p, then we find this zero using

the following expression

1 P(q,s,a))

L[ @asa); o
2ri Jp P(q, s, )

The zero p can be adjusted by MATHEMATICA command FindRoot.

Let R = {s: Res > 1, 0 < Ims < 1000}. In Table 1, we present the
number of zeros of function &(q, s, «) for chosen ¢ and « in the region R. For
example, we see that ©(0.99,s,0.9) has 34 zeros in R. In Table 1, the last
column describes zeros of the Hurwitz zeta-function, and the last row describes
zeros of the polylogarithm function. In view of Montgomery’s result [13] we
expect that @(q, s, 1) has zeros in o > 1 for ¢ > 0.9. If so, then Table 1 possibly
indicates the different behaviour of zeros of ®(q, s, «) in o > 1 dependently on
a=1lora#l.

Table 1. Number of zeros of the function (g, s, @) in the region R.

a\q|09]|095|099 | 1

0.9 2 8 34 40

0.95 4 10 37 46

0.99 14 27 41 45

1 0 0 0 0

In Table 2, we present zeros of functions #(0.9,s,0.9), #(0.9,s,0.95),
$(0.9,5,0.99). In this table numbers were rounded up to two decimal places.

3 Proof of Theorem 1

First we formulate theorems of Kronecker and Rouché (see Tichmarsh [15,
Section 8.3] and Tichmarsh [14, Section 3.42]).

Lemma 1 [Kronecker’s theorem)]. Let a1, as, ..., ayn be linearly independent
real numbers, i.e. numbers such that relation A1ai1 +---+ Ayayx = 0 is possible
only if \y = --- = Anx = 0. Let by,...,by be any real numbers, and € a given
positive number. Then we can find a number t and integers x1,...,xN Such
that |tap, — b, —xp| <e,n=1,...,N.

Math. Model. Anal., 17(2):245-250, 2012.
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Table 2. Coordinates of zeros of the function ®(g, s, @) in the region R.

®(0.9,5,0.9)  $(0.9,5,0.95) (0.9, s,0.99)

1 1.02+550.55¢ 1.07 4 108.39¢ 1.05 4+ 480.29:¢
2 1.024609.75¢ 1.014135.217 1.11 + 525.79¢
3 - 1.09 + 169.68: 1.08 + 588.571
4 - 1.07+196.67: 1.06 + 616.031¢
5 - - 1.11 + 651.27¢
6 - - 1.11 4+ 696.714
7T - - 1.13 + 724.38:
8 - - 1.05 4 759.641

9 - - 1.15 + 787.05¢
10 - - 1.02 + 805.00¢
1 - - 1.12 + 849.961
12 - - 1.17 4 895.314
13 - - 1.09 + 958.10¢
14 - - 1.00 + 985.50¢

Lemma 2 [Rouché’s theorem]. Suppose that f(s) and g(s) are analytic
functions inside and on a regular closed curve vy, and that |f(s)| > |g(s)| for
all s € v. Then f(s) + g(s) and f(s) have the same number of zeros inside .

The next lemma will be useful in the proof of Theorem 1.

Lemma 3. Let g € C, 0 < |q| < 1, and 0 < a < 1 be a transcendental number.
Let o' be a real number. Let a(n) be a sequence of complex numbers such that
la(n)| = 1. Let B4(q,s,a) =Y~ ga(n)g™(n+ a)~5. Then for any e > 0 there
exist T € R such that

|D(q, 5 +iT, @) — Do(q,5,0)| < &
for Res > o’.

Proof. The Dirichlet series of the Lerch transcendent function converges ab-
solutely for any s if |q| < 1. Therefore, for given ¢’ there is a positive integer N
such that, for any real number u and o > o,

- 7" o q"a(n)
2 ra 2 fnray

n=N+1 n=N+1

o

lq" £
<2 —_— < - 1
- Z (TL—I—O()U < 2 (3 )
n=N+1

Let A = ZTJLO lg|"/(n + @)?". There is a sequence of real numbers b(n) such
that e=27(") = g(n). The numbers log(n + a) are linearly independent over
Q since « is the transcendental number. By Kronecker’s theorem (Lemma 1),
there exist a real number 7 and integers x,, such that

Tlog(n+a)
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In view of the inequality |e* — 1| < 2|z|, where |z| < 1, we obtain

3

—ir _ | ,—2mi(7 log(n+a)/2n—b(n)—zn) _ —
(0 0) 7 — ()] = [e=mH s <oz

By above we see that there is 7 such that, for Res > o”,

ol q" > g"a(n) gl
S - S| S S

= n=0

(n+a)™" —a(n)| <

N ™

This and inequality (3.1) in view of triangle inequality, prove Lemma 3. O

Proof of Theorem 1. For fixed ¢ and « the function &(q, s, @) is bounded in
any right half-plane, of complex numbers. This together with Theorem 9.62 of
Titchmarsh [14] give the bound

N¢(01,0'27T) < T

Further, if the strip 01 < 0 < 09 contains a zero of ®(q, s, ) then, arguing
as in Lemma 1 of [4], we get the bound

N¢(Ul,0'27T) > T

Next we will show that the function ®(q, s, ) has a zero in the strip o1 <
o < 0. We consider an auxiliary function ®,(q,0,a) = >~ ja(n)q" (n+a) 7.
For fixed o, ¢ and «, let V be a set of values taken by @,(q, o, ) for independent
a(0), a(l), ..., where a(n) € C and |a(n)| = 1. If ¢ < g9, then by Tichmarsh
[15, Section 11.5, p. 297] we see that

v {z: 2] < ni) gl (n + oz)_"}.

Thus for o1 < ¢’ < 09, ¢, and « there is a sequence a(1),a(2),..., such that
D.(q,0',a) =0.

Let 0 < ¢’ < min(o’—01,02—0") be such that @,(q, s,a) # 0 for |s—o'| = &.
Let

€= min
|s—o'|=¢’

Qsa (qv S5, a) | .
By Lemma 3 there is a real shift 7 such that
|D(q, s +iT,0) — Do(q,5,00)| < &

for Res > o1. Hence Rouché’s theorem gives that ®(q, s, «) has a zero in the
disk |s — o’/ —i7| < €/, which is contained in the strip o7 < 0 < 2. By this
Theorem 1 is proved. 0O

4 Conclusions

Let 0 < ¢ < 1 and 1/2 < a < 1. We expect that the Lerch transcendent
function &(q, s, ) has zeros in Res > 1, if ¢ is sufficiently near to 1. For
a = 1 this is due to Montgomery [13]. Here we prove the case when « is a
transcendental number. However, computer calculations indicate the different
behaviour of zeros of &(g,s,«) in Res > 1 dependently on @ =1 or v # 1.
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