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Abstract. This paper deals with the numerical solution of a two-dimensional ther-
moporoelasticity problem using a finite-difference scheme. Two issues are discussed:
stability and convergence in discrete energy norms of the finite-difference scheme are
proved, and secondly, a distributive smoother is examined in order to find a robust
and efficient multigrid solver for the corresponding system of equations. Numerical
experiments confirm the convergence properties of the proposed scheme, as well as
fast multigrid convergence.
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1 Introduction

The thermomechanical behavior of fluid saturated porous media is important
in a number of diverse areas such as the extraction of geothermal energy, the
design of nuclear waste storage sites and the enhanced oil recovery by hot fluid
injection. Under common circumstances these problems involve strong coupling
between heat transfer, motion of intersticial pore fluid, and deformation of the
porous matrix.

∗ This research has been partially supported by FEDER/MCYT Projects MTM2010-16917
and the DGA (Grupo consolidado PDIE).
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The one-dimensional theory of isothermal consolidation was first formulated
by Terzaghi [18]. The Terzaghi’s theory was extended to a general 3D consolida-
tion theory by Biot [2, 3], and a generalized formulation to the non-isothermal
case was given by McTigue [14]. The main mechanisms of heat transfer into a
geological formation are the heat conduction and the heat convection. The heat
conduction is governed by Fourier’s law while the heat convection depends on
the rate of fluid flow. In this work, low permeable formations, such as granitic
rock masses, are considered, where the rate of fluid flow is so slow that heat
convection is negligible [14].

Thermoporoelasticity involves a coupling among three fields, displacement
field, u(x, t), pore pressure field, p(x, t), for fluid flow, and temperature field,
θ(x, t), for heat transfer. Neglecting convection, and nonlinear terms, the gov-
erning equations are then given by the system of equations

−μΔu− (λ+ μ) grad divu+ αp grad p+ αθ grad θ = g, (1.1)

1

M

∂p

∂t
− 3β′

M

∂θ

∂t
+ αp

∂

∂t
(divu)− kpΔp = fp, (1.2)

−3β′
M

∂p

∂t
+ cM

∂θ

∂t
+ αθ

∂

∂t
(divu)− kθΔθ = fθ, (1.3)

where λ and μ are the Lamé coefficients, kp and kθ are the hydraulic and ther-
mal conductivity respectively, αp is the Biot-Willis constant, αθ is the thermal
expansion coefficient of the solid phase, M is the Biot modulus, β′

M is the
equivalent thermal expansion coefficient, and cM is the equivalent volumetric
heat capacity of the porous medium.

Appropriate initial and boundary conditions have to be added for the well-
posedness of the mathematical model (1.1)–(1.3). For simplicity in the sub-
sequent analysis, we assume here that ∂Ω is rigid (zero displacements), per-
meable (free drainage) and a null temperature is prescribed, so that we have
homogeneous Dirichlet boundary conditions

u(x, t) = 0, p(x, t) = 0, θ(x, t) = 0, x ∈ Ω, t > 0.

The initial conditions are

u(x, 0) = u0(x), p(x, 0) = p0(x), θ(x, 0) = θ0(x), x ∈ Ω.

A detailed establishment of the governing equations for thermoporomechanics
problems can be found in [8, 13].

In general, the solution of complex poromechanics problems is usually ap-
proximated by finite elements, see for instance the monograph by Lewis and
Schrefler [13]. Problems where the solution is smooth are satisfactorily solved
by standard finite element discretizations. Nevertheless, when strong pressure
gradients appear, these methods are unstable in the sense that strong nonphys-
ical oscillations appear in the approximation of the pressure field on each time
level. It is well known that this phenomenon appears when materials have low
permeability and a small time step is used. These nonphysical oscillations may
be removed by a severer space mesh refinement, which is not practical. These
oscillations can be minimized (but not completely alleviated without reducing
the mesh size in space) if stable finite element methods are used. As for Stokes
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problems, approximation spaces for the vector and the scalar fields, satisfying
the LBB stability condition [7], can be used. This approach has been analyzed,
for example in [15] for the classical quasistatic Biot’s model. Nevertheless,
these methods still present small oscillations in pressure approximation when
very sharp boundary layers occur.

Naturally, as for finite elements, standard finite-difference schemes may suf-
fer the same unstable behaviour in pressure approximation. In [11], a reason
for this instability for one-dimensional consolidation problems has been identi-
fied, and that leads to use staggered grid discretizations for poroelasticity prob-
lems [12]. Finite-difference methods on staggered grids lead to stable discretiza-
tions that mimic the continuous problem very well, so that the main properties
of the continuous problem are preserved in the discrete approach. Notice also
that the use of staggered grids is the way to incorporate a discrete inf–sup
condition in the finite-difference framework, see for example [17]. For other
Biot’s models, staggered grids have also been successfully applied, such as the
secondary consolidation model [9], the double porosity model [5] and the fully
dynamic problem [4]. For these reasons, we apply this method to linear thermo-
poroelasticity problems in order to preclude the pressure and temperature os-
cillations. In Section 2, a spatial discretization on staggered grids, such that the
main properties of the differential operators are preserved in the discrete level is
proposed. In Section 3, a priori estimates in discrete energy norm are obtained
for displacements, pressure and temperature, and convergence results are given.

The design of efficient smoothers in multigrid for the iterative solution of
systems of partial differential equations, often requires special attention. The
relaxation method should smooth the error for all unknowns in the equations
of the system. Smoothing difficulties are met if one of the operators on the
system’s main diagonal equals zero, or is very close to zero (i.e. with ex-
tremely small parameters in front of derivatives). A possibility to overcome
this difficulty is to consider distributive smoothers. In distributive smoothing
the original system of equations is transformed by post-conditioning in order
to achieve favorable properties, such as a decoupling of the equations and/or
possibilities for point-wise smoothing. The research underlying these relax-
ation methods for incompressible flow problems dates basically back to the
late 1970’s [6]. A distributive, decoupled relaxation method for poroelasticity
has been recently introduced in [10, 20]. The development of such smoothers
for the thermoporoelaticity problem is pursued in Section 4. In Section 5 nu-
merical experiments confirming the theoretical results of the difference scheme
are shown. Besides, numerical multigrid results are presented, showing its ro-
bustness w.r.t. the problem parameters, as Lamé coefficients, conductivities,
and time step and grid size.

2 A Difference Scheme

2.1 Grids and grid-operators

For simplicity in notation, we consider the problem on the unit square and
introduce uniform grids with the same mesh size in each direction. Let Gn be
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the set of nodes of an uniform partition of the interval [0, 1]

Gn = {kh | k = 0, . . . , N}
where h = 1/N , with N ∈ N. Related to this partition, let Gc be the set of the
center nodes

Gc =
{(

k +
1

2

)
h
∣∣∣ k = −1/2, 0, . . . , N − 1, N − 1/2

}
.

Associated with the different unknowns of our problem, we introduce the
meshes ωu and ωv to approximate the horizontal and vertical components of
the displacement vector, and the mesh ωp to approximate the scalar fields, i.e.,
the pressure and the temperature

ωp = Gn × Gn, ωu = Gc × Gn, ωv = Gn × Gc. (2.1)

Besides, let us denote ωp, ωu, ωv, the set of internal nodes and ∂ωp, ∂ωu, ∂ωv,
the set of boundary nodes on ωp, ωu, ωv, respectively.

Related to these meshes, we define the corresponding Hilbert spaces of
grid-functions Hωp , Hωu , Hωv and Hωu = Hωu × Hωv with usual L2 inner
products [16]. We also denote by Hωp

, Hωu
, Hωv

and Hωu = Hωu
× Hωv

the subspaces of grid functions vanishing on the boundaries. For instance, for
grid-functions defined on Hωp

, the inner product and norm are as follows

(p, q) =
∑
x∈ωp

p(x)q(x)h2, ‖p‖ = (p, p)1/2.

For vector grid-functions defined on ωp vanishing on the boundaries, we also
introduce the Hilbert spaces Hωp = Hωp

× Hωp
with the inner product and

norm given by

(p,q) = (p1, q1) + (p2, q2), ‖p‖ = (p,p)1/2.

and Hωp = Hωp ×Hωp with the corresponding inner product and norm. Also,
given an operator T selfadjoint and positive on a Hilbert space H, we will use
the inner product (p, q)T = (Tp, q) and the corresponding norm ‖p‖T .

2.2 Discretization

Now, we introduce the suitable discrete operators used in the spatial discretiza-
tion. To define the discrete operators involved in the equations of our problem
(1.1)–(1.3), we take as basic (or support) operator the following discrete di-
vergence operator D : Hωu → Hωp defined by (Du)i,j = (Dxu)i,j + (Dyv)i,j ,
where (

Dxu
)
i,j

=
ui+1/2,j − ui−1/2,j

h
,

(
Dyv

)
i,j

=
vi,j+1/2 − vi,j−1/2

h

for the internal points, and(
Dxu

)
0,j

=
2

h
(u1/2,j − u0,j),

(
Dxu

)
N,j

=
2

h
(uN,j − uN−1/2,j), j = 0, . . . N,(

Dyv
)
i,0

=
2

h
(vi,1/2 − vi,0),

(
Dyv

)
i,N

=
2

h
(vi,N − vi,N−1/2), i = 0, . . . N,
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on the boundary. The discrete gradient operator G : Hωp
→ Hωu , whose com-

ponents are located on displacement points, is defined as the negative adjoint
to operator D, i.e.,

(Gph,uh) = −(ph, Duh), ∀uh ∈ Hωu , ph ∈ Hωp . (2.2)

Based on the discrete operatorsD andG, we now consider operators G̃ : Hωp →
Hωu and D̃ : Hωu → Hωp defined by G̃ph = G̃(ph, θh) = αpGph +αθGθh and

D̃uh = (αpDuh, αθDuh)
t respectively. From relation (2.2), it is immediate

that operators G̃ and D̃ satisfy a similar property, i.e.,

(G̃ph,uh) = −(ph, D̃uh), ∀uh ∈ Hωu , ph ∈ Hωp
. (2.3)

To discretize the elasticity operator, we define the operator A : Hωu → Hωu

by
A = −μΔu

h − (λ+ μ)GD,

where Δu
h = diag(Δu

h, Δ
v
h), being Δu

h and Δv
h the five point Laplacian approxi-

mation formula on the grids ωu and ωv, respectively. Operator A is self-adjoint
and positive definite on Hωu , so A ≥ δAE where δA > 0 is independent of h.

The semi-discrete approximations uh(t) = (uh(t), vh(t)) ∈ Hωu and ph(t) =
(ph(t), θh(t)) ∈ Hωp of the solution of continuous problem (1.1)–(1.3) are given
as the solution of the difference-differential system:

Auh(t) + G̃ph(t) = gh(t), (2.4)

d

dt

(
D̃uh(t) + Cph(t)

)
+Bph(t) = fh(t), (2.5)

for all t ∈ (0, T ], with initial conditions

uh(0) = u0, ph(0) = (p0, θ0). (2.6)

In equation (2.5) the right hand side is fh(t) = (fp
h(t), f

θ
h(t)) and operators

C,B : Hωp → Hωp given by

C =

(
1/M −3β′

M

−3β′
M cM

)
, B =

(−kpΔh 0

0 −kθΔh

)
,

satisfy that C = C∗ ≥ δCE, δC > 0, and B = B∗ ≥ δBE, δB > 0, i.e. C
and B are symmetric and positive definite operators in Hωp . These properties
of operator C agree with the characteristics of many materials, as for example
rocks (see, for example [1]). Here, Δh = DG is the usual five-point stencil
approximation for the Laplace operator on Hωp .

To obtain the fully discrete scheme, we apply a simple time discretization
process to the problem (2.4)–(2.5). For simplicity, a uniform grid in [0, T ],
with step τ > 0 is chosen. Let pm

h = ph(t
m), um

h = uh(t
m), tm = mτ ,

m = 0, 1, . . . ,M , Mτ = T . In this way, system (2.4)–(2.5) is approximated by
the following scheme

Aum+1
h + G̃pm+1

h = gm+1
h , (2.7)

D̃
um+1
h − um

h

τ
+ C

pm+1
h − pm

h

τ
+Bpm+1

h = fm+1
h , (2.8)
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with initial conditions

u0
h = u0, p0

h = (p0, θ0). (2.9)

3 Stability Estimates and Convergence

In this section we investigate the stability and convergence of difference scheme
(2.7)–(2.8) in discrete energy norms with respect to the initial data and the
right hand side.

Lemma 1. Let be gm+1
h = 0, m = 0, . . . ,M − 1, in (2.7), then the solution of

problem (2.7)–(2.8) satisfies the a priori estimate∥∥um+1
h

∥∥2
A
+
∥∥pm+1

h

∥∥2
C
≤ ∥∥um

h

∥∥2
A
+
∥∥pm

h

∥∥2
C
+

τ

2

∥∥fm+1
h

∥∥2
B−1 (3.1)

for m = 0, 1, . . . ,M − 1.

Proof. Multiplying scalarly (2.7) and (2.8) by
um+1

h −um
h

τ and pm+1
h respec-

tively, adding the resulting equations, and using relation (2.3), we get for
m = 0, 1, . . . ,M − 1(
Aum+1

h ,
um+1
h − um

h

τ

)
+

(
C
pm+1
h − pm

h

τ
,pm+1

h

)
+
∥∥pm+1

h

∥∥2
B
=
(
fm+1
h ,pm+1

h

)
.

Using the Cauchy–Schwarz inequality in the right-hand side,(
fm+1
h ,pm+1

h

) ≤ ∥∥pm+1
h

∥∥2
B
+

1

4

∥∥fm+1
h

∥∥2
B−1 ,

and the identity

2τ

(
Rym+1

h ,
ym+1
h − ym

h

τ

)
=
(
R
(
ym+1
h + ym

h

)
,ym+1

h − ym
h

)
+ τ2

(
R
ym+1
h − ym

h

τ
,
ym+1
h − ym

h

τ

)
,

which is valid for any symmetric and positive definite operator R, we have

1

2

(∥∥um+1
h

∥∥2
A
− ∥∥um

h

∥∥2
A

)
+

1

2

(∥∥pm+1
h

∥∥2
C
− ∥∥pm

h

∥∥2
C

) ≤ τ

4

∥∥fm+1
h

∥∥2
B−1 ,

and estimate (3.1) follows. �	

Proposition 1. The solution of problem (2.7)–(2.8) satisfies the a priori esti-
mate∥∥um+1

h

∥∥2
A
+
∥∥pm+1

h

∥∥2
C
≤ 2

∥∥u0
h

∥∥2
A
+ 2
∥∥p0

h

∥∥2
C
+ 2
∥∥gm+1

h

∥∥2
A−1

+ τ

m∑
k=0

[∥∥fk+1
h

∥∥2
B−1 +K

∥∥∥∥gk+1
h − gk

h

τ

∥∥∥∥2
A−1

]
, (3.2)

for m = 0, 1, . . . ,M − 1 and where K is a constant independent of h and τ .
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Proof. Displacement vector um+1
h , solution of problem (2.7)–(2.8), is split up

in two parts, um+1
h = um+1

h + u
m+1
h , m = 0, . . .M − 1, where um+1

h is the
solution of the problem

Aum+1
h = gm+1

h , um+1
h ∈ Hωu , (3.3)

and u
m+1
h is the solution of the problem

Au
m+1
h + G̃pm+1

h = 0, (3.4)

D̃
u
m+1
h − u

m
h

τ
+ C

pm+1
h − pm

h

τ
+Bpm+1

h = f̃m+1
h , (3.5)

with

f̃m+1
h = fm+1

h − D̃
um+1
h − um

h

τ
, u

0
h = u0

h, and u0
h = 0.

For the solution of problem (3.3) we have ‖um+1
h ‖A = ‖gm+1

h ‖A−1 . Applying
Lemma 1 to problem (3.4)–(3.5), we obtain the estimate∥∥um+1

h

∥∥2
A
+
∥∥pm+1

h

∥∥2
C
≤ ∥∥um

h

∥∥2
A
+
∥∥pm

h

∥∥2
C
+

τ

2

∥∥fm+1
h

∥∥2
B−1

+
τ(α2

p + α2
θ)

2δB(λ+ μ)

∥∥∥∥gm+1
h − gm

h

τ

∥∥∥∥2
A−1

,

where we have used the following relation

(λ+ μ)

∥∥∥∥D̃um+1
h − um

h

τ

∥∥∥∥2
B−1

≤ (λ+ μ)

δB

(
D̃
um+1
h − um

h

τ
, D̃

um+1
h − um

h

τ

)
= − (λ+ μ)

δB

(
G̃D̃

um+1
h − um

h

τ
,
um+1
h − um

h

τ

)
≤
(
α2
p + α2

θ

δB

)∥∥∥∥um+1
h − um

h

τ

∥∥∥∥2
A

=

(
α2
p + α2

θ

δB

)∥∥∥∥gm+1
h − gm

h

τ

∥∥∥∥2
A−1

.

By recursion,∥∥um+1
h

∥∥2
A
+
∥∥pm+1

h

∥∥2
C
≤ ∥∥u0

h

∥∥2
A
+
∥∥p0

h

∥∥2
C

+
τ

2

m∑
k=0

[∥∥fk+1
h

∥∥2
B−1 +

(α2
p + α2

θ)

(λ+ μ)δB

∥∥∥∥gk+1
h − gk

h

τ

∥∥∥∥2
A−1

]
.

Taking into account ‖um+1
h ‖2A ≤ 2‖um+1

h ‖2A + 2‖um+1
h ‖2A, estimate (3.2) is

obtained. �	

Let us denote the error functions of the discrete solutions as follows,

δum
h (x) = um

h (x)− u(x, tm) ∈ Hωu , m = 0, . . . ,M,

δpm
h (x) =

(
pmh (x)− p(x, tm), θmh (x)− θ(x, tm)

) ∈ Hωp , m = 0, . . . ,M.
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By substituting these functions into the finite-difference scheme (2.7)–(2.8), we
get a discrete problem for the error functions:

Aδum+1
h + G̃δpm+1

h = Ψm+1
h , (3.6)

D̃
δum+1

h − δum
h

τ
+ C

δpm+1
h − δpm

h

τ
+Bδpm+1

h = Φm+1
h , (3.7)

with initial conditions
δu0

h = 0, δp0
h = 0, (3.8)

where functions Ψm+1
h and Φm+1

h are the approximation errors. Let us assume
regularity and compatibility conditions for initial and boundary conditions such
that the exact solution satisfies (u(x, t), p(x, t), θ(x, t)) ∈ C6

2 (Ω̄× [0, T ]). Then,
Taylor expansion shows that Ψm+1

h (x) = O(h2) and (Ψm+1
h (x)−Ψm

h (x))/τ =
O(h2) for x ∈ ωu, and Φm+1

h (x) = O(h2+τ) for x ∈ ωp. Noting that ‖·‖A−1 ≤
(1/δA)‖ · ‖, error estimates follow from the stability of the difference scheme,
and as a consequence, the next convergence result is obtained.

Proposition 2. Assume that (um+1
h ,pm+1

h ) is the numerical solution of the
finite-difference scheme (2.7)–(2.8), and (u(x, t), p(x, t), θ(x, t)) is the solution
of the thermoporoelastic problem (1.1)–(1.3). If u0

h, p
0
h, θ

0
h are O(h2) approxi-

mations of u(x, 0), p(x, 0) and θ(x, 0) respectively, then∥∥δum+1
h

∥∥
A
≤ C1

(
h2 + τ

)
,
∥∥δpm+1

h

∥∥
C
≤ C2

(
h2 + τ

)
,

where C1 and C2 are constants independent of h and τ .

4 Multigrid Solution Method

We are interested to develop efficient iterative multigrid solution methods for
solving the large system of equations corresponding to (2.7)–(2.8)

Lhvh = sh.

Traditional understanding of multigrid is based on the insight that a smoothing
method reduces high frequency components of an error between the numerical
approximation and the exact numerical solution, and a coarse grid correction
based on standard grid coarsening handles the low frequency error components.
The design of efficient relaxation methods for the multigrid solution of systems
of partial differential equations often requires special attention. The smoother
should smooth the error for all unknowns in the equations (that are possibly
of different type) of a system. A multigrid method with a suitable relaxation
method can be chosen on the basis of Fourier analysis. We will not focus on
Fourier analysis in this paper. If the differential operator that corresponds
to the primary unknown in each equation is the leading operator, smoothing
is a straightforward matter, and a simple equation-wise decoupled relaxation
method can be efficiently used. If, however, one of the operators on the system’s
main diagonal after discretization equals zero or is very close to zero, the choice
of an efficient smoother needs care [19]. Notice that the coefficients in the main



Finite-Difference Analysis for the Linear Thermoporoelasticity Problem 235

diagonal operators corresponding to the pressure and temperature equations
of the system considered here, are typically very small. A first obvious choice
in the case of strong off-diagonal operators in the differential system is coupled
smoothing: All unknowns in the system at a certain grid point are updated
simultaneously. Decoupled smoothing, however, is to be preferred, and it is
typically found in the distributive framework: smoothing is applied after a
post-conditioning step of the original system [6, 22]. For poroelastic problems,
it was found in [10] that distributive smoothers are more robust than coupled
relaxation, especially when very small time steps are involved. For this reason,
this strategy is considered here.

4.1 Distributive Smoothing

An elegant way to describe distributive relaxation is to introduce a right pre-
conditioner in the smoothing procedure [21]. This means that we introduce
new variables wh, where vh = Chwh, and consider the transformed system
LhChwh = sh, with Ch chosen in such a way that the resulting operator LhCh

is suited for decoupled (non-collective) relaxation. The distributive relaxation
can then be described in the following way:

• Transform the system Lhvh = sh, to a simpler one by a suitable precon-
ditioning with an operator Ch (the distributor).

• Choose a point- or line-wise relaxation process, preferably for each of the
equations of the transformed system separately, of the form

wm+1
h = wm

h +Bh

(
sh − LhChw

m
h

)
with Bh being some approximation of the inverse of LhCh.

• Reformulate this relaxation scheme in terms of the original operator and
unknowns by using vh = Chwh:

vm+1
h = vm

h +ChBh

(
sh − Lhv

m
h

)
In detail, the distributive relaxation consists of two steps, the predictor and
the corrector. In the predictor step, a new approximation δwm+1

h to the ghost
variable δwh is computed,

LhChδw
m+1
h = rmh

with residual rmh = sh − Lhv
m
h . In the corrector step, the new approximation

for vm
h is then added to the present approximation as

vm+1
h = vm

h +Chδw
m+1
h .

Regarding the fully discrete thermoporoelastic problem (2.7)–(2.8), we have to
solve on each time step, the problem Lhv

k+1
h = sk+1

h , where

Lh =

(
A G̃

D̃ C+τB

)
, vk+1

h =

(
uk+1
h

pk+1
h

)
, sk+1

h =

(
gk+1
h

τ fk+1
h +D̃uk

h+Cpk
h

)
. (4.1)
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The distributive smoothing procedure we propose here for discrete problem
(4.1) is defined in the following way: First, we introduce the help variables
wh = (wh,qh)

t as(
uh

ph

)
= Ch

(
wh

qh

)
=

(
Ih −G̃

C
(2,1)
h C

(2,2)
h

)(
wh

qh

)
,

where C
(2,1)
h wh = λ+μ

2 ( 1
αp

Dwh,
1
αθ

Dwh)
t and operator C

(2,2)
h is defined as

C
(2,2)
h =

(
−λ+2μ

αp
Δh 0

0 −λ+2μ
αθ

Δh

)
.

The transformed operator LhCh, then reads

LhCh =

(
μΔu

h 0

LC
(2,1)
h LC

(2,2)
h

)
, (4.2)

with Δu
h = diag(Δu

h, Δ
v
h) and

LC
(2,2)
h =

(
−(αp + (λ+ 2μ)c11/αp)Δh −(αp + (λ+ 2μ)c12/αθ)Δh

−(αθ + (λ+ 2μ)c12/αp)Δh −(αθ + (λ+ 2μ)c22/αθ)Δh

)

+ (λ+ 2μ)τ

(
kp

αp
Δ2

h 0

0 kθ

αθ
Δ2

h

)
.

This transformed operator is triangular, so it is suited for decoupled smoothing.
The first two equations in (4.2) can be smoothed with an efficient relaxation
process for the Laplace operator. This is typically the well-known red–black
Gauss–Seidel relaxation (in 2D and 3D) [19], which is well parallelizable. The
corresponding smoothing factor in 2D is 0.063 for two iterations.

A challenging task here is to find a highly efficient smoother for the last two
equations in (4.2),

LC
(2,2)
h δqh = r̃h,

which corresponds to a coupled system where Laplace and biharmonic operators
occur. The chosen approach here, is to split the operator as follows

−Δ̃hzh = r̃h, Rhδqh = zh (4.3)

where Δ̃h = diag(Δh, Δh) and operator Rh correspond to a coupled reaction–
diffusion problem, where

Rh =

(
αp + (λ+ 2μ)c11/αp αp + (λ+ 2μ)c12/αθ

αθ + (λ+ 2μ)c12/αp αθ + (λ+ 2μ)c22/αθ

)
− (λ+ 2μ)τ

(
kp

αp
Δh 0

0 kθ

αθ
Δh

)
.
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with an extra variable zh. The first problem in (4.3) corresponds to two simple
Laplace problems which can be smoothed again with red–black Gauss–Seidel
iteration. For the second problem in (4.3), the coupled reaction–diffusion equa-
tion, we consider a collective red–black Gauss–Seidel with a relaxation param-
eter ω = 0.75. This relaxation parameter has been chosen on the basis of
computing experiments. The distributive relaxation is designed such that its
performance should be independent of problem parameters, like the Lamé coef-
ficients or the time step. This is confirmed in the section devoted to numerical
experiments.

4.2 Coarse grid correction

In a multigrid method for staggered grid discretizations one chooses standard
geometric grid coarsening, i.e., the sequence of coarse grids is obtained by
doubling the mesh size in each space direction. An appropriate coarse grid cor-
rection consists of straightforward geometric transfer operators Rh,2h, P2h,h,
which are well-established in the field of computational fluid dynamics and di-
rect coarse grid discretizations. The transfer operators that act on the different
unknowns are dictated by the staggered grid, therefore we have to distinguish
the transfer operators which act on the different grids ωu, ωv and ωp. For the
components of the displacements we consider 6-point restrictions and for scalar
fields a 9-point restriction. In stencil notation they are given by

Ru
h,2h =

1

8

⎡⎣1 1
2 � 2
1 1

⎤⎦ , Rv
h,2h =

1

8

⎡⎣1 2 1
�

1 2 1

⎤⎦ ,

Rp
h,2h = Rθ

h,2h =
1

16

⎡⎣1 2 1
2 4 2
1 2 1

⎤⎦ ,

respectively. The restriction operator for scalar fields differs from the usual one
in solving the incompressible Navier–Stokes equations, because of the place-
ment of pressure points at the vertices, whereas a cell-centered pressure grid is
employed in fluid mechanics applications. As the prolongation operators Pu

2h,h,

P v
2h,h, P

p
2h,h and P θ

2h,h, one applies the usual interpolation operators based on
bilinear interpolation of neighboring coarse grid unknowns, dictated by the
staggered grid.

5 Numerical Experiments

5.1 One-dimensional column problem

In the first numerical experiment we show the unstable behaviour of standard
finite-difference schemes on collocated grids, in order to motivate the use of
staggered grids. We consider an idealized problem consisting a onedimensional
column of fluid-saturated porous media occupying the region 0 < x < H = 20,
initially being at a temperature of θ = 0oC. The column is bounded by rigid,
impermeable bottom and walls. The fluid flows freely through the top surface
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Table 1. Material parameters for the one-dimensional column problem.

Parameter Definition Value Unit

αp Biot Willis constant 0.95 –

αθ Thermal expansion coefficient 0.125*αp –

κp Hydraulic conductivity 0.534 m2/MPa day

κθ Thermal conductivity 4*κp Wm−1 oC−1

M Biot modulus 104 kg/ms

CM Volumetric heat capacity 10−3 J/(m3C)

β′
M Thermal expansion coefficient 10−5 oC−1

at atmospheric pressure and therefore a null pressure is imposed. A uniform
load of intensity of σ0 = −100N/m2 is applied on the top of the column. The
temperature in the boundary is kept constant, assuming that the walls of the
column are isolated. The considered material properties are indicated in Ta-
ble 1. This problem is an extension of the classical onedimensional problem
of Terzaghi. Under these conditions, we have to solve the following onedimen-
sional version of (1.1)–(1.3)

−∂2u

∂x2
+ αp

∂p

∂x
+ αθ

∂θ

∂x
= 0,

1

M

∂p

∂t
− 3β′

M

∂θ

∂t
+ αp

∂

∂t

(
∂u

∂x

)
− κp

∂2p

∂x2
= 0,

−3β′
M

∂p

∂t
+ cM

∂θ

∂t
+ αθ

∂

∂t

(
∂u

∂x

)
− κθ

∂2θ

∂x2
= 0, (5.1)

x ∈ (0, H), subject to the boundary conditions

∂u

∂x
(0, t) = σ0, p(0, t) = θ(0, t) = 0, t ∈ (0, T ],

u(H, t) = 0,
∂p

∂x
(H, t) = 0, θ(H, t) = 0, t ∈ (0, T ],

and the initial conditions

∂u

∂x
(x, 0) = 0, p(x, 0) = θ(x, 0) = 0, x ∈ (0, H). (5.2)

If a collocated mesh in space is used and the first derivative terms are dis-
cretized by central differences, strong nonphysical oscillations can appear in
the approximation of the pressure and temperature fields in the early time of
the consolidation process. Figures 1(a) and 1(b) show for T = 10−4 that a spa-
tial discretization by central differences on a collocated mesh composed by 65
nodes combined with one step of a backward time discretization, leads to spu-
rious oscillations in the approximation of the pressure and the temperature.
This instability of the numerical scheme can be avoided if the chosen space
discretization parameter h is small enough. However, for multidimensional
problems, this kind of restriction can require many nodes and therefore an ex-
cessive computational effort. So, the use of staggered meshes, which generate
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solutions free of oscillations independently of the discretization parameters, is
totally justified. In Figures 1(a) and 1(b), it is observed that the spurious os-
cillations for both pressure and temperature, disappear when a staggered mesh
in space is used.

(a) (b)

Figure 1. Approximation solutions for pressure (a) and for temperature (b) using
collocated and staggered grids for the column problem.

5.2 Analytical solution of a 2D model problem

We consider a 2D problem defined on the unit square with Dirichlet boundary
conditions. The source terms and the boundary and initial conditions are such
that the analytical solution is given by

u(x, y, t) = cos(πx) sin(πy) exp(−πt), v(x, y, t) = sin(πx) cos(πy) exp(−πt),

p(x, y, t) = sin(πx) sin(πy) exp(−πt), θ(x, y, t) = sin(πx) sin(πy) exp(−πt),

To approximate this problem we use scheme (2.7)–(2.8) on a staggered grid in
space as described in Section 2.1. In the numerical experiments the parameter
settings chosen are αp = 0.9, αθ = 0.8, κp = 10−4, κθ = 10−5, M = 107,
cM = 10−5, β′

M = 10−10. The Young’s modulus and the Poisson’s ratio,
characterizing the elastic solid, are E = 3 × 104 and ν = 0.2 respectively.
The Lamé coefficients λ and μ are related to the Young’s modulus E and the
Poisson’s ratio ν by

λ =
νE

(1 + ν)(1− 2ν)
, μ =

E

2(1 + ν)
.

Table 2 presents the difference between analytic and numerical solution in
energy norms for displacements, pressure and temperature, i.e., ‖δuh‖A and
‖δph‖C at final time T = 10−2 and several values of discretization parameters
h and τ . We also display the corresponding orders of convergence. As it can
be observed, first order convergence is obtained, being these numerical results
in agreement with Proposition 2.

At each time level the corresponding linear system is solved by multigrid
with the distributive smoother proposed in this work. The measure for multi-
grid convergence is related to the absolute value of the residual after the mth
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Table 2. Energy norms of the errors and orders of convergence.

h = 1/32 h = 1/64 h = 1/128 h = 1/256
τ = 1/40 τ = 1/80 τ = 1/160 τ = 1/320

‖δuh‖A 3.1221 1.5602 0.7802 0.3902
1.0008 0.9998 0.9996

‖δph‖C 1.7081 0.9107 0.4697 0.2385
0.9073 0.9552 0.9778

iteration in the maximum norm over the four equations in the system, that is,

resmh =
∣∣rm1,h∣∣+ ∣∣rm2,h∣∣+ ∣∣rm3,h∣∣+ ∣∣rm4,h∣∣

being rmi,h the residual of the ith equation in the system. The multigrid con-
vergence factor ρh presented in the tables below is then given by

ρh = 5

√
resmh /resm−5

h , (5.3)

being m the last iteration is chosen before the stopping criterion is met. This
quantity is typically somewhat better than the asymptotic convergence factor.
The stopping criterion is chosen as the absolute residual over all unknowns
to be less than 10−9. This criterion is too severe for realistic applications,
but well-suited for our investigation of the multigrid convergence. A matrix-
free, stencil based version of multigrid is used. F(1,1), for example, denotes
an F-cycle with one pre- and one post-relaxation. We only show results with
F-cycle because V-cycle gives unsatisfactory results. We consider here the
multigrid convergence in the first time step with different mesh sizes, ranging
from h = 1/32 to h = 1/256 and for different time steps. These convergence
statistics are representative for all other time steps. The time step is chosen very
small: it ranges from 10−2 to 10−6. In the case of pressure or/and temperature
boundary layers in the initial stage of a thermoporoelastic process, small time
steps are realistic. Notice that for small time steps, the block diagonal of the
corresponding system tends to zero, doing the system more difficult to solve.

Table 3. Convergence factors and number of iterations of the multigrid method.

h = 1/32 h = 1/64 h = 1/128 h = 1/256

τ = 10−2 0.124 (17) 0.141 (18) 0.147 (19) 0.148 (20)
τ = 10−4 0.093 (16) 0.092 (16) 0.115 (17) 0.135 (18)
τ = 10−6 0.081 (16) 0.082 (16) 0.095 (16) 0.107 (17)
τ = 10−8 0.080 (16) 0.081 (16) 0.081 (16) 0.082 (16)

Table 3 shows the F(2,2)-cycles results, presenting the multigrid conver-
gence factor (5.3) and the number of iterations to reach the stopping criterion
in brackets. An h-independent convergent can be observed in the table for
the F(2,2)-cycle and the distributive smoother considered in this work. More-
over, the multigrid convergence is independent of the time step. Even a better
convergence is seen for extremely small time steps.
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Table 4. Multigrid convergence. Variation of the properties of the elastic solid.

h = 1/32 h = 1/64 h = 1/128 h = 1/256

ν = 0.25 0.124 (17) 0.141 (18) 0.147 (19) 0.148 (20)
ν = 0.4 0.140 (18) 0.145 (18) 0.148 (20) 0.148 (21)
ν = 0.45 0.142 (18) 0.147 (19) 0.148 (20) 0.148 (21)
ν = 0.49 0.146 (20) 0.148 (21) 0.148 (22) 0.148 (23)
ν = 0.499 0.146 (23) 0.148 (23) 0.149 (24) 0.149 (25)

We now vary the properties of the elastic solid and investigate their effect
on the multigrid convergence. The time step for these tests is τ = 10−2.
Table 4 presents the F(2,2)-cycle multigrid convergence in the first time step.
In particular, the multigrid convergence (5.3) and the number of iterations to
reduce the absolute value of the residual to less than 10−9 are shown. We fix
the Young’s modulus E = 3 × 104 and vary the Poisson’s ratio ν. A fast and
robust multigrid convergence in the limit ν → 0.5 can be observed. Overall, all
the results are impressive for such a complicated system.

5.3 A footing problem

Figure 2. Computational domain for the footing problem.

The aim of this last experiment is to show the good performance of the
proposed multigrid method for a realistic problem. It corresponds to a vertical
cross-section through a homogeneous soil. The simulation domain is a 100 by
100 meters block, Ω = (−50, 50) × (0, 100), as in Figure 2. At the base of
this domain the soil is assumed to be fixed, i.e. both horizontal and vertical
components of displacements are taken as zero, while at some centered upper
part of the domain a uniform load σ0 = 103N/m2 is applied in a strip of length
40m as depicted in Figure 2. The remaining of the top surface is assumed
to be traction free. Horizontal displacement and vertical surface traction are
assumed to be zero on each of the vertical walls. Concerning to the pressure,
we prescribe the pore pressure at the top and lateral boundaries as zero, and we
assume the bottom boundary to be impermeable. Temperature is kept constant
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in the whole domain. More precisely, the boundary data are given as follows.

p = 0, θ = 0, σxy = 0, σyy = 0, on Γn,1,

p = 0, θ = 0, σxy = 0, σyy = −σ0, on Γn,2,

p = 0, θ = 0, σxy = 0, u = 0, on Γ�,

p = 0, θ = 0, v = 0, u = 0, on Γb,

where σxy = μ(∂u∂y + ∂v
∂x ), σyy = λ∂u

∂x + (λ+ 2μ)∂v∂y , and

Γn,1 = {(x, y) ∈ ∂Ω, /|x| > 20, y = 100},
Γn,2 = {(x, y) ∈ ∂Ω, /|x| ≤ 20, y = 100},
Γ� = {(x, y) ∈ ∂Ω, /|x| = 50}, Γb = {(x, y) ∈ ∂Ω, /y = 0}.

Table 5. Material parameters for the two dimensional footing problem.

Parameter Definition Value Unit

E Young’s modulus 3× 104 N/m2

ν Poisson’s ratio 0.2 –

αp Biot Willis constant 0.9 –

αθ Thermal expansion coefficient 0.8 –

κp Hydraulic conductivity 10−9 m2/MPa day

κθ Thermal conductivity 10−11 Wm−1 oC−1

M Biot modulus 10−7 kg/ms

CM Volumetric heat capacity 10−3 J/(m3C)

β′
M Thermal expansion coefficient 10−10 oC−1

Figure 3. Multigrid convergence F(2,2)-cycle, pointwise distributive smoother.

The material properties of the porous medium for this case are given in
Table 5. In this experiment we choose the time discretization parameter as
τ = 10−1. No oscillations have been observed for both scalar solution fields,
pressure and temperature. An F(2,2)-cycle is applied each time step with the
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pointwise distributive smoother. The stopping criterion per time step was
chosen here as the absolute residual to be less than 10−6.

The multigrid convergence during the first time step, for different numbers
of spatial mesh points 322, 642, 1282 and 2562 is presented in Figure 3. We
again confirm the robustness and efficiency of the proposed multigrid method
and in particular of the considered smoother.
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