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Abstract. The boundary value problem

x′′ = −λf(x+) + μf(x−) + h(t, x, x′), x(0) = 0 = x(1)

is considered provided that f : [0,+∞)→ [0,+∞) is Lipschitzian and h : [0, 1]×R×
R → R is continuous and Lipschitzian in x and x′. We assume that f is bounded
by two linear functions kx and lx, where k > l > 0, and h is bounded. We find
the conditions on (λ, μ) which guarantee the existence of a solution to the problem.
These conditions are of geometrical nature.

Keywords: nonlinear spectra, Fuč́ık spectrum, comparison, angular functions, Dirichlet

boundary value problem.
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1 Introduction

There is intensive literature on boundary value problems for the second order
ordinary differential equations which depend on two parameters, for example
[1, 2, 3, 5, 7, 10, 11, 12]. A special class of problems deals with the so called
asymmetric equations. The classical representative of such equations is the
Fuč́ık equation

x′′ = −λx+ + μx−, x+ = max{x, 0}, x− = max{−x, 0}, λ > 0, μ > 0,

which is usually considered together with some boundary conditions, for in-
stance, the Dirichlet ones x(0) = 0, x(1) = 0.

The results on Fuč́ık problem can be used for investigation of essentially
nonlinear problems of the type

x′′ + g(x) = h(t, x, x′), x(0) = 0, x(1) = 0,
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where the ratio g(x)/x tends to finite limits as x → ±∞ and h is bounded.
These limits (as points in R2) have to be separated from the Fuč́ık spectrum,
so that the problem had a solution.

There were attempts [4, 5, 6] to consider Fuč́ık type equations of the form

x′′ = −λf(x+) + μg(x−),

where f and g are (nonlinear) positively valued functions.
In this paper we consider the boundary value problem

x′′ = −λf(x+) + μf(x−) + h(t, x, x′), x(0) = 0, x(1) = 0, (1.1)

where f is a positive valued function such that f(0) = 0 and h is a bounded
nonlinearity. Functions f and h are such that there is a unique solvability of the
Cauchy problems and continuous dependence of solutions on the initial data.

We suppose that

lx < f(x) < kx, ∀x > 0, 0 < l < k. (1.2)

If f(x) is a linear function (i.e., f(x) = kx) then the two-parameter problem
is given as

x′′ = −λkx+ + μkx− + h(t, x, x′), x(0) = 0, x(1) = 0.

It is known [3] that this problem is solvable for any bounded nonlinearity h
if (λk, μk) belongs to “good” regions in the first quadrant of (λ, μ)-plane. We
discuss this below.

If the principal part looks like in problem

x′′ = −λf(x+) + μg(x−) + h(t, x, x′), x(0) = 0, x(1) = 0,

then analysis of it becomes more complicated. There are some results which
state that the reduced problem

x′′ = −λf(x+) + μg(x−), x(0) = 0, x(1) = 0,

is non-trivially solvable if (λ, μ) belongs to solution surfaces [8, 11]. If g(x) is
bounded between two linear functions (like function f(x)), then similar results
can be obtained. The aim of this paper is to present the existence results for
the problem (1.1).

2 Quasi-Linear Fuč́ık Problem

Consider the problem

x′′ = −λx+ + μx− + h(t, x, x′), x(0) = 0, x(1) = 0. (2.1)

In order to formulate the existence conditions we need first to consider the
Fuč́ık spectrum. The Fuč́ık spectrum ΣF is a set of points (λ, μ) such that the
problem

x′′ = −λx+ + μx−, x(0) = 0, x(1) = 0 (2.2)
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Figure 1. The Fuč́ık spectrum.
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Figure 2. “Good” regions shaded; light
shaded for solutions with 2n− 1 zeros in
(0, 1), dark shaded for solutions with 2n
zeros in (0, 1), n = 1, 2, . . . ; “bad” regions

white.

has a nontrivial solution x(t;λ, μ). The Fuč́ık spectrum ΣF consists of a set of
curves located in the first quadrant of (λ, μ)-plane [3] (see, Fig. 1).

If (λ, μ) /∈ ΣF then the problem (2.2) has only the trivial solution. This
is insufficient for solvability of the problem (2.1) for any bounded h. The
solvability, however, can be guaranteed for “good” regions.

Since it is essential for proving of the main result, we discuss solvability of
the problem (2.1). Consider the Cauchy problem

x′′ = −λx+ + μx− + h(t, x, x′), x(0) = 0, x′(0) = α, (2.3)

where h is bounded. Introduce the functions u(t) and v(t) as solutions of the
Cauchy problems

u′′ = −λu+ + μu−, u(0) = 0, u′(0) = 1,

v′′ = −λv+ + μv−, v(0) = 0, v′(0) = −1.

Let x(t;α) be a solution of (2.3). The normalized functions y(t;α) = x(t;α)/α
tend respectively to the functions u(t) and v(t) as α→ ±∞. Notice that y(t;α)
satisfies also the equation

y′′ = −λy+ + μy− + h(t, x, x′)/α,

where h(t, x, x′)/α tends to zero uniformly in t, x, x′ as α→∞. If the condition
y(1;+∞)y(1;−∞) < 0 is satisfied, which is equivalent to

u(1)v(1) < 0, (2.4)

then the existence of x(t;α0) which solves the problem (2.1) can be concluded.
Therefore problem (2.1) is solvable if (λ, μ) is not in ΣF but condition (2.4)
holds. The regions of (λ, μ)-plane where u(1)v(1) < 0 are shaded in Fig. 2.
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So if (λ, μ) are in the shaded region but not in the Fuč́ık spectrum then the
problem (2.1) is solvable for any bounded h(t, x, x′). If h(t, 0, 0) �≡ 0 then there
exists a non-trivial solution.

If precise location of a point (λ, μ) between definite branches of the Fuč́ık
spectrum is given, then we can state the existence of a solution with definite
nodal structure.

3 The Problem

Consider the problem (1.1), where f(x) is such that (1.2) fulfils. To formulate
the existence result we need to consider two auxiliary problems

x′′ = −λkx+ + μkx−, x(0) = 0, x(1) = 0, (3.1)

x′′ = −λlx+ + μlx−, x(0) = 0, x(1) = 0. (3.2)

Denote the spectra of these problems ΣF (k) and ΣF (l) respectively. Both
spectra have “good” regions. Let D(k)i be a part of “good” region where
solutions of the IVPs (3.1), x(0) = 0, x′(0) = ±1 have exactly i zeros in (0, 1).
In “good” regions these two solutions also are of opposite signs at t = 1 and
this is important.

Similarly regions D(l)i are introduced.
Notice that the spectrum ΣF (k) (and ΣF (l)) can be obtained from the

Fuč́ık spectrum ΣF by compression (if k > 1) or by extension (if 0 < k < 1).

Theorem 1. Suppose that f : [0,+∞) → [0,+∞) is Lipschitzian and lx <
f(x) < kx for x > 0, 0 < l < k. Assume that h : [0, 1] × R2 → R is
continuous and satisfy the Lipschitz condition in x and x′. Let (λ, μ) be in
Di = D(k)i ∩ D(l)i for some i ∈ {0, 1, . . .}. Then provided that h is bounded
the problem (1.1) has a solution.

To prove the theorem, we need some comparison results which we consider
in separate subsections.

3.1 Differential inequality

The following assertion is a slight modification of Theorem 14.1 in [9].

Theorem 2. Let ϕ(t) and ψ(t) be C1([a, b]) functions which satisfy

dϕ

dt
> F

(
t, ϕ(t)

)
,

dψ

dt
= F

(
t, ψ(t)

)
, a ≤ t ≤ b,

and ϕ(a) = ψ(a), where F ∈ C([a, b], R). Then ϕ(t) > ψ(t) for a < t ≤ b. If

dϕ

dt
< F

(
t, ϕ(t)

)
and ϕ(a) = ψ(a),

then ϕ(t) < ψ(t) for a < t ≤ b.

Proof. Evidently dϕ
dt (a) > dψ

dt (a). Therefore ϕ(t) > ψ(t) for t ∈ (a, a + ε) for
some positive ε. The graph of ϕ(t) cannot cross the graph of ψ(t) downwards.
Therefore ϕ(t) > ψ(t) for t ∈ (a, b]. �	
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3.2 Angular functions

In this subsection we follow the comparison results of [9, Ch. 15] adapting them
to our cases.

Consider two second order equations written in a form of systems of two
first order equations: {

dx

dt
= y,

dy

dt
= −q(x) (3.3)

and {
dx

dt
= y,

dy

dt
= −q̃(x), (3.4)

where q̃(x) possesses the property of positive homogeneity, that is, q̃(cx) =
cq̃(x) for c ≥ 0 (in fact q̃(x) is a piece-wise linear function defined separately
for x ≥ 0 and x < 0). Suppose that

xq(x) > xq̃(x), x �= 0. (3.5)

Introduce the polar coordinates (x, y) = (x, x′) as

x(t) = r(t) sinϕ(t), x′(t) = r(t) cosϕ(t)

and let (r(t), ϕ(t)), (r̃(t), ϕ̃(t)) be coordinates for (3.3), (3.4) respectively.
One gets for ϕ(t) and ϕ̃(t) that

dϕ

dt
=

1

r

[
r cos2 ϕ+ q(r sinϕ) sinϕ

]
. (3.6)

On the other hand,

dϕ̃

dt
=

1

r̃

[
r̃ cos2 ϕ̃+ q̃(r̃ sin ϕ̃) sin ϕ̃

]
= cos2 ϕ̃+ q̃(sin ϕ̃) sin ϕ̃ := F (ϕ̃).

It follows from (3.5) that q(r sinϕ) sinϕ > q̃(r sinϕ) sinϕ if ϕ �= mod (π) and
therefore

dϕ(t)

dt
> F

(
ϕ(t)

)
and, if ϕ(a) = ϕ̃(a), then, by Theorem 2, ϕ(t) > ϕ̃(t) for any t ∈ [a, b].

If inequality (3.5) is changed to the opposite then

dϕ(t)

dt
< F

(
ϕ(t)

)
and, if ϕ(a) = ϕ̃(a), then, by Theorem 2, ϕ(t) < ϕ̃(t) for any t ∈ [a, b].

3.3 Comparison of angular functions

Consider shortened equation

x′′ = −λf(x+) + μf(x−) (3.7)

Math. Model. Anal., 17(2):217–226, 2012.
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and compare it to equations (3.1) and (3.2) having in mind the relations (1.2).
Notice that for λ > 0, μ > 0

x(λkx+ − μkx−) > x
(
λf(x+)− μf(x−)

)
> x(λlx+ − μlx−), x �= 0. (3.8)

The right-hand sides of equations (3.1) and (3.2) are positive homogeneous
functions, therefore the arguments of preceding subsection are applicable.

If ϕk(t), ϕ(t) and ϕl(t) are the angular functions for equations (3.1), (3.8),
(3.2) respectively, one has that

ϕk(t) > ϕ(t) > ϕl(t), t ∈ (0, 1] (3.9)

if ϕk(0) = ϕ(0) = ϕl(0). Thus we have arrived to the following result.

Lemma 1. Let (λ, μ) be in D(k)i ∩ D(l)i for some i ∈ {0, 1, . . .}. Then the
angular functions for equations (3.1), (3.7), (3.2), which satisfy

ϕk(0) = ϕ(0) = ϕl(0) = ϕ0, ϕ0 = 0 or ϕ0 = π

satisfy also the inequalities (3.9).

Remark 1. The above lemma means that for (λ, μ) ∈ D(k)i∩D(l)i any solution
of equation (3.7) with the initial conditions x(0) = 0, x′(0) > 0 has exactly i
zeros in (0, 1) and x(1) �= 0. The same is true for solutions of equation (3.7)
with the initial conditions x(0) = 0, x′(0) < 0.

3.4 Result

Consider equation

x′′ = −λf(x+) + μf(x−) + h(t, x, x′) (3.10)

and the equivalent system{
dx

dt
= y,

dy

dt
= −q(x) + h(t, x, y),

where q(x) = λf(x+) − μf(x−). Suppose polar coordinates (ρ(t), θ(t)) are
introduced as x(t) = ρ(t) sin θ(t), x′(t) = ρ(t) cos θ(t). The expression for θ(t)
is given as

dθ

dt
=
[
ρ cos2 θ + q(ρ sin θ) sin θ − h(t, ρ sin θ, ρ cos θ) sin θ

]
/ρ. (3.11)

The right hand sides of equations (3.11) and (3.6) differ only by the term
1
ρh(t, ρ sin θ, ρ cos θ) sin θ, which is negligibly small if ρ(t) stays in a comple-

ment of the circle of sufficiently large radius for any t ∈ [0, 1] (recall that h is
bounded). This is the case for the solutions of equation (3.10) which satisfy
the initial conditions

x(0) = 0, x′(0) = ±Δ, (3.12)

if Δ→ +∞. For this, let us mention the following result.
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Lemma 2. For solutions of the problems (3.10), (3.12) a function m(Δ) exists
such that m(Δ)→ +∞ as Δ→ +∞ and ρ(t) ≥ m(Δ) for any t ∈ [0, 1].

Lemma follows from Lemma 15.1 in [9] since all solutions of equation (3.10)
are extendable to the interval [0, 1]. The latter follows from the assumptions
on f (1.2) and boundedness of h. It follows from the above arguments that

ϕk(t) ≥ θ(t) ≥ ϕl(t), t ∈ [0, 1]

if ϕk(0) = ϕ(0) = ϕl(0), where θ(t) is the angular function for solutions of
(3.10), (3.12) with sufficiently large Δ.

In other words, in conditions of Theorem 1, a solution x̄(t) of equation (3.10)
with the initial conditions x(0) = 0, x′(0) = Δ has exactly i zeros in (0, 1) and
x̄(1) �= 0. A solution x(t) of equation (3.10) with the initial conditions

x(0) = 0, x′(0) = −Δ

also has exactly i zeros in (0, 1) and x(1) �= 0. What is important, one has also
x̄(1)x(1) < 0. Then one concludes, considering the Cauchy problem (3.10),

x(0) = 0, x′(0) = δ, δ ∈ (−Δ,Δ)

and employing the continuous dependence of solutions on the initial data, that
for some δ a solution x(t) vanishes at t = 1. This completes the proof of
Theorem 1.

4 Elementary Analysis of Regions Di

In order to analyze the regions D(k)i for equation x′′ = −λkx+ + μkx− recall
that branches of the Fuč́ık spectrum are given by

F+
0 =

{(
λ, μ

)
:

π√
λk

= 1, μ ≥ 0
}
, F−

0 =
{(

λ, μ
)
: λ ≥ 0,

π√
μk

= 1
}
,

F+
2i−1 =

{
(λ;μ) : i

π√
λk

+ i
π√
μk

= 1
}
, F−

2i−1 =
{
(λ;μ) : i

π√
μk

+ i
π√
λk

= 1
}
,

F+
2i =

{
(λ;μ) : (i+ 1)

π√
λk

+ i
π√
μk

= 1
}
,

F−
2i =

{
(λ;μ) : (i+ 1)

π√
μk

+ i
π√
λk

= 1
}
.

Similar formulas are true for equation x′′ = −λlx+ + μlx−.
A set D(k)0 is a square below F−

0 and to the left of F+
0 . A set D(k)1 is a

region bounded by F−
0 , F+

0 and F±
1 . A set D(k)2 is a region bounded by F±

1

and min{F+
2 , F−

2 }. A union of these regions is depicted in Fig. 3.
Similarly, regions D(l)i can be described. Since l < k, the spectrum ΣF (l)

can be obtained from ΣF (k) by extension. Under the extension process

D(k)0 ∩D(l)0 = D(k)0 �= ∅.

Math. Model. Anal., 17(2):217–226, 2012.
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Figure 3. Several first branches of the Fuč́ık spectra for problems (3.1) (dashed curves)
and (3.2) (solid curves) are given; a) D(k)3 (on the left) and D(l)3 for k/l = (4/3)2 are

shaded, and their intersection is empty (a “common” point does not belong to
D(k)3

⋂
D(l)3 since both sets are open; b) “Good” regions D(l)0

⋂
D(k)0, D(l)1

⋂
D(k)1,

D(l)2
⋂

D(k)2 and D(l)3
⋂

D(k)3 for k/l = (5/4)2.

Therefore for any ratio k/l the problem (1.1) is solvable if

(λ, μ) ∈ D(k)0 ∩D(l)0 = D(k)0.

Not the case for i > 0. Generally, if k
l is too large, the intersection of D(k)i

and D(l)i is empty. The precise values of k/l for any i = 1, 2, . . . are given
below.

Proposition 1. If 1 < k/l < (i+ 1/i)2 then D(k)i ∩D(l)i �= ∅, i = 1, 2, . . . .
If k/l ≥ (i+ 1/i)2, then D(k)i ∩D(l)i = ∅.

The proof by elementary geometrical considerations.

Corollary 1. If k/l ≥ (i+ 1/i)2 then D(k)j ∩D(l)j = ∅ for any j ≥ i.

Therefore there exist only finite non-empty intersections D(k)j ∩D(l)j , if k >
l > 0.

Corollary 2. If k/l < (i+ 1/i)2 then D(k)j ∩D(l)j �= ∅ for any j < i.

5 Example

Consider the problem (1.1), where

f(x) =
3

20
x

(
8 +

3x sin(5x)

1 + x2

)
, h(t, x, x′) =

1

1 + t2x′ 2 .

Then conditions (1.2) are fulfilled with l = 0.8 and k = 1.5, see Fig. 4a).
Let D(k)i be a “good” region where the IVPs

x′′ + λkx+ − μkx− = 0, x(0) = 0, x′(0) = ±1
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Figure 4. a) The graphs of f(x) and the linear functions kx and lx, k = 1.5, l = 0.8; b)
Intersections D(l)i

⋂
D(k)i, k = 0, 1, 2.

0.2 0.4 0.6 0.8 1.0
t

�0.15

�0.10

�0.05

x�t�

a)

0.2 0.4 0.6 0.8 1.0
t

0.01

0.02

0.03

0.04

0.05

x�t�

b)

0.2 0.4 0.6 0.8 1.0
t

�0.01

0.01

0.02

0.03

x�t�

c)

0.2 0.4 0.6 0.8 1.0
t

�0.15

�0.10

�0.05

0.05

x�t�

d)

Figure 5. Solutions of BVP (1.1) where f and h are as in Example: a)
(λ, μ) = (4, 2) ∈ D0, x′(0) = −0.627431; b) (λ, μ) = (30, 15) ∈ D1, x′(0) = 0.0103358; c)

(λ, μ) = (70, 40) ∈ D2, x′(0) = −0.201086. d) Three solutions of BVP (1.1).

have solutions with exactly i zeros in (0, 1) and these solutions have opposite
signs at t = 1.

There are countably many “good” regions D(k)i and D(l)i but only three
intersections D(k)i ∩D(l)i are non-empty, namely, for i = 0, 1, 2, see Fig. 4b).
The corresponding solutions of BVP (1.1) are depicted in Fig. 5.

6 Conclusions

The problem

x′′ = −λx+ + μx− + h(t, x, x′), x(0) = 0, x(1) = 0

Math. Model. Anal., 17(2):217–226, 2012.
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is solvable if (λ, μ) is in one of “good” regions (with respect to the Fuč́ık
spectrum ΣF ) depicted in Fig. 2 and h is bounded. There are infinite number
of “good” regions.

The same is true for the problem

x′′ = −λf(x+) + μf(x−) + h(t, x, x′), x(0) = 0, x(1) = 0,

where lx < f(x) < kx and some technical assumptions (mentioned in The-
orem 1) are in force. The essential difference is that the number of “good”
regions is always finite. If k is significantly greater than l then only one “good”
region D0 exists.
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