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Abstract. The Barzilai and Borwein gradient algorithm has received a great deal
of attention in recent decades since it is simple and effective for smooth optimization
problems. Whether can it be extended to solve nonsmooth problems? In this paper,
we answer this question positively. The Barzilai and Borwein gradient algorithm
combined with a nonmonotone line search technique is proposed for nonsmooth convex
minimization. The global convergence of the given algorithm is established under
suitable conditions. Numerical results show that this method is efficient.
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1 Introduction

Consider the problem
min
x∈Rn

f(x), (1.1)

where f : Rn → R is a possibly nonsmooth convex function. The following
problem

min
x∈Rn

F (x) (1.2)

is the so-called Moreau–Yosida regularization of f , where F (x) =
minz∈Rn{f(z) + 1

2λ‖z − x‖2}, λ is a positive parameter, and ‖ · ‖ denotes the
Euclidean norm. It is well known that problems (1.1) and (1.2) are equivalent
in the sense that the solution sets of the two problems coincide are the same.
Now we review some methods for nonsmooth optimization problems. The clas-
sical proximal point algorithm (see [37]) is regarded as a gradient method for
solving problem (1.2). The gradient function of F can be proved to be semi-
smooth under some reasonable conditions [22, 41]. Based on these features,
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many algorithms were proposed for (1.2) (see [3, 22, 41]). The proximal meth-
ods have been proved to be effective in dealing with the difficulty of evaluating
the function value of F (x) and its gradient ∇F (x) at a given point x (see
[2, 6, 9, 31, 48, 49]). Lemaréchal [32] and Wolfe [50] initiated a giant stride
forward in nonsmooth optimization by the bundle concept, which can handle
convex and nonconvex f . All bundle methods carry two distinctive features
(see Lemaréchal [33] and Zowe [60] in detail). Kiwiel [30] proposed a bundle
variant, which is close to bundle trust iteration method (see [45]). Some simi-
lar results can be found in [29, 30, 36]. In the past decades, many trust region
algorithms to minimize nonsmooth objective function have been presented (see
[7, 8, 18, 23, 28, 19, 39, 40, 57]).

The spectral gradient method (also named the two-point stepsize method)
was originated in [1] for unconstrained optimization problems. This method
consists essentially of a steepest descent method, where the choice of the step-
size along the antigradient direction is potentially derived from a two-point ap-
proximation to the secant equation underlying the quasi-Newton method [25].
If the objective function is a strictly convex quadratic, Raydan [42] proved
that the two-point stepsize gradient method is globally convergent. For the
nonquadratic case, Raydan [43] incorporated a globalization scheme of the
two-point stepsize gradient method by using the technique of nonmonotone line
search. Dai et al. extended this method to box-constrained quadratic program-
ming [11] and unsymmetric linear equations [16], respectively. Some authors
use the method for solving constrained optimization problems (see [38, 55])
and nonlinear equations (see [54, 58]). The effectiveness of the classical spec-
tral gradient method has been significantly improved by incorporating it with
new and fast nonmonotone line search techniques (e.g. [15]). The spectral
gradient method does not guarantee a descent in the objective function at each
iteration, but performs better than the classical steep descent (SD) method in
practice. An interesting fact is that an alternating strategy that uses the SD
step and spectral gradient step alternately can accelerate the convergent rate
of the spectral gradient method. An important work on this scheme is due to
the cycle Barzilai–Borwein (CBB) method [10], see also [12]. An implemen-
tation of the CBB method, combined with a nonmonotone line search, shows
that this method performs better than the existing spectral gradient method.
It is even competitive to some other well-known standard codes (see [12]). Due
to its simplicity and numerical efficiency, the spectral gradient method has re-
ceived a great deal of attention in recent decades (see [4, 13, 14, 21, 27, 51, 52]).
However, the spectral gradient algorithms are only used to solve smooth opti-
mization problems.

The first nonmonotone line search framework was developed by Grippo,
Lampariello, and Lucidi in [24] for Newton’s methods. Many subsequent pa-
pers have exploited nonmonotone line search techniques of this nature (see
[5, 26, 34, 59]). There are some spectral gradient methods with nonmonotone
line search technique for optimization problems (see [47, 53]). Although these
nonmonotone technique work well in many cases, there are some drawbacks.
First, a good function value generated in any iteration is essentially discarded
due to the max in the nonmonotone line search technique. Second, in some



The Barzilai and Borwein Gradient Method 205

cases, the numerical performance is very dependent on the choice of M , where
M > 0 is integer (see [24, 46]). In order to overcome these two drawbacks, Dai
and Zhang [17] proposed an adaptive nonmonotone line search which is com-
bined with the two-point gradient method for optimization problems. More-
over, Zhang and Hager [56] presented a new nonmonotone line search technique.
Numerical results show that the new nonmonotone technique is better than the
normal nonmonotone technique and the monotone technique.

It is well known that the trust region methods, the Newton and quasi-
Newton methods, and the proximal gradient methods which were firstly used
to solve smooth optimization problems are wildly used in nonsmooth fields. The
question is whether the spectral gradient method can be extended to nonsmooth
problems. In this paper, we answer this question positively. Motivated by the
above observations, we present a spectral gradient method which combines with
a nonmonotone line search technique for nonsmooth optimization problems.
The main attributes of this presented method are stated as follows.

• A spectral gradient method is introduced for nonsmooth problems (1.1)
and (1.2).

• All search directions are sufficiently descent, which shows that the func-
tions are decreasing. All search directions belong to a trust region, which
hints that this method has a good convergent result.

• This method possesses the global convergence.

• Numerical results show that this method is more effective than the stan-
dard method.

This paper is organized as follows. In the next section, we briefly review
some basic results about the objective function of (1.2). In Section 3, the
new algorithm is stated. In Section 4, we prove the global convergence of the
proposed method. Numerical results are reported in Section 5. Throughout
this paper, without specification, ‖ · ‖ denotes the Euclidean norm of vectors
or matrices.

2 Results of Convex Analysis and Nonsmooth Analysis

Some basic results in convex analysis and nonsmooth analysis, which will be
used later, are reviewed in this section. Let

θ(z) = f(z) +
1

2λ
‖z − x‖2

and denote p(x) = argmin θ(z). Then p(x) is well-defined and unique since θ(z)
is strongly convex. By the definition of F (x), we have

F (x) = f(p(x)) +
1

2λ

∥∥p(x)− x
∥∥2.

In what follows, we denote the gradient of F by g. Some features about
F (x) can be found in [6, 9].

Math. Model. Anal., 17(2):203–216, 2012.
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(i) The function F is finite-valued, convex, and everywhere differentiable
with

g(x) = ∇F (x) = (x− p(x))/λ.

Moreover, the gradient mapping g : Rn → Rn is globally Lipschitz continuous
with modulus λ, i.e.,∥∥g(x)− g(y)

∥∥ ≤ ‖x− y‖/λ, ∀x, y ∈ Rn.

(ii) x is an optimal solution to (1.1) if and only if ∇F (x) = 0, namely,
p(x) = x.

(iii) By the Rademacher theorem and the Lipschitzian property of ∇F , for
each x ∈ Rn, we conclude that the set of generalized Jacobian matrices

∂Bg(x) =
{
V ∈ Rn×n: V = lim

xk→x
∇g(xk), xk ∈ DG

}
is nonempty and compact, where Dg = {x ∈ Rn: g is differentiable at x}. Since
g is a gradient mapping of the convex function F , for each x ∈ Rn, we deduce
that every V ∈ ∂Bg(x) is a symmetric positive semidefinite matrix.

(iv) If g is BD-regular at x, namely, all matrices V ∈ ∂Bg(x) are nonsingular,
then there exist constants μ1 > 0, μ2 > 0 and a neighborhood Ω of x such that

dTV d ≥ μ1‖d‖2,
∥∥V −1

∥∥ ≤ μ2, ∀d ∈ Rn, V ∈ ∂Bg(x).

It is obviously that F (x) and g(x) can be obtained through the optimal solu-
tion of argminz∈Rn θ(z). However, p(x) is difficult or even impossible to solve
exactly. Thus we can not apply the exact value of p(x) to define F (x) and g(x).
Fortunately, for each x ∈ Rn and any ε > 0, there exists a vector pα(x, ε) ∈ Rn

satisfying

f
(
pα(x, ε)

)
+

1

2λ

∥∥pα(x, ε)− x
∥∥2 ≤ F (x) + ε. (2.1)

Thus, we can use pα(x, ε) to define approximations of F (x) and g(x) by

Fα(x, ε) = f
(
pα(x, ε)

)
+

1

2λ

∥∥pα(x, ε)− x
∥∥2, (2.2)

gα(x, ε) = (x− pα(x, ε))/λ, (2.3)

respectively. Some implementable algorithms to find pα(x, ε) for a nondifferen-
tiable convex function are introduced in [8]. A remarkable feature of Fα(x, ε)
and gα(x, ε) is given as follows [22].

Proposition 1. Let pα(x, ε) be a vector satisfying (2.1). Suppose that Fα(x, ε)
and gα(x, ε) are defined by (2.2) and (2.3), respectively. Then we get

F (x) ≤ Fα(x, ε) ≤ F (x) + ε, (2.4)∥∥pα(x, ε)− p(x)
∥∥ ≤ √2λε, (2.5)∥∥gα(x, ε)− g(x)
∥∥ ≤√2ε/λ. (2.6)

The above proposition says that we can compute approximately Fα(x, ε)
and gα(x, ε), by choosing parameter ε small enough, which may be arbitrarily
close to F (x) and g(x), respectively.
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3 Algorithm

The following iterative formula is used by spectral gradient method

xk+1 = xk + αkdk, k = 1, 2, . . .

where xk is the current iterate point, dk = −gα(xk, εk) is the search direction,
and two choices of the scalar αk are

α1
k = sTk sk/s

T
k yk and α2

k = sTk yk/y
T
k yk,

where sk = xk−xk−1 and yk = gα(xk, εk)−gα(xk−1, εk−1). These two formulas
are motivated by [1].

Algorithm 1. Nonmonotone Spectral Gradient Algorithm.
Step 0. Initialization. Given x0 ∈ Rn, σ ∈ (0, 1), s > 0, λ > 0, ρ ∈ [0, 1],

E0 = 1, ε0 = 1, J0 = Fα(x0, ε0), d0 = −gα(x0, ε0), and ε ∈ (0, 1). Let k = 0.
Step 1. Termination Criterion. Stop if xk satisfies termination condition

‖gα(xk, εk)‖ < ε. Otherwise go to the next step.
Step 2: Choose a scalar εk+1 such that 0 < εk+1 < εk, and compute step

size αk by the following nonmonotone line search rule

Fα(xk + αkdk, εk+1)− Jk ≤ σαkg
α(xk, εk)

T dk, (3.1)

where αk = max{s, α1
k} × 2−ik (or αk = max{s, α2

k} × 2−ik), ik ∈ {0, 1, 2, . . .}.
Step 3: Let xk+1 = xk + αkdk. If ‖gα(xk+1, εk+1)‖ < ε, then stop.
Step 4: Update Jk by

Ek+1 = ρEk + 1, Jk+1 = (ρEkJk + Fα(xk + αkdk, εk+1))/Ek+1.

Step 5: Calculate the search direction by dk+1 = −gα(xk+1, εk+1).
Step 6: Set k := k + 1, and go to Step 2.

Remark. It is not difficult to see that Jk+1 is a convex combination of Jk

and Fα(xk+1, εk+1). Since J0 = Fα(x0, ε0), it follows that Jk is a convex
combination of the function values Fα(x0, ε0), F

α(x1, ε1), . . . , F
α(xk, εk). The

choice of ρ controls the degree of nonmonotonicity. If ρ = 0, the line search
is the usual monotone Armijo line search. If ρ = 1, Jk = Ak, where Ak =
1

k+1

∑k
i=0 F

α(xi, εi) is the average function value (these cases have been ana-
lyzed by Yu-Hong Dai or see [56]).

4 Properties and Global Convergence

In this section, we turn to the behavior of Algorithm 1 when it is applied to
problem (1.1). In order to establish the global convergence result, the following
assumptions are needed.

Assumption A. (i) The sequence {Vk} is bounded, i.e., there exists a positive
constant M such that

‖Vk‖ ≤M, ∀k, (4.1)

where the matrix Vk ∈ ∂Bg(xk).
(ii) F is bounded from below.
(iii) For sufficiently large k, εk converges to zero.

Math. Model. Anal., 17(2):203–216, 2012.
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From the definition of dk = −gα(xk, εk), we can get

gα(xk, εk)
T dk = −∥∥gα(xk, εk)

∥∥2, (4.2)

‖dk‖ =
∥∥gα(xk, εk)

∥∥. (4.3)

The above two relations (4.2) and (4.3) show that the search direction possesses
the sufficiently descent property and belongs to a trust region. Based on (4.2)
and (4.3), similar to Lemma 1.1 in [56], it is not difficult to get the following
lemma. So we only state it as follows but omit the proof.

Lemma 1. Let Assumption A hold and the sequence {xk} be generated by Al-
gorithm 1. Then, for each k, we have Fα(xk, εk) ≤ Jk ≤ Ak. Moreover, there
exists αk satisfying Armijo conditions of the line search update.

The above lemma shows that Algorithm 1 is well-defined.

Lemma 2. Let Assumption A hold and the sequence {xk} be generated by Al-
gorithm 1. Suppose that εk = o(α2

k‖dk‖2) holds. Then, for sufficiently large k,
there exists a constant m > 0 such that

αk ≥ m. (4.4)

Proof. From Lemma 1, we conclude that there exists a αk satisfying (3.1). If
αk ≥ 1, the proof is complete. Otherwise let α′

k = αk/2, we deduce that the
following relation

Fα(xk + α′
kdk, εk+1)− Jk > σα′

kg
α(xk, εk)

T dk

holds. By Fα(xk, εk) ≤ Jk ≤ Ak of Lemma 1, we get

Fα(xk + α′
kdk, εk+1)− Fα(xk, εk) ≥ Fα(xk + α′

kdk, εk+1)− Jk

> σα′
kg

α(xk, εk)
T dk. (4.5)

By (2.4), (4.5), and Taylor’s formula, we have

σα′
kg

α(xk, εk)
T dk < Fα(xk + α′

kdk, εk+1)− Fα(xk, εk)

≤ F (xk + α′
kdk)− F (xk) + εk+1

= α′
kd

T
k g(xk) +

1

2
(α′

k)
2dTk V (ξk)dk + εk+1

≤ α′
kd

T
k g(xk) +

M

2
(α′

k)
2‖dk‖2 + εk+1, (4.6)

where ξk = xk + θα′
kdk, θ ∈ (0, 1), and the last inequality follows (4.1). It

follows that from (4.6)

α′
k >

[
(gα(xk, εk)− g(xk))

T dk − (1− σ)gα(xk, εk)
T dk − εk+1/(α

′
k)

2

‖dk‖2
]
2

M

≥
[
(1− σ)‖gα(xk, εk)‖2 −

√
2εk/λ‖dk‖ − εk

‖dk‖2
]
2

M

=
[
(1− σ)− o(αk)/

√
λ− o(1)

] 2

M
≥ 1− σ

2M
, (4.7)
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where the second inequality follows (2.6), (4.2) and εk+1 ≤ εk, and the equality
follows εk = o(α2

k‖dk‖2) and (4.3). Therefore, we obtain αk ≥ (1− σ)/M . Let
m ∈ (0, (1− σ)/M ], we complete the proof. �	

Theorem 1. Let the conditions in Lemma 2 hold. Then limk→∞ ‖g(xk)‖ = 0
holds and any accumulation point of xk is an optimal solution of (1.1).

Proof. In order to get the results of this theorem, we first show that

lim
k→∞

∥∥gα(xk, εk)
∥∥ = 0 (4.8)

holds. Suppose that (4.8) is not true. Then there exist constants ε1 > 0 and
k1 > 0 satisfying ∥∥gα(xk, εk)

∥∥ ≥ ε1, ∀k > k1. (4.9)

By (3.1), (4.2), (4.4), and (4.9), we have

Fα(xk+1, εk+1)− Jk ≤ σαkg
α(xk, εk)

T dk = −σαk

∥∥gα(xk, εk)
∥∥2

≤ −σmε1, ∀k > k1.

By the definition of Jk+1, we obtain

Jk+1 =
ρEkJk + Fα(xk + αkdk, εk+1)

Ek+1

≤ ρEkJk + Jk − σmε1
Ek+1

= Jk − σmε1
Ek+1

. (4.10)

Since Fα(x, ε) is bounded from below and Fα(xk, εk) ≤ Jk for all k, we conclude
that Jk is bounded from below. From (4.10), we have

∞∑
k=k0

σmε1
Ek+1

<∞. (4.11)

By the definition of Ek+1, we have Ek+1 ≤ k + 2. Then the relation (4.11)
contradicts to this case. So (4.8) holds. Using (2.6), we get

∥∥gα(xk, εk)− g(xk)
∥∥ ≤√2εk

λ
.

Which in view of Assumption A(iii), yields

lim
k→∞

∥∥g(xk)
∥∥ = 0. (4.12)

Let x∗ be an accumulation point of {xk}, without loss of generality, there exists
a subsequence {xk}K such that

lim
k∈K, k→∞

xk = x∗. (4.13)

From properties of F (x), we get g(xk) = (xk − p(xk))/λ. By (4.12) and (4.13),
we have x∗ = p(x∗). Therefore x∗ is an optimal solution of (1.1). �	

Math. Model. Anal., 17(2):203–216, 2012.
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Table 1. The test problems and global minimum values of the functions.

Nr. Problems fops(x) Nr. Problems fops(x)

1 Rosenbrock 0 8 Mifflin 1 −1.0
2 Crescent 0 9 Mifflin 2 −1.0
3 CB2 1.9522245 10 Wolfe −8.0
4 CB3 2.0 11 Rosen–Suzuki −44
5 DEM −3 12 Shor 22.600162
6 QL 7.20 13 Colville −32.348679
7 LQ −1.4142136 14 HS78 −2.9197004

5 Numerical Results

In this section, we test the numerical behavior of Algorithm 1. All the non-
smooth problems with initial point of Table 1 can be found in [35]. Table 1
contains the names of the test problems and global minimum values of the func-
tions, where fops(x) is a global minimum value of a function. The algorithm is
implemented by Matlab 7.6, all experiments are run on a PC with CPU Intel
Pentium Dual E7500 2.93GHz, 2G bytes of SDRAM memory, and Windows
XP operating system. The parameters were chosen as s = 0.5, λ = 1, ρ = 0.75,
σ = 0.9, and εk = 1/(NI + 2)2 (NI is the iteration number). The program
is stopped when the condition ‖gα(x, ε)‖ ≤ 10−10 was satisfied. In order to
show the performance of the given algorithm, we also list the recent results
of paper [44] (New trust region method, BT(S-F)). For BT(S-F) method, the
parameters were chosen as ρ = 0.45 and Δ = 0.5.

The columns of Table 2 have the following meanings: No.: the name of the
test problem, f(x): the function evaluations at the final iteration, NI: the total
number of iterations, NF: the iteration number of the function evaluations,
time: CPU time in seconds, fops(x): a global minimum value of a function.

Dolan and Moré [20] gave a new tool to analyze the efficiency of Algorithms.
In order to show their performance, this technique will be used in this paper.
From Table 2, it is easy to see that Algorithm 1 performs better than the
BT(S-F) method for most of the test problems. Compared with the optimiza-
tion value, the final function value is acceptable for both of these methods.
Figures 1, 2, and 3 show that the performance of the iteration number, the
function number, and the CPU time respectively. It is not difficult to see that
the given algorithm is more competitive than the new trust region method.
Overall, the preliminary numerical results indicate that the proposed method
is competitive to the other method.

6 Conclusions

In this paper, we propose a spectral gradient method for nonsmooth convex
minimization. The global convergence is established under suitable conditions.
Numerical results show that this method is interesting. Considering the sim-
plicity and numerical efficiency of the spectral gradient method, we propose
Algorithm 1 for nonsmooth problems. The main work of this paper is to ex-
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Table 2. Numerical results of the tested problems.

Algorithm 1 (α1
k) Algorithm 1 (α2

k)

No. NI/NF/f(x)/time NI/NF/f(x)/time

1 54/56/3.448409e−007/2.09 54/56/3.311278e−007/1.92
2 14/16/2.744977e−005/0.656 14/16/2.903955e−005/0.703
3 13/15/1.952225e+000/0.625 13/15/1.952225e+000/0.625
4 4/8/2.000008e+000/0.203 4/8/2.000008e+000/0.172
5 4/7/−2.999969e+000/0.2031 4/6/−2.999956e+000/0.188
6 22/25/7.200000e+000/1.28 19/22/7.200001e+000/1
7 6/7/−1.414214e+000/0.25 6/7/−1.414214e+000/0.25
8 3/6/−9.937901e−001/0.281 3/6/−9.954955e−001/0.203
9 12/13/−9.999222e−001/0.656 12/13/−9.999222e−001/0.641

10 9/12/−7.999999e+000/0.344 9/12/−7.999999e+000/0.313
11 8/9/−4.394932e+001/1.14 8/9/−4.394932e+001/1.11
12 9/10/2.260038e+001/1.750 9/10/2.260038e+001/1.52
13 5/6/−3.234794e+001/1 5/6/−3.234794e+001/0.968
14 7/9/−2.911583e+000/1.64 17/19/−2.911311e+000/3.79

BT(S-F)

No. NI/NF/f(x)/time fops(x)

1 20/39/6.729353e−003/0.812 0
2 11/21/4.412617e−002/0.719 0
3 31/61/1.952384e+000/1.48 1.9522245
4 3/5/2.000252e+000/0.109 2.0
5 4/7/−2.998072e+000/0.156 −3
6 38/75/7.200323e+000/2.11 7.20
7 2/3/−1.207068e+000/0.078 −1.4142136
8 2/3/5.848352e+000/0.094 −1.0
9 9/17/−9.796397e−001/0.562 −1.0

10 24/47/−7.956443e+000/1.05 −8.0
11 8/15/−4.365725e+001/1.565 −44
12 36/71/2.260088e+001/5.345 22.600162
13 17/33/−3.191816e+001/4.735 −32.348679
14 39/77/−2.919162e+000/6.34 −2.9197004

tend the spectral gradient method to solve nonsmooth problems. From Algo-
rithm 1, it is easy to see that this method is not difficult to be performed. We
can conclude that it may become one of the most simple and efficient methods
for nonsmooth problems.

The parameters λ > 0 and s > 0 may influence the performance of the
method, so the choice of the positive constants λ and s are our further work.
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