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Abstract. This paper describes the construction of explicit general linear methods
in Nordsieck form with inherent quadratic stability and large areas of the stability
region. After satisfying order and inherent quadratic stability conditions, the remai-
ning free parameters are used to find the methods with large area of region of absolute
stability. Examples of methods with p = q + 1 = s = r and p = q = s = r − 1 up to
order 6 are given.
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1 Introduction

This paper is concerned with the construction of a class of explicit general linear
methods (GLM) for the numerical solution of a system of ordinary differential
equations (ODEs): {

y′ = f(y), t ∈ [t0, T ],

y(t0) = y0,
(1.1)

∗ The work of the first author was supported by the National Science Center under grant
DEC-2011/01/N/ST1/02672 and The Polish Ministry of Science and Higher Education.
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f : Rm → Rm. We consider the class of GLM which takes, on a uniform mesh
tn = t0 + nh, n = 0, 1, . . . , N , h = (T − t0)/N , the following form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Y
[n]
i = h

s∑
j=1

aijf(Y
[n]
j ) +

r∑
j=1

uijz
[n−1]
j , i = 1, 2 . . . , s,

z
[n]
i = h

s∑
j=1

bijf(Y
[n]
j ) +

r∑
j=1

vijz
[n−1]
j , i = 1, 2 . . . , r,

(1.2)

n = 1, 2 . . . , N . Here, Y
[n]
i is approximation of stage order q to y(tn + cih)

and z
[n]
i is approximation of order p to the component hi−1y(i−1)(tn) of the

Nordsieck vector defined by

z(t, h) =
[
y(t), hy′(t), . . . , hr−1y(r−1)(t)

]T
.

These methods are characterized by the abscissa vector c = [c1, c2, . . . , cs]
T ,

four coefficient matrices

A = [aij ] ∈ Rs×s, U = [uij ] ∈ Rs×r, B = [bij ] ∈ Rr×s, V = [vij ] ∈ Rr×r,

and the four integers: the order p, the stage order q, the number of external
approximations r, and the number of stages or internal approximations s. In
this paper it will be always assumed that s = r = p and q = s−1, or p = q = s
and r = s + 1. Moreover, the coefficient matrices A and V are supposed to
have the form

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0
a21 0

a31 a32
. . .

...
...

. . .
. . .

as,1 as,2 · · · as,s−1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , V =

⎡⎢⎢⎢⎢⎢⎢⎣

1 v12 v13 · · · v1r
0 0 v23 · · · v2r
...

...
. . .

. . .
...

0 0
. . . vr−1,r

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

This representation of V implies that the GLM (1.2) is zero-stable, i.e., that
the matrix V is power bounded.

When the method (1.2) is applied to the basic test equation y′ = ξy, t ≥ 0,
ξ ∈ C, the recurrence equation z[n] = M(z)z[n−1], n ≥ 1 arises, with z = hξ,
where the stability matrix is

M(z) = V + zB(I− zA)−1U.

The stability function is defined as

p(w, z) = det
(
wI−M(z)

)
,

and the method is said to be absolutely stable in z if p(w, z) has roots of modulus
less than 1. The set of the points z such that the method is stable, is defined
as the region of absolute stability.

GLMs have a larger number of free parameters with respect to standard
numerical methods, which can be suitably chosen in order to get efficient and
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stable methods. In recent years, classes of GLMs with optimal properties of
efficiency and stability have been constructed and analyzed in the context of
DIMSIMs (see for example [6] and also [5, 15]), in the context of two-step
Runge–Kutta methods [1, 2, 12, 13, 14, 15] and in the context of GLMs in
Nordsieck form [3, 4, 8, 9, 10, 11, 16, 17]. A successful strategy for construct-
ing high order and stable methods consists of imposing the order and the stage
order conditions and then requiring that the stability function assumes a par-
ticular expression with desired stability properties. Such approach was first
introduced in [9, 17] and then developed in [8, 16] where authors proposed
GLM in Nordsieck form with inherent Runge–Kutta stability (IRKS), which
guarantees that the stability function of the method has only one non-zero root.
In particular, for explicit Nordsieck methods the stability function assumes the
form

p(w, z) = wr−1
(
w −R(z, η)

)
(1.3)

with R(z, η) given by

R(z, η) = 1 + z +
z2

2
+ · · ·+ zs−1

(s− 1)!
+ η

zs

s!
, (1.4)

where η is a free parameter. In order to improve these results, the two-step
Runge–Kutta methods with quadratic stability (QS), i.e. methods whose sta-
bility function has only two non-zero roots were introduced in [13, 15] and
successively developed in [3, 10, 11]. In [10, 11] explicit Nordsieck methods of
type (1.2) were proposed with p = q = s− 1, r = s with QS, i.e. methods with
stability polynomial of type

p(w, z) = wr−2
(
w2 − pr−1(z)w + pr−2(z)

)
, (1.5)

where

pr−1(z) = 1 + pr−1,1z + pr−1,2z
2 + · · ·+ pr−1,sz

s,

pr−2(z) = pr−2,1z + pr−2,2z
2 + · · ·+ pr−2,sz

s. (1.6)

In particular, authors used the additional free parameters, compared to the
IRKS methods, in order to maximize the area of the region of absolute stability.
In such a way, the resulting methods have larger stability regions compared to
IRKS methods. A- and L-stable Nordsieck methods with inherent quadratic
stability of the type (1.5) were investigated in [3]. The aim of our research
is now to complete the investigation started in [3, 10, 11], by constructing
explicit GLM of Nordsieck type with r = s = p, q = s− 1 and with p = q = s,
r = s+1, with quadratic stability and maximum area of the region of absolute
stability.

The paper is organized as follows. In Section 2 we derive representation
formulae for coefficient matrices using order conditions. In Section 3 we review
the concept of inherent quadratic stability and investigate the structure of the
matrix X involved in this definition. In Section 4 we describe the numerical
search for methods with inherent quadratic stability and extensive region of
absolute stability. In Sections 5 and 6 examples of such methods with p =
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q + 1 = s = r and p = q = s = r − 1 are given, respectively, and comparisons
with the stability regions of Runge–Kutta methods are made. Last section
contains some concluding remarks.

2 Representation Formulae

We recall the definitions of order and stage order for the GLM (1.2). Assume
that

z
[n−1]
i =

p∑
k=0

qi,kh
ky(k)(tn−1) +O

(
hp+1

)
, i = 1, . . . , r. (2.1)

Put qk := [q1,k, . . . , qr,k]
T . The method (1.2) has stage order q and order p if

Y
[n]
i = y(tn−1 + cih) +O

(
hq+1

)
, i = 1, . . . , s,

z
[n]
i =

p∑
k=0

qi,kh
ky(k)(tn) +O

(
hp+1

)
, i = 1, . . . , r,

for the same parameters qi,k. Since for the GLM (1.2) z
[n−1]
i represents an ap-

proximation of order p to the Nordsieck vector z(tn−1, h), the vectors {q0, . . . ,
qr−1} represent the canonical basis of Rr, usually indicated as {e1, . . . , er}.
Let us introduce also

w(z) =

p∑
k=0

qkz
k, ecz =

[
ec1zec1z . . . ecsz

]T
.

First we derive representation formulae for the coefficient matrices in the
case p = r = s, q = p− 1. We have the following result [6] (see also [15]).

Theorem 1. Assume that z[n−1] satisfies (2.1). Then the GLM (1.2) has or-
der p and stage order q = p− 1 if and only if

ecz = zAecz +Uw(z) +

(
cp

p!
− Acp−1

(p− 1!)
−Uqp

)
zp +O

(
zp+1

)
(2.2)

ezw(z) = zBecz +Vw(z) +O
(
zp+1

)
. (2.3)

Let us define the matrices:

e =
[
1 1 · · · 1

]T ∈ Rs, Cp =

[
e c

c2

2!
· · · cp−1

(p− 1)!

]
∈ Rs×p,
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Kp =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ ∈ Rp×p, J = KT
p , (2.4)

Ep = exp(Kp) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
2! . . . 1

(p−1)!

0 1 1 . . . 1
(p−2)!

0 0 1 . . . 1
(p−3)!

...
...

...
. . .

...

0 0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rp×p,

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2! . . . 1

(p−1)!
1
p!

1 1 . . . 1
(p−2)!

1
(p−1)!

0 1 . . . 1
(p−3)!

1
(p−2)!

...
...

. . .
...

...

0 0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ R(p+1)×p.

Observe that the matrix F is equal to exp(Kp+1) with the first column removed.
We also define

W = [q0 q1 . . . qp] = [Ip | qp] ∈ Rp×(p+1)

where Ip is the identity matrix of dimension p, and partition W as

W = [q0 |W0]
T
, W0 ∈ Rs×s.

The following result gives useful representation formulae for the matrices U
and B depending on the abscissae vector c and on the coefficient matrices A
and V .

Theorem 2. Assume that ci �= cj, for any i �= j and that the GLM (1.2) with
r = s has order p = s and stage order q = s − 1. Then we have the following
representation of the matrices U and B:

U = Cp −ACpKp, B = (WF−VW0)C
−1
p . (2.5)

Proof. Expanding (2.2) into power series, it results

Uq0 = e, Uqk +
Ack−1

(k − 1)!
=

ck

k!
, k = 1, . . . , p− 1.

Observing that [q0, . . . ,qp−1] = Ip we obtain the first part of (2.5).

Expanding (2.3) into power series, we get Vq0 = q0, i.e. Ve1 = e1, that is
already satisfied by our choice of V, and also

k∑
l=0

qk−l

l!
−B

ck−1

(k − 1!)
−Vqk, k = 1, . . . , p, (2.6)

Math. Model. Anal., 17(2):171–189, 2012.
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which is equivalent to

WF = BCp +VW0. (2.7)

From our hypotheses Cp is invertible, so the second representation formula
(2.5) arises. �	

Remark 1. From Theorem 2 it follows that the coefficient matrices U and B
depend on the abscissae vector c, on A, V and on the last s − 1 components
of qs, i.e. [q2,s . . . qs,s]. In fact in the equation (2.6) for k = s, the vector qs is
multiplied on the left by (I−V); since the first column of (I−V) is null, q1,s
does not appear in (2.6).

Now we analyze the case p = q = s and r = s + 1. In order to establish
representation formulae for the coefficient matrices, we partition B, V, and
Ep+1 as follows:

B =

[
bT

B̃

]
, V =

[
1 v

0 Ṽ

]
, Ep+1 =

[
1 ET

p

0 Ep

]
,

where bT stands for the first row of B and 0 stands for vector or matrix of
appropriate dimension, and obtain the following theorem:

Theorem 3. [see [3]] Assume that ci �= cj, for any i �= j and that the GLM
(1.2) with r = s + 1 has order and stage order p = q = s. Then we have this
representation of the matrices U and B:

U = Cp+1 −ACp+1Kp+1, bT = (ET
p − v)C−1

p , B̃ = (Ep − Ṽ)C−1
p . (2.8)

3 Inherent Quadratic Stability

This concept, which was first introduced in [13, 15] and successively developed
in [3, 10, 11], means that there exists a matrix X ∈ Rr×r such that

BA ≡ XB and BU ≡ XV −VX. (3.1)

Here, the relation P ≡ Q means that the matrices P and Q are identical with
the exception of the first two rows. In [3, 10] the following theorem was proved,
asserting that IQS condition leads to quadratic stability.

Theorem 4. Assume that the GLM (1.2) with matrices A and V as in Sec-
tion 1 has IQS. Then the stability function of the method assumes the form
(1.5) with pr−1(z) and pr−2(z) given by (1.6).

The following theorems analyze the structure of the matrix X appearing in
the conditions (3.1), for the GLMs we consider in this paper.
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Theorem 5. For a GLM of type (1.2) with p = r = s and q = s− 1, the most
general matrix X satisfying conditions (3.1) is of the form:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1,1 x1,2 x1,3 . . . x1,s−1 x1,s

x2,1 x2,2 x2,3 . . . x1,s−1 x2,s

0 1 0 · · · 0 q3,s
0 0 1 · · · 0 q4,s
...

...
...

. . .
...

0 0 0 · · · 1 qs,s

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where [q3,s, . . . , qs,s] are the last s − 2 components of the vector qs defined by
(2.1).

Proof. Multiplying on the left the equation (2.2) by zB and the equation (2.3)
by I− zX, and then adding the resulting equations, we get

ezw(z)− zezXw(z) = z2(BA−XB)ecz +Vw(z)

+ z(BU−XV)w(z) +O
(
zs+1

)
.

Using the IQS conditions (3.1) we have

ez(I− zX)w(z) ≡ V(I− zX)w(z) +O
(
zs+1

)
,

and (
ezI−V

)
(I− zX)w(z) ≡ O

(
zs+1

)
. (3.2)

Now, following the lines of the proof of Theorem 2 of [10] it results

(I− zX)w(z) ≡ O
(
zs+1

)
.

It results w(z) = φ(z) + qsz
s, with φ(z) = [1 z . . . zs−1]T , and so:

(I− zX)φ(z) + qsz
s ≡ O

(
zs+1

)
,

where we moved the O(zs+1) terms in the right-hand side of the equivalence.
Since zJφ(z) ≡ φ(z), with J defined in (2.4), we have

(J−X)φ(z) + qsz
s−1 ≡ O

(
zs
)
.

Equating to zero the coefficients of z0, z1, . . . , zs−2, it follows that X− J must
be zero except for the first two rows and the last column. Then, equating to
zero the coefficient of zs−1, it results xi,s = qi,s, i = 3, . . . , s. Thus the proof is
completed. �	

In the case p = q = s and r = s + 1, the matrix X has the same structure
as in the case r = s, p = q = s− 1, studied in [10]:

Math. Model. Anal., 17(2):171–189, 2012.
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Theorem 6. For a GLM of type (1.2) with p = q = s and r = s+ 1, the most
general matrix X satisfying conditions (3.1) is of the form:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1,1 x1,2 x1,3 · · · x1,r−1 x1,r

x2,1 x2,2 x2,3 · · · x2,r−1 x2,r

0 1 0 · · · 0 x3,r

0 0 1 · · · 0 x4,r
...

...
...

. . .
...

...

0 0 0 · · · 1 xr,r

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Proof. The proof follows along the lines of Theorem 2 of [10]. �	

4 Search for Methods with IQS and Maximum Area of
Absolute Stability Region

The search for GLMs (1.2) with IQS and the maximum area of the stability
region consists of two main steps:

• impose the order conditions and the IQS conditions;

• find the method with the maximum area of the stability region, within
the class of GLMs derived in the first step.

First we consider GLMs (1.2) with p = r = s and q = s − 1. We fix
the abscissas c in advance. From Theorem 2 and Remark 1 the coefficient
matrices U and B depend on A,V and on [q2,s . . . qs,s]. We note that elements
of first two rows of matrix X do not appear in equations following from IQS
conditions (due to the definition of ≡ relation and the form of matrix V), so
we need to find in the matrix X only the elements [x3,r, . . . , xr,r] = [q3,s . . . qs,s]
(see Theorem 5). We impose IQS conditions (3.1) by symbolic manipulation,
using Mathematica. In this way we derive parameters [q2,s . . . qs,s] and some
elements of matrices A and V. Thus we have a family of GLMs with IQS
depending on the vector m of the remaining 2s − 11 free parameters of A
and V. For s = 2, m = [a1,2, v1,2]; for s = 3, m is composed by elements of A
and V except for v2,3; for s = 4, m is composed by a4,1 and elements of V; for
s = 5, m is composed by a5,1 and elements of V except for v2,3, v2,4.

In the case p = q = s, r = s + 1 we also fix abscissa vector c in advance.
It follows from representation formulae (2.8) that matrices U and B can be
expressed in terms of A, V, and c. As in the previous case we need to find in
the matrix X only the elements [x3,r, . . . , xr,r] (see Theorem 6). We solve the
system of equations arising from IQS conditions with respect to [x3,r, . . . , xr,r],
all elements of matrix A and all elements of matrix V except the first row, i.e.,
v1,2 · · · v1,r. Therefore we obtain an s-parameters family of methods of order
p = q = s with IQS depending on the vector m = [v1,2 . . . v1,r].

The second step of the search is the same for both cases. The free para-
meters m of each family of GLMs are chosen by maximizing area(m), that is

1 Except for the case s = 2, where we have two free parameters.
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the area of the intersection of the absolute stability region with the negative
half plane. This numerical search is carried our by solving the minimization
problem

−area(m)→ min,

by using the Matlab program fminsearch. The function area(m) was com-
puted using integration in polar coordinates as explained in [12]. Examples of
methods are given in Sections 5 and 6.

In the numerical search for GLMs with IQS and maximum area of the sta-
bility region, we need to compute the coefficients of the stability polynomial,
and this operation is required a huge number of times. For the case p = r = s,
q = s − 1, we adopted the Fourier series approach proposed in the context of
DIMSIMs in [7] for the representation formula of polynomial coefficients. More-
over, in order to considerably reduce the time of computation, we implemented
such formula by using the fast Fourier transform algorithm, as proposed in [10].
On the other hand, for the case p = q = s, r = s + 1 symbolic manipulation
furnish simple and efficient representation formulae for the coefficients of the
polynomial, thus we could avoid these two special techniques.

5 Examples of Methods with p = s = r and q = s− 1

In this section we illustrate some examples of methods constructed by using
the algorithm of numerical search described in the previous section. We will
compare the stability regions of our methods with the regions of stability of
the Runge–Kutta methods of the same order. The coefficients matrices will be
given in Matlab rational format.

5.1 p = s = r = 2, q = 1

It is evident that in this case all methods possess the quadratic stability pro-
perty. The GLM with the largest stability area has area equal to 9.0129, and
error constant equal to 0.0833. The stability polynomial is

p(w, z) = w2 − p1(z)w + p0(z),

with

p1(z) = 1 +
734861

584775
z +

68

225
z2, p0(z) =

150086

584775
z +

68861

1169550
z2.

The method coefficients are c = [0 1]T ,

A =

[
0 0
136
225 0

]
, U =

[
1 0

1 89
225

]
, B =

[
1877
5198

1
2

0 1

]
, V =

[
1 361

2599

0 0

]
.

In Fig. 1 we have plotted the stability region of this method and, for compari-
son, the stability region of explicit Runge–Kutta methods of order 2.

Math. Model. Anal., 17(2):171–189, 2012.
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Figure 1. Stability regions of RK method of order p = 2 and GLMs with p = s = r = 2,
q = 1 with QS.

5.2 p = s = r = 3, q = 2

GLM method with IQS and the largest stability area has area equal to 14.6233,
and error constant equal to −0.1227. The stability polynomial is

p(w, z) = w
(
w2 − p2(z)w + p1(z)

)
,

with

p2(z) = 1 +
1258

1145
z +

193

339
z2 +

452

5681
z3, p1(z) =

324

3283
z +

333

1982
z2 − 22

697
z3.

The method coefficients are c = [0 1
2 1]T ,

A =

⎡⎢⎢⎣
0 0 0

419
1660 0 0

− 406
859

892
3363 0

⎤⎥⎥⎦ , U =

⎡⎢⎢⎣
1 0 0

1 6488
1971

1
8

1 849
3239

223
607

⎤⎥⎥⎦ ,

B =

⎡⎢⎢⎣
1667
1873 − 607

375
1293
1088

211
455

228
3197

703
1512

1270
10187 − 848

377
801
377

⎤⎥⎥⎦ , V =

⎡⎢⎢⎣
1 2370

4387
1898
15697

0 0 412
825

0 0 0

⎤⎥⎥⎦ .

In Fig. 2 we have plotted the stability region of this method and, for comparison,
the stability region of explicit Runge–Kutta methods of order 3.

5.3 r = s = p = 4, q = 3

GLM method with IQS and the largest stability area has area equal to 18.3609,
and error constant equal to −0.0071. The stability polynomial is

p(w, z) = w2
(
w2 − p3(z)w + p2(z)

)
,

with

p3(z) = 1 +
687

790
z +

341

608
z2 +

1041

5693
z3 +

66

3137
z4,

p2(z) = − 312

2393
z − 493

7091
z2 +

147

12400
z3 +

37

8686
z4.
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Figure 2. Stability regions of RK method of order p = 3 and GLMs with p = s = r = 3,
q = 2 with IQS.

The method coefficients are c =
[
0 1

3
2
3 1
]T

,

A =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0

562
1013 0 0 0

773
1052

365
1213 0 0

1686
1567 − 179

1631
935
1817 0

⎤⎥⎥⎥⎥⎥⎦ , U =

⎡⎢⎢⎢⎢⎣
1 0 0 0
1 − 737

3328
1
18

1
162

1 − 541
1466

475
3896

106
3245

1 − 1113
2315

287
1483

292
4999

⎤⎥⎥⎥⎥⎦ ,

B =

⎡⎢⎢⎢⎢⎢⎣
2899
1415 − 1381

842
417
566

927
3785

− 162
61

1457
216 − 1856

351
2341
1065

950
163 − 3837

268
1198
147

5055
14899

− 1051
124

4269
124 − 5385

124
2167
124

⎤⎥⎥⎥⎥⎥⎦ , V =

⎡⎢⎢⎢⎢⎣
1 − 1181

3026
593
1909 − 155

5459

0 0 813
10345

611
3036

0 0 0 − 1976
10665

0 0 0 0

⎤⎥⎥⎥⎥⎦ .

In Fig. 3 we have plotted the stability region of this method and, for com-
parison, the stability region of explicit Runge–Kutta methods of order 4. It is
interesting to notice that the best quadratic polynomial, with respect to the

−6 −5 −4 −3 −2 −1 0 1
0

1

2

3

Re(z)

Im
(z

)

IQS RK

Figure 3. Stability regions of RK method of order p = 4 and GLMs with s = r = p = 4,
q = 3 with IQS.
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maximization of the area, has the same area of the stability region. Therefore
the approach via the quadratic stability, instead of inherent quadratic stability,
does not improve the results in this case.

5.4 r = s = p = 5, q = 4

GLM method with IQS and the largest stability area has area equal to 24.8880,
and error constant equal to 0.0184271. The stability polynomial is

p(w, z) = w3
(
w2 − p4(z)w + p3(z)

)
,

with

p4(z) = 1 +
878

1181
z +

1948

4375
z2 +

1207

5774
z3 +

515

11764
z4 +

105

32761
z5,

p3(z) = − 518

2019
z − 391

1256
z2 − 173

1230
z3 − 109

4250
z4 − 34

20677
z5.

The method coefficients are c =
[
0 1

4
1
2

3
4 1
]T

,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
− 1919

2474 0 0 0 0

− 108
79 − 325

60653 0 0 0

− 3324
2159 − 518

823
541
1607 0 0

− 1421
1052 − 862

551
559
1291

1293
4361 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
1 999

974
1
32

1
384

1
6144

1 367
196

224
1773

81
3857

43
16424

1 439
170

1463
5413

268
5595

125
16007

1 3431
1077

535
1183

515
6599

1544
97273

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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Figure 4. Stability regions of RK method of order p = 5 and GLMs with s = r = p = 5,
q = 4 with IQS.



Construction of Efficient GLM for Non-Stiff Differential Systems 183

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

10508
215 − 43613

293
6089
40 − 14921

247
2928
379

− 7280
73

19139
47 − 50890

83
14306
35 − 4186

41

11455
111 − 88336

223
12091
21 − 18617

49
12041
124

− 10217
105

15192
41 − 16377

32
10541
35 − 14591

233

7957
48 − 8725

12
9493
8 − 10261

12
11029
48

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1808
1261 − 1298

1585 − 419
387

730
3351

0 0 838
643

892
1763

1769
11316

0 0 0 − 277
969

229
3425

0 0 0 0 − 149
3555

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

In Fig. 4 we have plotted the stability region of this method and the stability
region of an approximation of order 5 of the function exp(z).

6 Examples of Methods with s = p = q and r = s+ 1

In this section we present results of search for GLMs of type (1.2) with p = q = s
and r = s + 1, with IQS and maximum area of the stability region, up to
order p = 6. To be more concise, we give in Matlab rational format the
vector c and the coefficient matrices A and V, since matrices U and B can
be computed with the representation formulae (2.8). We observe that these
results cannot be improved by relaxing the IQS conditions, i.e. requiring sim-
ply that the method possesses the QS property, (as done for another class of
GLMs in [10]). As a matter of fact, the IQS conditions give raise to a fam-
ily of GLMs depending on s free parameters, used to maximize the area of
the stability region. On the other hand a quadratic polynomial which satis-
fies the same conditions as the stability polynomial of a GLM of type (1.2)
depends on s free parameters, as well. Therefore it is not surprising that
the QS approach do not produce GLMs with larger regions of absolute stabil-
ity.

For sake of clarity, we illustrate in detail how we compute matrices A and V
(except for v1,2, . . . , v1,r). First we fix the vector c as composed by s equally
spaced points in [0, 1]. Then we impose the order conditions (2.8) and the IQS
conditions (3.1) with X of the form given in Theorem 6. In this way, It turns
out that the matrix A has a very special structure with all non-zero elements
equal to 1

p−1 , where p is the order of the method. The precise explanation of
this phenomenon will be the subject of future work.

6.1 p = q = s = 1, r = 2

GLM method with the largest stability area has area equal to 4.2709, and error
constant equal to 0.7073. The stability polynomial is

p(w, z) = w2 −
(
1 +

302

381
z

)
w − 79

381
.
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Figure 5. Stability regions of RK method of order p = 1 and GLMs with p = q = s = 1,
r = 2 with IQS.

The method coefficients are c = 1,

A =
[
0
]
, V =

[
1 460

381

0 0

]
.

In Fig. 5 we have plotted the stability region of this method and, for com-
parison, the stability region of explicit Runge–Kutta methods of order 1.

6.2 p = q = s = 2, r = 3

GLM method with the largest stability area has area equal to 9.1003, and error
constant equal to 0.0159. The stability polynomial is

p(w, z) = w
(
w2 − p2(z)w + p1(z)

)
,

with

p2(z) = 1 +
1459

1160
z +

653

2166
z2, p1(z) =

299

1160
z +

74417

1256280
z2.

The method coefficients are c = [0 1]T ,

A =

[
0 0

1 0

]
, V =

⎡⎢⎣1
281
1160

215
1083

0 0 1
2

0 0 0

⎤⎥⎦ .

In Fig. 6 we have plotted the stability region of this method and, for comparison,
the stability region of explicit Runge–Kutta methods of order 2.

6.3 p = q = s = 3, r = 4

GLM method with the largest stability area has area equal to 14.612, and error
constant equal to −0.016. The stability polynomial is

p(w, z) = w2
(
w2 − p3(z)w + p2(z)

)
,
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Figure 6. Stability regions of RK method of order p = 2 and GLMs with p = q = s = 2,
r = 3 with IQS.

with

p3(z) = 1 +
35

32
z +

53

93
z2 +

1277

15624
z3, p2(z) =

3

32
z +

487

2976
z2 +

3979

124992
z3.

The method coefficients are c =
[
0 1

2 1
]T

, and

A =

⎡⎢⎣0 0 0
1
2 0 0

1
2

1
2 0

⎤⎥⎦ , V =

⎡⎢⎢⎢⎢⎣
1 13

32
3
31 − 1

63

0 0 1
2

1
24

0 0 0 1
4

0 0 0 0

⎤⎥⎥⎥⎥⎦ .

In Fig. 7 we have plotted the stability region of this method and, for com-
parison, the stability region of explicit Runge–Kutta methods of order 3.

6.4 p = q = s = 4, r = 5

GLM method with the largest stability area has area equal to 18.3603, and
error constant equal to −0.011. The stability polynomial is

p(w, z) = w3
(
w2 − p4(z)w + p3(z)

)
,

−6 −5 −4 −3 −2 −1 0 1
0

0.5

1

1.5

2

2.5

3

Re(z)

Im
(z

)

RKIQS

Figure 7. Stability regions of RK method of order p = 3 and GLMs with p = q = s = 3,
r = 4 with IQS.
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Figure 8. Stability regions of RK method of order p = 4 and GLMs with p = q = s = 4,
r = 5 with IQS.

with

p4(z) = 1 +
293

338
z +

787

1404
z2 +

1801

9828
z3 +

265981

12560184
z4

p3(z) = − 45

338
z − 1325

18252
z2 +

1349

127764
z3 +

681937

163282392
z4.

The method coefficients are c =
[
0 1

3
2
3 1
]T

,

A =

⎡⎢⎢⎢⎢⎣
0 0 0 0
1
3 0 0 0

1
3

1
3 0 0

1
3

1
3

1
3 0

⎤⎥⎥⎥⎥⎦ , V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 107
169

20
117 − 1

63 − 2
71

0 0 1
2

4
27 − 7

162

0 0 0 1
3

5
108

0 0 0 0 1
6

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

In Fig. 8 we have plotted the stability region of this method and, for compari-
son, the stability region of explicit Runge–Kutta methods of order 4.

6.5 p = q = s = 5, r = 6

GLM method with the largest stability area has area equal to 24.8369, and
error constant equal to −0.0031. The stability polynomial is

p(w, z) = w4
(
w2 − p5(z)w + p4(z)

)
,

with

p5(z) = 1 +
209

280
z +

11789

26432
z2 +

5978503

28705152
z3 +

13645249

310972480
z4 +

72520883

22390018560
z5,

p4(z) = − 71

280
z − 40647

132160
z2 − 19974071

143525760
z3 − 5932639

233229360
z4 − 7353179

4478003712
z5.
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Figure 9. Stability regions of GLMs with p = q = s = 5, r = 6 with IQS and of an
approximation of order 5 of the function exp(z).

The method coefficients are c =
[
0 1

4
1
2

3
4 1
]T

,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
1
4 0 0 0 0

1
4

1
4 0 0 0

1
4

1
4

1
4 0 0

1
4

1
4

1
4

1
4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 211
280

132
413

3
181 − 7

312 − 2
181

0 0 1
2

13
64

13
768 − 1693

61440

0 0 0 3
8

25
192 − 5

192

0 0 0 0 1
4

1
24

0 0 0 0 0 1
8

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In Fig. 9 we have plotted the stability region of this method and of an
approximation of order 5 of the function exp(z).

6.6 p = q = s = 6, r = 7

GLMmethod with the largest stability area has area equal to 32.0479, and error

constant equal to −0.0066. The method coefficients are c =
[
0 1

5
2
5

3
5

4
5 1
]T

,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1
5 0 0 0 0 0

1
5

1
5 0 0 0 0

1
5

1
5

1
5 0 0 0

1
5

1
5

1
5

1
5 0 0

1
5

1
5

1
5

1
5

1
5 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 80
133

103
277

41
541 − 1

204 − 1
131 − 1

362

0 0 1
2

71
300

49
1000 − 697

125000 − 4913
500000

0 0 0 2
5

9
50

19
1000 − 4477

225000

0 0 0 0 3
10

17
150 − 13

750

0 0 0 0 0 1
5

11
300

0 0 0 0 0 0 1
10

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Figure 10. Stability regions of GLMs with p = q = s = 6, r = 7 with IQS and of an
approximation of order 6 of the function exp(z).

In Fig. 10 we have plotted the stability region of this method and of an
approximation of order 6 of the function exp(z).

7 Concluding Remarks

We have presented the construction of explicit GLMs in Nordsieck form with
p = r = s, q = p − 1 and with p = q = s, r = s + 1, with inherent quadratic
stability. We derived the representation formulae form the coefficients matrices
from the order conditions. We analyzed the structure of the matrix X related
to the definition of IQS. Finally we carried out the construction of GLMs with
IQS and maximum area of the stability region by solving suitable minimiza-
tion problems. Examples of methods have been provided up to order 6. Com-
parisons with Runge–Kutta methods prove that the proposed methods have
stability regions considerably larger than Runge–Kutta methods of the same
order.

Future work will include the implementation of these methods and compari-
son with classical methods such as DIMSIMs and GLMs with IRKS. Moreover,
we intend to further analyze the structure of the coefficient matrix A of GLMs
in Nordsieck form with IQS, in the case p = q = s, r = s+ 1.
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