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1 Introduction

We are concerned with the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−M1

(∫
Ω

1

p(x)
|∇u|p(x) dx

)
div
(|∇u|p(x)−2∇u

)
= f(u, υ) + h1(x) in Ω,

−M2

(∫
Ω

1

p(x)
|∇υ|p(x) dx

)
div
(|∇υ|p(x)−2∇υ

)
= g(u, υ) + h2(x) in Ω,

∂u

∂η
=

∂υ

∂η
= 0 on ∂Ω,

(1.1)
where Ω ⊂ RN is a bounded smooth domain, p ∈ C(Ω) with 1 < p(x) < N ,
η is the unit exterior vector on ∂Ω. The system (1.1) is a generalization of a
model, so-called Kirchhoff equation, introduced by Kirchhoff [17]. To be more
precise, Kirchhoff established a model given by the equation

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx)∂2u

∂x2
= 0, (1.2)

where ρ, P0, h, E, L are constants, which extends the classical D’Alambert’s
wave equation, by considering the effects of the changes in the length of the
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strings during the vibrations. A distinguish feature of the Kirchhoff equation

(1.2) is that the equation contains a nonlocal coefficient P0

h + E
2L

∫ L

0
|∂u∂x |2 dx

which depends on the average E
2L

∫ L

0
|∂u∂x |2 dx of the kinetic energy 1

2 |∂u∂x |2 on
[0, L], and hence the equation is no longer a pointwise identity.

On the other hand, the stationary counterpart of (1.2) is given by⎧⎨⎩−
(
a+ b

∫
Ω

|∇u|2 dx
)
Δu = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.3)

which has attracted much attention after Lions’ paper [19] in which an abstract
framework to the problem was given. For some interesting results we refer to
[4, 5, 11]. Moreover, nonlocal boundary value problems like (1.1) can be used
for modeling several physical and biological systems where u describes a process
which depend on the average of itself, such as the population density [2, 6].

We want to remark that in studying the Kirchhoff-type equations establish-
ing conditions on M and f is the key argument. In that context the following
condition is typical

M(t) ≥ m0 > 0, for all t ≥ 0. (1.4)

In [1], the authors show the following Kirchhoff problem has a positive solution⎧⎨⎩−M
(∫

Ω

|∇u|2 dx
)
Δu = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.5)

under the conditions (1.4) and

M̂(t) =

∫ t

0

M(s) ds ≥M(t)t, for all t ≥ 0. (1.6)

However, according to the original meaning of the M , in the Kirchhoff equation
(1.5), it should be an increasing function. Then,

M̂(t) <

∫ t

0

M(t) ds = M(t)t, for all t > 0

and therefore, condition (1.6) cannot be satisfied. To overcome these difficul-
ties, the authors assume the following:

There exists m1 ≥ m0 and t0 > 0 such that M(t) = m1, for all t ≥ t0.

In [7], the authors show the following p-Kirchhoff equation has positive solutions⎧⎨⎩−M
(∫

Ω

|∇u|p dx
)p−1

Δpu = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.7)

where M(t) satisfies (1.4) for all t ∈ R+ and

M̂(t) ≥ [M(t)
]p−1

t, for all t ≥ 0. (1.8)



On an Elliptic System of p(x)-Kirchhoff-Type Equation 163

However, the condition imposed on M is far away from the physical sense of
the original Kirchhoff equation. Hence, the authors use the similar arguments
used in [1]. In [8], by using Krasnoselskii’s genus it is showed that (1.7) has

infinitely many solutions under the conditions Atα ≤ [M(t)]
p−1 ≤ Btα and

Q1t
q−1 ≤ f(x, t) ≤ Q2t

q−1 for all t ≥ 0 and for all x ∈ Ω, where A, B, α,
Q1, Q2, q positive constants, q ∈ (p, p∗) and αp > q. However, under these
assumptions the condition (1.4) fails.

The generalization of Kirchhoff equations to p(x)-Kirchhoff equation is a
quite new topic, so there exists only a few paper [10]. In [10], Dai and Hao
study p(x)-Kirchhoff equation⎧⎪⎨⎪⎩−M

(∫
Ω

|∇u|p(x)
p(x)

dx
)
div
(|∇u|p(x)−2∇u

)
= f(x, u) in Ω,

u = 0 on ∂Ω,

(1.9)

and show the existence and multiplicity of solutions of (1.9), where f : Ω×R→
R satisfies Carathéodory condition, M(t) satisfies (1.4) and

∃0 < μ < 1 such that M̂(t) ≥ (1− μ)M(t)t. (1.10)

Even under the constant exponent case, condition (1.10) is weaker than condi-
tion (1.8). It forces the authors to deal with more potential functions than [7];
for example, they deal with increasing function M(t) = a+ bt.

In recent years, an increasing attention has been paid to the study of differ-
ential equations and variational problems with nonstandard growth conditions.
The main interest in studying such problems arises from the presence of the

p(x)-Laplace operator div(|∇u|p(x)−2∇u). The p(x)-Laplace operator is a gen-

eralization of p-Laplace operator div(|∇u|p−2∇u) obtained in the case when
p(x) ≡ p (constant). It is well known that, comparing with the p-Laplace opera-
tor, the p(x)-Laplace operator possesses more complicated nonlinear properties,
for example, it is inhomogeneous and usually it does not have the so-called first
eigenvalue, since the infimum of its principle eigenvalue is zero. This causes
many problems, some classical theories and methods, such as the Lagrange
multiplier theorem and the theory of Sobolev spaces, are not applicable.

The nonlinear problems involving the p(x)-Laplace operator are extremely
attractive because they can be used to model dynamical phenomenons which
arise from the study of electrorheological fluids or elastic mechanics. Prob-
lems with variable exponent growth conditions also appear in the modelling of
stationary thermo-rheological viscous flows of non-Newtonian fluids and in the
mathematical description of the processes filtration of an ideal barotropic gas
through a porous medium [3, 16, 20, 21].

In the present paper, we consider an elliptic system of p(x)-Kirchhoff-type
equation (1.1) and when doing this, we don’t apply any kind of mostly-used
constraints, i.e., growth or asymptotic conditions or Ambrosetti-Rabinowtz
condition etc., to nonlinearities f(x, u) and g(x, u). Instead, using the the-
ory of variable exponent Lebesgue–Sobolev spaces and the Ekeland variational
principle, we establish the existence of a weak solution. As far as we are con-
cerned, system of p(x)-Kirchhoff-type equation has not been investigated yet.

Math. Model. Anal., 17(2):161–170, 2012.
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Nevertheless, in [9] Corrêa and Nascimento investigated an elliptic system of
p-Kirchhoff-type equation of (1.1). The present paper can be regarded as a
generalization of [9]. However, there are some differences; for example, we as-
sume that α > 0, hence for α = 1 our condition (M) (see the main results)
coincides with the following condition:

(M∗) M1,M2 : R+ → R are continuous functions and there is a positive con-
stant m0 such that M1(t),M2(t) ≥ m0 > 0, for all t ≥ 0,

which is assumed in [9]. Moreover, when α ∈ (0, 1) the Kirchhoff functions
M1,M2 may be singular at t = 0 in (M) while it is not the case for (M∗).

2 Preliminaries

Firstly, we state some basic properties of the variable exponent Lebesgue–
Sobolev spaces Lp(x)(Ω) and W 1,p(x)(Ω) (for details, see [14, 15, 18]).

Set L∞
+ (Ω) =

{
p; p ∈ L∞(Ω), ess inf p(x) > 1, ∀x ∈ Ω

}
. For any p ∈

L∞
+ (Ω), denote

1 < p− := ess inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := ess sup
x∈Ω

p(x) <∞.

Let p ∈ L∞
+ (Ω). We define the variable exponent Lebesgue space by

Lp(x)(Ω) =
{
u
∣∣ u : Ω → R is measurable,

∫
Ω

∣∣u(x)∣∣p(x) dx <∞
}
,

then Lp(x)(Ω) endowed with the norm

|u|p(x) = inf
{
λ > 0:

∫
Ω

∣∣∣u(x)/λ∣∣∣p(x) dx ≤ 1
}
,

becomes a Banach space. The modular of Lp(x)(Ω) is the mapping ρ(u) :
Lp(x)(Ω)→ R which is defined by

ρ(u) =

∫
Ω

∣∣u(x)∣∣p(x) dx, ∀u ∈ Lp(x)(Ω).

Proposition 1. [14, 18] If u, un ∈ Lp(x)(Ω), n = 1, 2, . . . , then the following
statements are equivalent :

(i) lim
n→∞ |un − u|p(x) = 0; (ii) lim

n→∞ ρ(un − u) = 0;

(iii) un → u in measure in Ω and lim
n→∞ ρ(un) = ρ(u).

Proposition 2. [14, 18] If u, un ∈ Lp(x)(Ω), n = 1, 2, . . . , then we have

(i) |u|p(x) < 1 (= 1; > 1) ⇔ ρ(u) < 1 (= 1; > 1);

(ii) |u|p(x) > 1 =⇒ |u|p−p(x) ≤ ρ(u) ≤ |u|p+

p(x);

(iii) |u|p(x) < 1 =⇒ |u|p+

p(x) ≤ ρ(u) ≤ |u|p−p(x);
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(iv) lim
n→∞ |un|p(x) = 0 ⇔ lim

n→∞ ρ(un) = 0;

(v) lim
n→∞ |un|p(x) →∞ ⇔ lim

n→∞ ρ(un)→∞.

The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
,

with the norm

‖u‖1,p(x) = |u|p(x) + |∇u|p(x), ∀u ∈W 1,p(x)(Ω).

Proposition 3. [14, 18] If 1 < p− and p+ <∞, then the spaces Lp(x)(Ω) and
W 1,p(x)(Ω) are separable and reflexive Banach spaces.

Proposition 4. [14, 18] Let Ω ⊂ RN be bounded and p ∈ C(Ω). If q ∈ C(Ω)
and 1 ≤ q(x) < p∗(x) = Np(x)/(N − p(x)) for any x ∈ Ω, then the embedding
W 1,p(x)(Ω) ↪→ Lq(x)(Ω) is compact.

Proposition 5. [14, 18] If p ∈ L∞(Ω), the conjugate space of Lp(x)(Ω) is
Lp′(x)(Ω), where 1

p′(x) +
1

p(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we

have ∣∣∣∫
Ω

uv dx
∣∣∣ ≤ ( 1

p−
+

1

(p−)′

)
|u|p(x) |v|p′(x) .

3 The Main Results

In the sequel, for the simplicity of notation, we write X := W 1,p(x)(Ω) ×
W 1,p(x)(Ω) and ρ̂(∇u) :=

∫
Ω

|∇u(x)|p(x)

p(x) dx.

Definition 1. We say that (u, v) ∈ X is a weak solution of (1.1) if

M1

(
ρ̂(∇u)

) ∫
Ω

|∇u|p(x)−2∇u∇ϕdx =

∫
Ω

(
f(u, υ) + h1(x)

)
ϕdx,

M2

(
ρ̂(∇v)

) ∫
Ω

|∇υ|p(x)−2∇υ∇ψ dx =

∫
Ω

(
g(u, υ) + h2(x)

)
ψ dx,

for any (ϕ, ψ) ∈ X.

We will study problem (1.1) under the following assumptions:

(M): M1,M2 : R+ → R are continuous functions. There exist real numbers
m0 > 0 and α > 0 such that M1(t),M2(t) ≥ m0t

α−1, for all t > 0.
Note that the Kirchhoff functions M1, M2 may be singular at t = 0 for
α ∈ (0, 1);

(F1): There is a C1-function F : R2 → R such that

∂F

∂u
(u, υ) = f(u, υ) and

∂F

∂υ
(u, υ) = g(u, υ),

for all (u, υ) ∈ R2;

Math. Model. Anal., 17(2):161–170, 2012.
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(F2): There is k > 0 such that F (u, υ) = F (u+ k, υ + k) , for all (u, υ) ∈ R2;

(h): h1, h2 ∈ Lq(x)(Ω), 1
p(x) +

1
q(x) = 1, 1 < q(x) < p∗(x) such that∫

Ω

h1(x) dx =

∫
Ω

h2(x) dx = 0.

The energy functional corresponding to problem (1.1) is defined as I : X → R,

I(u, υ) = M̂1

(
ρ̂(∇u)

)
+ M̂2

(
ρ̂(∇υ)

)
−
∫
Ω

F (u, υ) dx−
∫
Ω

h1(x)u dx−
∫
Ω

h2(x)υ dx

for all (u, υ) ∈ X, where M̂i(t) =
∫ t

0
Mi(s) ds, i = 1, 2. In a standard way,

it can be proved that I ∈ C1(X\ {(0, 0)} ,R). Moreover, for every (u, υ) ∈
X\ {(0, 0)}, the derivative of I is given by〈
I ′(u, υ), (φ, ω)

〉
= M1

(
ρ̂(∇u)

) ∫
Ω

|∇u|p(x)−2∇u∇φ dx+M2

(
ρ̂(∇υ)

)
×
∫
Ω

|∇υ|p(x)−2∇υ∇ω dx−
∫
Ω

(
f(u, υ)+h1(x)

)
φ dx−

∫
Ω

(
g(u, υ)+h2(x)

)
ω dx

for any (φ, ω) ∈ X. Thus (u, υ) ∈ X\ {(0, 0)} is a weak solution of (1.1) if and
only if (u, υ) is a nontrivial critical point of I.

Our main result is the following theorem:

Theorem 1. Suppose (M), (F1), (F2) and (h) hold. Then, problem (1.1) has
a weak solution (u0, υ0) ∈ X if I is differentiable at (u0, υ0).

By the same idea developed by Fan in [13], we can split the space W 1,p(x)(Ω)
in the following way. Define

W0 =
{
w ∈W 1,p(x)(Ω) :

∫
Ω

w dx = 0
}
.

For w ∈W 1,p(x)(Ω), denote w = 1
|Ω|
∫
Ω
w dx and w̃ = w−w. Then w = w̃+w,

where w ∈ R and w̃ ∈ W0. So, W 1,p(x)(Ω) = W0 ⊕ R. W0 is a closed linear
subspace of W 1,p(x)(Ω) with codimension 1.

Proposition 6 [Poincaré inequality]. [13] Let Ω ⊂ RN be bounded and
smooth.There exists a positive constant c such that

|w|p(x) ≤ c |∇w|p(x) , ∀w ∈W0.

Proof. We will give a similar proof to Fan’s stated in [13]. Arguing by
contradiction, assume that there exists a sequence {wn} ⊂ W0 such that
|wn|p(x) ≥ n |∇wn|p(x). Without loss of generality we may assume |wn|p(x) = 1,

then |∇wn|p(x) ≤ 1
n . We may assume, taking a subsequence if necessary, that
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wn ⇀ w0 in W 1,p(x)(Ω), wn → w0 in Lp(x)(Ω) and wn(x) → w0(x) for a.e.
x ∈ Ω. So we have that |w0|p(x) = 1,

∫
Ω
w0 dx = limn→∞

∫
Ω
wn dx = 0, and∫

Ω
|∇w0|p(x) dx ≤ limn→∞

∫
Ω
|∇wn|p(x) dx = 0. It follows that w0 ∈ W0 and

∇w0 = 0, consequently w0 = 0, which contradicts |w0|p(x) = 1. �	

To get the proof of Theorem 1, we will use the following version of the
Ekeland variational principle.

Proposition 7. [12] Let E be a Banach space and let Ψ : E → R be a C1-
function which is bounded from below. Then, for any ε > 0, there exists wε ∈ E
such that

Ψ(wε) ≤ inf
E

Ψ + ε and
∥∥Ψ ′(wε)

∥∥
E∗ ≤ ε.

Lemma 1. The functional I is bounded from below.

Proof. At the beginning, we will show that the energy functional I is well
defined. To obtain this, it is enough to verify that the functional J : X → R,
J(u, υ) =

∫
Ω

F (u, υ) dx, is well defined. Since F is continuous on [0, k] × [0, k]

and F (u, υ) = F (u + k, υ + k) for all (u, υ) ∈ R2, we obtain |F (u, υ)| ≤ c1 for
all (u, υ) ∈ R2. Hence,∣∣J(u, υ)∣∣ ≤ ∫

Ω

∣∣F (u, υ)
∣∣ dx ≤ c1|Ω|, for all (u, υ) ∈ X,

i.e., J is well defined, where |Ω| is the Lebesgue measure of Ω. Now, we will
show that I is bounded from below. Let (u, υ) ∈ X. Then u and υ can be
written as u = ũ + u and υ = υ̃ + υ, where u, υ ∈ R and ũ, υ̃ ∈ W0 with∫
Ω
ũ dx =

∫
Ω
υ̃ dx = 0. Therefore,

I(u, υ) = M̂1

(
ρ̂(∇u)

)
+ M̂2

(
ρ̂(∇v)

)− ∫
Ω

F (ũ+ u, υ̃ + υ) dx

−
∫
Ω

h1(x)(ũ+ u) dx−
∫
Ω

h2(x)(υ̃ + υ) dx ≥ M̂1

(
ρ̂(∇u)

)
+ M̂2

(
ρ̂(∇v)

)
− c1 |Ω| −

∫
Ω

h1(x)ũ dx− u

∫
Ω

h1(x) dx−
∫
Ω

h2(x)υ̃ dx− υ

∫
Ω

h2(x) dx.

If we consider that h1, h2 ∈ Lq(x)(Ω); ũ, υ̃ ∈ Lp(x)(Ω) and use Proposition 5,
it follows

I(u, υ) ≥ M̂1

(
ρ̂(∇u)

)
+ M̂2

(
ρ̂(∇v)

)− c1 |Ω| − |h1|q(x) |ũ|p(x) − |h2|q(x) |υ̃|p(x) .
From the assumption (M) and Proposition 6, we have

I(u, υ) ≥ m0

∫ 1

p+
ρ(∇u)

0

sα−1 ds+m0

∫ 1

p+
ρ(∇υ)

0

sα−1 ds

− c3 |∇ũ|p(x) − c4 |∇υ̃|p(x) − c2

=
m0

α(p+)α
[(

ρ(∇u)
)α

+
(
ρ(∇υ)

)α]− c3 |∇ũ|p(x) − c4 |∇υ̃|p(x) − c2.

Math. Model. Anal., 17(2):161–170, 2012.
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By Proposition 2, we have

I(u, υ) ≥ m0

α(p+)α
[(

ρ(∇u)
)α

+
(
ρ(∇υ)

)α]− c3 max
{(

ρ(∇ũ)
) 1

p− ,
(
ρ(∇ũ)

) 1

p+
}

− c4 max
{(

ρ(∇υ̃)
) 1

p− ,
(
ρ(∇υ̃)

) 1

p+
}
. (3.1)

So, I is bounded from below. �	

Remark 1. By Lemma 1, it is easy to see that the main difference between the
Dirichlet and Neumann problem is related to noncoerciveness of the energy
functional corresponding to Neumann problem. So, in that context, Poincaré
inequality plays a key role.

Proof of Theorem 1. Since I ∈ C1(X,R) is weakly lower semi-continuous and
bounded from below, from Ekeland variational principle we have (un, υn) ⊂ X
such that

I(un, υn)→ inf
X

I and I ′(un, υn)→ 0. (3.2)

By decomposition of W 1,p(x)(Ω), for each n ∈ N, we can write any (un, υn) ∈ X
as un = ũn + un and υn = υ̃n + υn, where un, υn ∈ R and ũn, υ̃n ∈ W0 with∫
Ω
ũn dx =

∫
Ω
υ̃n dx = 0. Moreover, from (3.2) we have |I(un, υn)| ≤ c5. Thus,

if we use (3.1), it follows that

c6 ≤ I(un, υn) ≤ c5.

This means the sequences {ρ(∇ũn)} and {ρ(∇υ̃n)} are bounded. Using Pro-
position 2 and Proposition 6, we obtain that {ρ(ũn)} and {ρ(υ̃n)} are also
bounded. Thus, {ũn} and {υ̃n} are bounded sequences in W 1,p(x)(Ω). In
addition, if we choose un,υn in the interval [0, k], un = ũn+un and υn = υ̃n+υn,
for each n ∈ N, we can see that {ũn} and {υ̃n} are bounded sequences in
W 1,p(x)(Ω). So, for convenient subsequences, we have un ⇀ u0 and υn ⇀ υ0
in W 1,p(x)(Ω), and therefore∫

Ω

h1un dx→
∫
Ω

h1u0 dx and

∫
Ω

h2υn dx→
∫
Ω

h2υ0 dx.

Using compact embedding, i.e., Proposition 4, we have

un → u0 and υn → υ0 in Lq(x)(Ω),

and up to subsequences,

un(x)→ u0(x) and υn(x)→ υ0(x) a.e. x ∈ Ω.

Moreover, by continuity of F , it follows

F
(
un(x), υn(x)

)→ F
(
u0(x), υ0(x)

)
a.e. x ∈ Ω.

Since |F (un(x), υn(x))| ≤ c for all n ∈ N and a.e. x ∈ Ω, by help of the
Lebesgue dominated convergence theorem, we obtain∫

Ω

F (un, υn) dx→
∫
Ω

F (u0, υ0) dx.
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From (3.2) we know that

inf
X

I = lim I(un, υn) = lim
[
M̂1

(
ρ̂(∇un)

)
+ M̂2

(
ρ̂(∇υn)

)
−
∫
Ω

F (un, υn) dx−
∫
Ω

h1(x)un dx−
∫
Ω

h2(x)υn dx
]
.

Finally, we have to show that {M̂1(ρ̂(∇un))} and {M̂2(ρ̂(∇υn))} are conver-
gent. Considering that un ⇀ u0 and υn ⇀ υ0 in W 1,p(x)(Ω) and using Fatou’s
Lemma, we get

ρ̃(∇u0) ≤ lim inf ρ̃(∇un) and ρ̃(∇υ0) ≤ lim inf ρ̃(∇υn).

Since M̂1 and M̂2 are continuous and increasing, we obtain

M̂1

(
ρ̂(∇u0)

) ≤ lim M̂1

(
ρ̂(∇un)

)
,

and similarly
M̂2

(
ρ̂(∇υ0)

) ≤ lim M̂2

(
ρ̂(∇υn)

)
.

Eventually,

inf
X

I ≥ M̂1

(
ρ̂(∇u0)

)
+ M̂2

(
ρ̂(∇υ0)

)
−
∫
Ω

F (u0, υ0) dx−
∫
Ω

h1(x)u0 dx−
∫
Ω

h2(x)υ0 dx = I(u0, υ0),

which means I(u0, υ0) = infX I. Hence, (u0, υ0) ∈ X is a weak solution of
problem (1.1) if I is differentiable at (u0, υ0). The proof is completed. �	
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