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Abstract. In this paper, we present a predictor-corrector type algorithm for solu-
tion of linear parabolic problems on graph structure. The graph decomposition is
done by dividing some edges and therefore we get a set of problems on sub-graphs,
which can be solved efficiently in parallel. The convergence analysis is done by using
the energy estimates. It is proved that the proposed finite-difference scheme is uncon-
ditionally stable but the predictor step error gives only conditional approximation. In
the second part of the paper it is shown that the presented algorithm can be written
as Douglas type scheme, based on the domain decomposition method. For a simple
case of one dimensional parabolic problem, the convergence analysis is done by using
results from [P. Vabishchevich. A substracturing domain decomposition scheme for
unsteady problems. Comp. Meth. Appl. Math. 11(2):241–268, 2011]. The optimality
of asymptotical error estimates is investigated. Results of computational experiments
are presented.

Keywords: finite difference method, parabolic problems, predictor-corrector algorithm,

graph domains, domain decomposition, stability, convergence.

AMS Subject Classification: 65N06; 65N08; 65N12.

1 Introduction

The predictor-corrector splitting and domain decomposition methods are widely
used to solve elliptic and parabolic PDEs in multidimensional domains [3, 7,
8, 15]. We also note that new developments of these ideas are presented in
[13, 14], where non-standard domain decomposition methods with overlapping
and non-overlapping subdomains are investigated.

Domain Decomposition and predictor-corrector techniques can be applied
for problems on graph structures (see [1, 2, 9, 11] for related discussions). In [1],
it is proposed to divide the graph by decomposing the set of graph vertexes.
The stability analysis is done in the maximum norm, but only conditional
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stability can be proved by this method and no influence of the corrector step
on the stability is obtained.

In this paper we consider predictor-corrector type finite difference schemes
for solution of linear parabolic problems on graph domains. The graph de-
composition is done by dividing some edges of the graph, therefore a set of
problems on sub-graphs is obtained and these subproblems can be solved effi-
ciently in parallel. The main goal is to investigate the stability of the obtained
discrete algorithms with respect to the approximation errors introduced at the
predictor step of the algorithm.

The rest of the paper is organized as follows. In Section 2, the mathemati-
cal model is formulated, and the predictor-corrector finite difference scheme is
constructed. The stability and convergence analysis is presented in Section 3.
By using the energy method it is proved that the finite difference scheme is
unconditionally stable but the predictor step error gives only conditional ap-
proximation. In Section 4, it is shown that the presented algorithm can be
written as Douglas type scheme. The decomposition operators are based on
a partition of unity over the computational domain. For a simple case of one
dimensional parabolic problems, the convergence analysis is done by using re-
sults from [13]. The optimality of asymptotical error estimates is investigated.
Results of computational experiments are presented. Finally, some conclusions
are given in Section 5.

2 Formulation of the Problem

In this section we present a formulation of the mathematical model describing
linear parabolic problems on graph structures.

2.1 Mathematical model

Let P = {pj , j = 1, . . . , J} be a set of branching points or vertexes. Some of
these points are joined by individual directed edges making a set of edges E
(or a set of ordered pairs of vertexes). Each edge has a direction and these
directions can be selected by using any convenient scheme:

E = {ek = (pks , pkf ), pks , pkf ∈ P, k = 1, . . . ,K},

where pks is a starting point of edge ek, and pkf is an end point of the same
edge. The graph is connected, i.e. there is a path from any vertex to any
other vertex in the graph, including termination points (in definition of the
connectivity, the direction of edges are not taken into account).

Let lk be a length of ek and let x be a distance along the interval (0, lk),
which defines the given edge in a geometrical domain. For each point pj ∈ P
we denote by N±(pj) the sets of edges, having x = 0 or x = lk as an end point
of edge at pj :

N+(pj) = {ek : ek = (pjs , pj) ∈ E, s = 1, . . . , Sj},
N−(pj) = {ek : ek = (pj , pjf ) ∈ E, f = 1, . . . , Fj}.
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On the graph (E,P ) we consider a system of parabolic linear problems for
functions {uk(x, t)}:

∂uk

∂t
=

∂

∂x

(
dk(x)

∂uk

∂x

)
+ fk(x, t), 0 < x < lk, k = 1, . . . ,K, t ∈ (0, Tf ]

(2.1)

with sufficiently smooth functions dk, fk satisfying

0 < d0 6 dk(x) 6 dM . (2.2)

Let us divide all branch points into two sets P = T ∪ P1. Point pj ∈ P
is assigned to a set of termination points T if there exists only one edge ekj ,
which terminates at pj . Let x = bkj be a coordinate of the end of interval
(0, lkj ), which is joined to pj , i.e. bkj = 0 or bkj = lkj . The following boundary
conditions are formulated:

ukj (bkj , t) = µj(t), ∀pj ∈ T, (2.3)

where µj are given functions. At the branch points pj ∈ P1 the fluxes of the
solution are conserved [6]:∑

ek∈N+ (pj)

dk
∂uk

∂x

∣∣∣
x=lk

=
∑

em∈N− (pj)

dm
∂um

∂x

∣∣∣
x=0

, ∀pj ∈ P1. (2.4)

At all vertexes of the graph the continuity constraints are satisfied

um(pj , t) = uk(pj , t), ∀pj ∈ P1, em, ek ∈ N
±

(pj). (2.5)

Initial conditions are specified at t = 0:

uk(x, 0) = uk0(x), 0 6 x 6 lk, k = 1, . . . ,K. (2.6)

2.2 The fully implicit approximation

We start from the fully implicit approximation. The governing equations (2.1)–
(2.6) are discretized by the Finite Volume Method. On each edge ek, k =
1, . . . ,K we define a discrete uniform grid

ωh(k) = {xkj : xkj = jhk, j = 1, . . . , Nk − 1}, xkNk
= lk,

ω̄h(k) = ωh(k) ∪ {xk0 , xkNk
}

and uniform time grid ωτ = {tn : tn = nτ, n = 0, . . . , N, Nτ = Tf}. We also
define discrete functions

Uk,nj = Uk(xj , t
n), (xj , t

n) ∈ ωh(k)× ωτ , k = 1, . . . ,K,

here Uk,nj approximates the solution uk(xj , t
n) on edge ek. The backward time

finite difference, the forward and backward space finite differences are defined
as:

Uk,nj,t̄ =
Uk,nj − Uk,n−1

j

τ
, ∂xU

k,n
j =

Uk,nj+1 − U
k,n
j

hk
, ∂x̄U

k,n
j =

Uk,nj − Uk,nj−1

hk
.

Math. Model. Anal., 17(1):113–127, 2012.
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We approximate differential equations (2.1) by the following finite difference
equations (see, also [1, 2, 9]):

Uk,nt̄ = ∂x̄
(
dkj+ 1

2
∂xU

k,n
j

)
+ fk,nj , xkj ∈ ωh(k), k = 1, . . . ,K, n > 1. (2.7)

Boundary conditions are defined at the termination points

Uk,n(pj) = µj(t
n), ∀pj ∈ T. (2.8)

The flux balance equations (2.4) at the branch points are approximated by
discrete conservation equations (see [1, 2]):∑

ek∈N+ (pj)

[
dkNk− 1

2
∂x̄U

k,n
Nk

+
hk
2

(
Uk,nNk,t̄

− fk,nNk

)]
(2.9)

=
∑

em∈N− (pj)

[
dm1/2∂xU

m,n
0 − hm

2

(
Um,n0,t̄ − f

m,n
0

)]
, ∀pj ∈ P1.

At all branch points the continuity constraints are satisfied

Um,n(pj) = Uk,n(pj), ∀pj ∈ P1, em, ek ∈ N
±

(pj). (2.10)

Discrete problem (2.7)–(2.10) has a unique solution, since for each tn we
solve a system of linear equations with a M -matrix. The solution of finite
volume scheme (2.7)–(2.10) can be computed efficiently by using a modified
factorization algorithm (see [1]).

2.3 Predictor-corrector type parallel algorithm

On the basis of the sequential discrete algorithm (2.7)–(2.10), the parallel al-
gorithm is developed using domain decomposition method. It is based on the
predictor-corrector splitting technique and it is used in [2] for numerical ap-
proximation of 1D linear parabolic problem. Similar techniques also can be
applied for problems on graph structures (see [9, 11] for related discussions).
We also mention a recent paper [12], where the domain decomposition method
is used to parallelize a solver for simulation of flows in oil filters.

Graph decomposition step. The load balancing problem should be solved
during the implementation of this step. First, it is aimed to guarantee that each
processor has about the same number of mesh grid points, since this number
defines the computational complexity for all parts of the discrete algorithm.

Due to the stencil of discretization, the computational domains of different
processors are overlapping. The information belonging to the overlapped re-
gions should be exchanged among processors. The time of data exchanges is
contributing to the additional costs of the parallel algorithm. Thus, a second
goal of defining the optimal data mapping is to minimize the overlapping re-
gions. Metis tool [5] is applied to distribute the graph with weighted edges,
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where the weights are taken equal to the number of mesh points on the given
edge.

Let us denote a set of edges, which connect vertexes belonging to different
subdomains by D =

{
es ∈ E, s = 1, . . . , S

}
. Then each grid ωh(s) on these

edges is divided into two subgrids by midpoints

B =
{
xjs ∈ ωh(s), js = Ns/2, s = 1, . . . , S

}
.

Predictor step. First, we compute in parallel new values of the solution
at the splitting points xjs ∈ B. The explicit Euler approximation is used to
discretize the differential equation (2.1):

Ũs,njs − U
s,n−1
js

τ
= ∂x̄

(
dsjs+ 1

2
∂xU

s,n−1
js

)
+ fs,njs , s = 1, . . . , S. (2.11)

Domain decomposition step. Second, solutions on each subgraph are com-
puted in parallel using the implicit finite difference scheme (2.7) – (2.10). The

predicted values Ũs,njs are used as the interface boundary conditions.

Corrector step. Third, using the implicit finite difference scheme and taking
the solution Un, computed at the second step, we update in parallel the values
of the solution at the splitting points:

Us,njs − U
s,n−1
js

τ
= ∂x̄

(
dsjs+ 1

2
∂xU

s,n
js

)
+ fs,njs , s = 1, . . . , S. (2.12)

3 Convergence Analysis

Our goal is to investigate the stability and the accuracy of the discrete predic-
tor-corrector algorithm. We define subgrids

ω̃h(k) = ωh(k) \ {xjs±1, s = 1, . . . , S}, k = 1, . . . ,K.

Let denote the error functions of the discrete solution as

Zk,nj = Uk,nj − uk(xj , t
n), k = 1, . . . ,K, xkj ∈ ω̄h(k),

Z̃s,njs = Ũs,njs − u
s(xjs , t

n), s = 1, . . . , S.

Math. Model. Anal., 17(1):113–127, 2012.
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By putting them into the finite-difference scheme we get a discrete problem for
the error functions:

Zk,nt̄ = ∂x̄
(
dkj+ 1

2
∂xZ

k,n
j

)
+ ψk,nj , xkj ∈ ω̃h(k), k = 1, . . . ,K, (3.1)

Zm,n(pj) = 0, ∀pj ∈ T, (3.2)∑
ek∈N+ (pj)

[
dkNk− 1

2
∂x̄Z

k,n
Nk

+
hk
2
Zk,nNk,t̄

]
(3.3)

−
∑

em∈N− (pj)

[
dm1/2∂xZ

m,n
0 − hm

2
Zm,n0,t̄

]
= ϕn(pj), ∀pj ∈ P1,

Zs,njs±1,t̄ = ∂x̄
(
dsjs±1+ 1

2
∂xZ

s,n
js±1

)
+ djs± 1

2

Z̃s,njs −Z
s,n
js

h2
s

+ ψnjs±1, xjs ∈ B, (3.4)

Z̃s,njs −Z
s,n−1
js

τ
= ∂x̄

(
dsjs+ 1

2
∂xZ

k,n−1
js

)
+ ψ̃s,njs , xjs ∈ B, (3.5)

where functions ψk,n, ψ̃s,n and ϕn define the truncation errors. At all branch
points the error functions satisfy the continuity conditions

Zm,n(pj) = Zk,n(pj), ∀pj ∈ P1, em, ek ∈ N
±

(pj). (3.6)

Let us assume that the initial data, coefficients and the exact solution of
problem (2.1)–(2.6) are smooth enough. By using Taylor’s formula the trun-
cation errors of the finite difference scheme (2.11)–(2.12) can be estimated as
[2]:

|ψk,nj | 6 C(τ + h2
k), xkj ∈ ωh(k), k = 1, . . . ,K, n > 0, (3.7)

|ϕn(pj)| 6 C(τh+ h2), pj ∈ P1, n > 0, h = max
k

hk,

|ψs,njs − ψ̃
s,n
js
| 6 Cτ, ∀xjs ∈ B.

Our stability analysis essentially uses results of [2, 11]. Let

Vh =
{
V : V = {V kj }, k = 1, . . .K, j = 0, . . . , Nk, V kj = 0, xkj ∈ T

}
.

For any V ∈ Vh we define the L2, L∞ - norms and energy seminorm:

‖V ‖ =
[ K∑
k=1

hk

(1

2
|V k0 |2 +

Nk−1∑
j=1

|V kj |2 +
1

2
|V kNk
|2
)]1/2

,

‖V ‖∞ = max
16k6K

max
06j6Nk

|V kj |, ‖V n‖E =
[ K∑
k=1

hk

Nk∑
j=1

dk,nj−1/2|∂x̄V
k,n
j |2

]1/2
.

A simple generalization of the well known embedding inequality is valid:
for any V ∈ Vh we have

‖V ‖∞ 6 C‖V ‖E , C =
( 1

d0

K∑
k=1

lk

)1/2

. (3.8)
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Lemma 1. Let Zk,n satisfy problem (3.1) – (3.6). Then it holds that

En 6 E0 + τ

n∑
l=1

{
‖ψl‖2 +

J1

h

∑
pj∈P1

|ϕl(pj)|2 (3.9)

+

S∑
s=1

[2τ d̄sjs
hs

(
ψs,ljs

)2
+
(4τd2

MCS

h2
s

+
hs
2

)(
ψ̃s,ljs − ψ

s,l
js

)2]}
,

where J1 = |P1| and the functional En is defined as

En = ‖Zn‖2E + 2τ2
S∑
s=1

d̄sjs
hs

(
∂x(dsjs−1/2∂x̄Z

s,n
js

)
)2

.

Proof. Multiplying equations (3.1) by 2hkτ∂t̄Z
k,n
j , xkj ∈ w̃h(k), k = 1, . . . ,K

and equations (3.4) by 2hsτ∂t̄Z
s,n
js±1, xs ∈ B and adding the resulting equalities,

we get

2τ

K∑
k=1

hk

Nk−1∑
j=1

|∂t̄Zk,nj |
2 = 2τ

K∑
k=1

hk

Nk−1∑
j=1

∂t̄Z
k,n
j ∂x̄

(
dkj+ 1

2
∂xZ

k,n
j

)
(3.10)

+ 2τ

S∑
s=1

Z̃s,njs − Z
s,n
js

hs

(
dsjs− 1

2
∂t̄Z

s,n
js−1 + dsjs+ 1

2
∂t̄Z

s,n
js+1

)
+ 2τ

K∑
k=1

hk

Nk−1∑
j=1

ψk,nj ∂t̄Z
k,n
j .

The well-known Green summation formula states: for any mesh functions
V,W ∈ Vh the following equality is valid

Nk−1∑
j=1

∂x̄
(
dkj+ 1

2
∂xV

k
j

)
W k
j hk = −

Nk∑
j=1

dkj− 1
2
∂x̄V

k
j ∂x̄W

k
j hk + dkNk− 1

2
W k
Nk
∂x̄V

k
Nk

− dk1
2
W k

0 ∂xV
k
0 . (3.11)

Thus we get

K∑
k=1

hk

Nk−1∑
j=1

∂t̄Z
k,n
j ∂x̄

(
dkj+ 1

2
∂xZ

k,n
j

)
= −

K∑
k=1

(
hk

Nk∑
j=1

dkj− 1
2
∂x̄∂t̄Z

k,n
j ∂x̄Z

k,n
j

− dkNk− 1
2
∂t̄Z

k,n
Nk

∂x̄Z
k,n
Nk

+ dk1
2
∂t̄Z

k,n
0 ∂xZ

k,n
0

)
.

Taking into account boundary conditions at the termination vertexes, the fluxes
at the remaining pj ∈ P1 vertexes can be grouped in the following way

K∑
k=1

(
dkNk− 1

2
∂t̄Z

k,n
Nk

∂x̄Z
k,n
Nk
− dk1

2
∂t̄Z

k,n
0 ∂xZ

k,n
0

)
=
∑
pj∈P1

( ∑
ek∈N+ (pj)

dkNk− 1
2
∂x̄Z

k,n(pj)−
∑

em∈N− (pj)

dm1/2∂xZ
m,n(pj)

)
∂t̄Z

n(pj).

Math. Model. Anal., 17(1):113–127, 2012.



120 N. Tumanova and R. Čiegis

From (3.10), applying equality 2Zn = Zn + Zn−1 + τ∂t̄Z
n and equation (3.3)

we obtain

2τ‖∂t̄Zn‖2 + τ2‖∂t̄Zn‖2E + ‖Zn‖2E = ‖Zn−1‖2E (3.12)

+ 2τ

S∑
s=1

Z̃s,njs − Z
s,n
js

hs

(
dsjs− 1

2
∂t̄Z

s,n
js−1 + dsjs+ 1

2
∂t̄Z

s,n
js+1

)
+ 2τ

K∑
k=1

hk

Nk−1∑
j=1

ψk,nj ∂t̄Z
k,n
j + 2τ

∑
pj∈P1

ϕn(pj) ∂t̄Z
n(pj).

Using the Schwarz inequality and the ε-inequality, we have

2τ

K∑
k=1

hk

Nk−1∑
j=1

ψk,nj ∂t̄Z
k,n
j 6 τ‖∂t̄Zn‖2 + τ‖ψn‖2. (3.13)

Similarly we get the estimate

2τ
∑
pj∈P1

ϕn(pj) ∂t̄Z
n(pj) 6 2τ

∑
pj∈P1

( h

2J1
|∂t̄Zn(pj)|2 +

J1

2h
|ϕn(pj)|2

)
(3.14)

6 τ‖∂t̄Zn‖2 +
τJ1

h

∑
pj∈P1

|ϕn(pj)|2.

It remains to estimate the error introduced at the predictor step. The analysis
is similar to one presented in [2]. From (3.1), (3.5) it follows that

Z̃s,njs − Z
s,n
js

= −τ2∂t̄∂x
(
djs− 1

2
∂x̄Z

s,n
js

)
+ τ(ψ̃s,njs − ψ

s,n
js

), xjs ∈ B.

We write the term ds
js− 1

2

∂t̄Z
s,n
js−1 + ds

js+ 1
2

∂t̄Z
s,n
js+1 in two forms:

dsjs− 1
2
∂t̄Z

s,n
js−1 + dsjs+ 1

2
∂t̄Z

s,n
js+1 = h2

s∂t̄∂x
(
dsjs− 1

2
∂x̄Z

s,n
js

)
+ 2d̄sjs∂t̄Z

s,n
js

= h2
s∂t̄∂x

(
dsjs− 1

2
∂x̄Z

s,n
js

)
+ 2d̄sjs

(
∂x
(
dsjs− 1

2
∂x̄Z

s,n
js

)
+ ψs,njs

)
,

where d̄sjs = (ds
js− 1

2

+ ds
js+ 1

2

)/2. Then we split the remaining estimate into five

parts

2τ

hs
(Z̃s,njs − Z

s,n
js

)
(
dsjs− 1

2
∂t̄Z

s,n
js−1 + dsjs+ 1

2
∂t̄Z

s,n
js+1

)
= T1 + T2 + T3 + T4 + T5,

where

T1 = −2τ3hs

(
∂t̄∂x

(
dsjs− 1

2
∂x̄Z

s,n
js

))2

,

T2 = −
4τ3d̄sjk
hs

∂x
(
dsjs− 1

2
∂x̄Z

s,n
js

)
∂t̄∂x

(
dsjs− 1

2
∂x̄Z

s,n
js

)
= −

2τ2d̄sjs
hs

((
∂x
(
dsjs− 1

2
∂x̄Z

s,n
js

))2 − (∂x(dsjs− 1
2
∂x̄Z

s,n−1
js

))2
+ τ2

(
∂t̄∂x

(
dsjs− 1

2
∂x̄Z

s,n
js

))2)
.
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Applying the Schwarz inequality and the ε-inequality, we get the following
estimates:

T3 =
4τ3d̄sjs
hs

∂t̄∂x
(
dsjs− 1

2
∂x̄Z

s,n
js

)
ψs,njs 6

2τ4d̄sjs
hs

(
∂t̄∂x

(
dsjs− 1

2
∂x̄Z

s,n
js

))2

+
2τ2d̄sjs
hs

(
ψs,njs

)2
,

T4 = 2τ2hs ∂t̄∂x
(
dsjs− 1

2
∂x̄Z

s,n
js

)
(ψ̃s,njs − ψ

s,n
js

) 6 2τ3hs

(
∂t̄∂x

(
dsjs− 1

2
∂x̄Z

s,n
js

))2

+
τhs
2

(
ψ̃s,njs − ψ

s,n
js

)2
.

By using imbedding estimate (3.8), the last term is estimated as follows

T5 =
4τ2d̄sjs
hs

(ψ̃s,njs − ψ
s,n
js

) ∂t̄Z
s,n
js

6
4τ2dM
hs

|ψ̃s,njs − ψ
s,n
js
| |∂t̄Zs,njs |

6
4τ2dMC

hs
|ψ̃s,njs − ψ

s,n
js
| ‖∂t̄Zs,n‖E

6
τ2

S
‖∂t̄Zn‖2E +

4d2
MCSτ

2

h2
s

(
ψ̃s,njs − ψ

s,n
js

)2
.

Substituting (3.13), (3.14) into (3.12) and using the resulting inequalities Tm,
m = 1, . . . , 5, we obtain

En 6 En−1 + τ
(
‖ψn‖2 +

J1

h

∑
pj∈P1

|ϕn(pj)|2 +

S∑
s=1

[2τ d̄sjs
hs

(
ψs,njs

)2
+
(4τd2

MCS

h2
s

+
hs
2

)(
ψ̃s,njs − ψ

s,n
js

)2])
.

By repeated application, this yields the desired result (3.9). ut

Now, using the stability estimate given in Lemma 1 and the estimates of
truncation errors (3.7) we get the following convergence result

Theorem 1. Let U be the solution of the finite difference scheme (2.11)–(2.12)
and u(x, t) be the solution of the differential problem (2.1)–(2.6). Then

‖Un − un‖E 6 Ctn
(
τ + h3/2 +

τ
√
τ

h

)
. (3.15)

It follows from Lemma 1 and (3.15) that finite difference scheme (2.11)–
(2.12) is unconditionally A-stable, but the approximation of the scheme in the
related norm is only conditional.

It is shown in [2] for a linear 1D parabolic problem that the global error
of the discrete predictor-corrector scheme solution depends on the prediction
error as O(τ2/h). The L∞ norm is used in the analysis.
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4 Domain Decomposition Method

In this section we compare the obtained above results with error estimates
presented in [13]. Here the stability and accuracy of the predictor-corrector
type schemes is investigated by using the Domain Decomposition (DD) method,
which is based on additive splitting schemes.

For simplicity of notations, here we restrict to 1D parabolic problem (see,
also [2]):

∂u

∂t
=

∂

∂x

(
d(x)

∂u

∂x

)
− q(x)u(x, t) + f(x, t), 0 < x < 1, t > 0, (4.1)

0 < d0 6 d(x) 6 dM , q(x) > 0,

u(x, 0) = u0(x), 0 6 x 6 1,

u(0, t) = µL(t), u(1, t) = µR(t), 0 < t 6 T.

We note that equation (4.1) includes a linear sink term q(x)u(x).
The domain Ω̄ = [0, 1] is divided into two subdomains (a generalization to

the case of K subdomains is quite straightforward)

Ω̄ =

2⋃
k=1

Ω̄k, Ω̄1 = [0, l], Ω̄2 = [l, 1], 0 < l < 1.

In accordance with this domain decomposition, the space grid is decomposed

into subgrids ω̄h =
2⋃
k=1

ω̄kh, where

ω̄kh = {xj : xj = jh, j = jk−1, . . . , jk}, xj0 = 0, xj1 = l, xj2 = 1.

Note, that here we use a global numbering of grid points.

• Predictor step. The explicit Euler approximation is used to compute
the solution at the boundary point of two subdomains

Ũnj1 − U
n−1
j1

τ
= ∂x̄

(
dj1+ 1

2
∂xU

n−1
j1

)
− qj1Un−1

j1
+ fnj1 . (4.2)

• Domain decomposition step. Solutions on each subdomain are com-
puted in parallel using the implicit finite difference scheme (4.3), the
predicted value Ũnj1 is used as the interface boundary condition:

Unt̄ = ∂x̄
(
dj+ 1

2
∂xU

n
j

)
− qjUnj + fnj , ∀xj ∈ ωkh, k = 1, 2, (4.3)

Un0 = µL(tn), Unj1 = Ũnj1 , UnJ = µR(tn).

• Corrector step. Third, using the implicit finite difference scheme (4.3)
and taking the solution Un, computed at the second step, we update the
value of the solution at the boundary point of subdomains:

Unj1,t̄ = ∂x̄
(
dj1+ 1

2
∂xU

n
j1

)
− qj1Unj1 + fnj1 . (4.4)
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Following [13], we can write this predictor-corrector scheme as an addi-
tive splitting scheme. With the decomposition of the discrete domain ωh we
associate a corresponding additive representation of the identity operator I:

2∑
j=1

χj = I, χj > 0, j = 1, 2.

Then the following discrete operators are defined:

AhU
n = −∂x̄

(
dj+ 1

2
∂xU

n
j

)
+ qjU

n
j , Ah,α = χαAh, α = 1, 2.

It is easy to check, that the operator Ah is self-adjoint (with respect to a
standard inner product) and positive definite

Ah = A∗h, Ah > λ0I, λ0 =
4

h2
sin2

(πh
2

)
. (4.5)

The operators Ah,α do not inherit these basic properties, therefore a construc-
tion and analysis of splitting schemes is quite non-trivial task.

The predictor-corrector scheme (4.2)–(4.4) can be written as the Douglas
scheme (see, [13])

U
n−1/2
j − Un−1

j

τ
+Ah,1U

n−1/2
j +Ah,2U

n−1
j = fnj , xj ∈ ωh, (4.6)

Unj − U
n−1
j

τ
+Ah,1U

n−1/2
j +Ah,2U

n
j = fnj , xj ∈ ωh.

Excluding the intermediate solution Un−1/2, we get the equivalent factorized
scheme

(I + τAh,1)(I + τAh,2)∂τ̄U
n
j +AhU

n−1
j = fnj , xj ∈ ωh. (4.7)

The corresponding problem for the error Znj = Unj −u(xj , t
n) is defined by

(I + τAh,1)(I + τAh,2)∂τ̄Z
n
j +AhZ

n−1
j = ψnj , Z0

j = 0, xj ∈ ωh, (4.8)

where ψn is the approximation error

ψnj = fnj − (I + τAh,1)(I + τAh,2)∂τ̄u
n
j −Ahun−1

j , xj ∈ ωh.

The following convergence estimate is proved in [13] (for more results on
stability of the Douglas scheme see [4, 10]):

‖(I + τAh,2)Zn‖Ah
6 tn‖(I + τAh,1)−1ψn‖Ah

, (4.9)

where the energy norm is defined as ‖Z‖Ah
= (AhZ,Z)1/2.

We split the approximation error into two parts ψnj = ψn1,j +ψn2,j . The first
term defines the approximation error of the backward Euler scheme

ψn1,j = fnj − ∂τ̄unj −Ahunj , xj ∈ ωh,
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the second term defines the splitting error (i.e., the predictor-corrector error):

ψn2,j = −τ2Ah,1Ah,2∂τ̄u
n
j .

We consider both terms in detail. Note, that in [13] the analysis of the first
term is skipped on the basis that it defines a standard error of the classical
Euler scheme with weights.

Let us consider the operator I + τAh,1, it is easy to see that for τ = Ch2

the estimate I + τAh,1 ≈ cI is valid. Thus the influence of the diffusion is very
weak in this case. As an example we investigate a discrete parabolic problem
with a constant diffusion coefficient d(x) = 1 and q(x) = 0

Un − Un−1

τ
= ∂x∂x̄U

n + fn, xj ∈ ωh,

Un0 = µ0, UnJ = µ1,

U0
j = u0(xj), xj ∈ ω̄h,

when the exact solution of the differential problem is u = exp(x− t). Then the
approximation error is equal to ψn1,j = (t+ h2)u(xj , t

n) +O(τ2 + h4), xj ∈ ωh.

For τ = Ch2 the energy norm of ψn1 can be estimated as

‖ψn1 ‖Ah
6 C

τ + h2

√
h

.

Thus due to the need to estimate the approximation error in the strong energy
norm the convergence rate is reduced and only the conditional approximation
is valid.

In Table 1 values of ‖(I+τAh,1)−1ψn1 ‖Ah
are presented for different discrete

time and space steps. Numerical experiments are done for two relations τ = h
and τ = 50h2 of discrete steps. The experimental convergence rates p are
defined as ‖(I + τAh,1)−1ψn1 ‖Ah

= Chp.

Table 1. Results of computational experiments: analysis of approximation error ψn
1 .

τ = h h = 0.02 h = 0.01 h = 0.005 h = 0.0025

‖(I + τAh,1)−1ψn
1 ‖Ah

0.098267 0.059370 0.036005 0.021772

p 0.72697 0.72156 0.72568

τ = 50h2 h = 0.02 h = 0.01 h = 0.005 h = 0.0025

‖(I + τAh,1)−1ψn
1 ‖Ah

0.098267 0.036503 0.013349 0.004808

p 1.4287 1.4513 1.4732

It is proved in [13], that the splitting error can be estimated as

‖(I + τAh,1)−1ψn2 ‖Ah
6 Cτ‖χ2‖Ah

6 C
τ√
h
. (4.10)
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Table 2. Theoretical analysis of the domain decomposition error ψn
2 .

[2] O

(
τ2

h

)
(3.15) O

(
τ
√
τ

h

)
(4.10) O

(
τ
√
h

)
τ = h2 O(h3) O(h2) O(h3/2)

τ = h O(h) O(
√
h) O(

√
h)

τ =
√
h O(1) O(h−1/4) O(1)

Now, in Table 2 we collect all three estimates obtained for the splitting error
ψn2 , these estimates are applied for different relations on τ and h.

We have solved numerically 1D parabolic problem with a constant diffusion
coefficient d(x) = 1 and q(x) = 0. The exact solution of the differential problem
is u = tx(1−x). In this case ψn1 = 0, and only domain decomposition error ψn2
is included in the analysis. Since, the behavior of the error Zn is the same in
all tested norms, we present in Table 3 results only for the energy norm ‖Zn‖E
at t = 1.

Table 3. Results of computational experiments: analysis of approximation error ψn
2 .

τ = 50h2 h = 0.02 h = 0.01 h = 0.005 h = 0.0025

‖Z(t = 1)‖E 0.039264 0.0049497 0.0006218 0.0000779

p 2.9878 2.9928 2.9968

τ = h h = 0.02 h = 0.01 h = 0.005 h = 0.0025

‖Z(t = 1)‖E 0.039264 0.019799 0.009950 0.004987

p 0.98778 0.99266 0.99652

τ = 0.1
√
h h = 0.04 h = 0.01 h = 0.0025 h = 0.000625

‖Z(t = 1)‖E 0.019174 0.019799 0.019950 0.019987

p -0.02313 -0.00548 -0.00134

The results of numerical experiments agree well with the theoretical results
presented above.

5 Conclusions

In this work, we have presented a parallel predictor-corrector type algorithm
for solution of linear one-dimensional parabolic problems on graphs. By us-
ing the energy estimates it is proved that the predictor-corrector algorithm
is unconditionally stable. The relation between space and time steps is still
required in order to get the convergence of the discrete solution, since only a
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conditional approximation is obtained due to the truncation error introduced
at the prediction step.

Applying results from [13] and using the equivalence of the predictor –
corrector scheme and the Douglas type scheme, it is possible to get new con-
vergence estimates. The asymptotic optimality of different theoretical accuracy
estimates is compared with results of computational experiments.

An interesting goal of future work is to compare the accuracy of fully im-
plicit and predictor-corrector splitting schemes (including different strategies
for graph decomposition).
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