MATHEMATICAL MODELLING AND ANALYSIS Volume 17 Number 1, February 2012, 90–99 http://dx.doi.org/10.3846/13926292.2012.645170 © Vilnius Gediminas Technical University, 2012

Publisher: Taylor&Francis and VGTU http://www.tandfonline.com/TMMA

Print ISSN: 1392-6292 Online ISSN: 1648-3510

Limit Theorems for Twists of L-Functions of Elliptic Curves. II

Virginija Garbaliauskienė a and Antanas Laurinčikas b

^aŠiauliai University

P. Višinskio 19, LT-77156 Šiauliai, Lithuania

^b Vilnius University

Naugarduko 24, LT-03225 Vilnius, Lithuania

E-mail(corresp.): vgarbaliauskiene@gmail.com

E-mail: antanas.laurincikas@mif.vu.lt

Received June 2, 2011; revised November 5, 2011; published online February 1, 2012

Abstract. In the paper, a limit theorem for the argument of twisted with Dirichlet character *L*-functions of elliptic curves with an increasing modulus of the character is proved.

Keywords: Dirichlet character, elliptic curve, *L*-function of elliptic curve, probability measure, weak convergence.

AMS Subject Classification: 11M41; 44A15.

1 Introduction

In [3], we began to study limit theorems for twisted with Dirichlet character L-functions of elliptic curves with an increasing modulus of the character, and obtained a limit theorem of such a type for the modulus of these twists. Let E be an elliptic curve over the field of rational numbers given by the Weierstrass equation

$$y^2 = x^3 + ax + b, \quad a, b \in \mathbb{Z},$$

with non-zero discriminant $\Delta = -16(4a^3 + 27b^2)$. For each prime p, denote by E_p the reduction of the curve E modulo p which is a curve over the finite field \mathbb{F}_p , and define $\lambda(p)$ by

$$|E(\mathbb{F}_p)| = p + 1 - \lambda(p),$$

where $|E(\mathbb{F}_p)|$ is the number of points of E_p . The L-function $L_E(s)$, $s = \sigma + it$, of the elliptic curve E is defined by the Euler product

$$L_E(s) = \prod_{p \mid \Delta} \left(1 - \frac{\lambda(p)}{p^s} \right)^{-1} \prod_{p \nmid \Delta} \left(1 - \frac{\lambda(p)}{p^s} + \frac{1}{p^{2s-1}} \right)^{-1}.$$

Since, by the classical Hasse result,

$$|\lambda(p)| \leqslant 2\sqrt{p} \tag{1.1}$$

for all primes, the product defining $L_E(s)$ converges uniformly on compact subset of the half-plane $\{s\in\mathbb{C}\colon\sigma>\frac32\}$ and define there an analytic function without zeros. Moreover, in [1], the Taniyama–Shimura conjecture has been proved, therefore, the function $L_E(s)$ is analytically continued to an entire function, and satisfies the functional equation

$$\left(\frac{\sqrt{N}}{2\pi}\right)^{s} \Gamma(s) L_{E}(s) = w \left(\frac{\sqrt{N}}{2\pi}\right)^{2-s} \Gamma(2-s) L_{E}(2-s),$$

where, as usual, $\Gamma(s)$ denotes the Euler gamma-function, N is the conductor of the curve E, and $w = \pm 1$.

The twist $L_E(s,\chi)$ with Dirichlet character χ for the function $L_E(s)$ is defined similarly. For $\sigma > \frac{3}{2}$, we have that

$$L_E(s,\chi) = \prod_{p|\Delta} \left(1 - \frac{\lambda(p)\chi(p)}{p^s} \right)^{-1} \prod_{p \nmid \Delta} \left(1 - \frac{\lambda(p)\chi(p)}{p^s} + \frac{\chi^2(p)}{p^{2s-1}} \right)^{-1}, \quad (1.2)$$

and function $L_E(s,\chi)$ is also analytically continued to an entire function.

Suppose that the modulus q of the character χ is a prime number, and is not fixed. Denoting by χ_0 the principal character modulo q, for $Q \ge 2$, define

$$M_Q = \sum_{q \leqslant Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_0}} 1,$$

and put

$$\mu_Q(\dots) = M_Q^{-1} \sum_{q \leqslant Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_Q}} 1,$$

where in place of dots we will write a condition satisfied by a pair $(q, \chi(\text{mod }q))$. Let $\mathcal{B}(S)$ stand for the class of Borel sets of the space S. Then in [3], the weak convergence of the frequency,

$$\hat{P}_Q(A) = \mu_Q(|L_E(s,\chi)| \in A), \quad A \in \mathcal{B}(\mathbb{R}),$$

as $Q \to \infty$, has been obtained. To state a limit theorem, we need some additional notation and definitions. For $p \nmid \Delta$, let $\alpha(p)$ and $\beta(p)$ be conjugate complex numbers such that $\alpha(p)\beta(p) = p$ and $\alpha(p) + \beta(p) = \lambda(p)$. Then (1.2), for $\sigma > \frac{3}{2}$, can be rewritten in the form

$$L_E(s,\chi) = \prod_{p|\Delta} \left(1 - \frac{\lambda(p)\chi(p)}{p^s} \right)^{-1} \prod_{p\nmid\Delta} \left(1 - \frac{\alpha(p)\chi(p)}{p^s} \right)^{-1} \left(1 - \frac{\beta(p)\chi(p)}{p^s} \right)^{-1}. \tag{1.3}$$

As in [3], we use the notation $\eta = \eta(\tau) = i\tau/2$, $\tau \in \mathbb{R}$, and, for primes p and $k \in \mathbb{N}$,

$$d_{\tau}(p^k) = \frac{\eta(\eta+1)\cdots(\eta+k-1)}{k!}.$$

For $p \nmid \Delta$ and $k \in \mathbb{N}$, we set

$$a_{\tau}(p^{k}) = \sum_{l=0}^{k} d_{\tau}(p^{l}) \alpha^{l}(p) d_{\tau}(p^{k-l}) \beta^{k-l}(p), \qquad (1.4)$$

$$b_{\tau}(p^{k}) = \sum_{l=0}^{k} d_{\tau}(p^{l}) \overline{\alpha}^{l}(p) d_{\tau}(p^{k-l}) \overline{\beta}^{k-l}(p),$$
(1.5)

where $\overline{\alpha}(p)$ and $\overline{\beta}(p)$ denote the conjugates of $\alpha(p)$ and $\beta(p)$, respectively. For $p \mid \Delta$ and $k \in \mathbb{N}$, we define

$$a_{\tau}(p^k) = b_{\tau}(p^k) = d_{\tau}(p^k)\lambda^k(p). \tag{1.6}$$

Let $a_{\tau}(m)$ and $b_{\tau}(m)$, $m \in \mathbb{N}$, be multiplicative functions defined by (1.4)–(1.6), i.e.,

$$a_{\tau}(m) = \prod_{p^l \mid m} a_{\tau}(p^l), \qquad b_{\tau}(m) = \prod_{p^l \mid m} b_{\tau}(p^l),$$

where $p^l \parallel m$ means that $p^l \mid m$ but $p^{l+1} \nmid m$.

On $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ define the probability measure \hat{P} by the characteristic transforms [5],

$$w_k(\tau) = \int_{\mathbb{R}\backslash\{0\}} |x|^{i\tau} \operatorname{sgn}^k d\hat{P} = \sum_{m=1}^{\infty} \frac{a_{\tau}(m)b_{\tau}(m)}{m^{2\sigma}}, \quad \tau \in \mathbb{R}, \ k = 0, 1.$$

Theorem 1 [see [3]]. Suppose that $\sigma > \frac{3}{2}$. Then \hat{P}_Q converges weakly to \hat{P} as $Q \to \infty$.

The other results for L-functions with increasing modulus of the character are shortly discussed in [3].

The aim of this paper is to prove a limit theorem for the argument of the function $L_E(s,\chi)$. The estimate (1.1) and (1.3) show that $L_E(s,\chi) \neq 0$ for $\sigma > \frac{3}{2}$. Thus, for $\sigma > \frac{3}{2}$, $\arg L_E(s,\chi)$ is well defined. For $k \in \mathbb{Z}$, let $\theta = \theta(k) = \frac{k}{2}$, for primes p and $l \in \mathbb{N}$,

$$d_k(p^l) = \frac{\theta(\theta+1)\cdots(\theta+l-1)}{l!},$$

and $d_k(1) = 1$. Now similarly to (1.4) and (1.5), for $p \nmid \Delta$ and $l \in \mathbb{N}$, we define

$$a_{k}(p^{l}) = \sum_{j=0}^{l} d_{k}(p^{j})\alpha^{j}(p)d_{k}(p^{l-j})\beta^{l-j}(p),$$

$$b_{k}(p^{l}) = \sum_{j=0}^{l} d_{-k}(p^{j})\overline{\alpha}^{j}(p)d_{-k}(p^{l-j})\overline{\beta}^{l-j}(p).$$

If $p \mid \Delta$, then, for $l \in \mathbb{N}$, we set

$$a_k(p^l) = d_k(p^l)\lambda^l(p), \quad b_k(p^l) = d_{-k}(p^l)\lambda^l(p).$$

Moreover, for $m \in \mathbb{N}$, we set

$$a_k(m) = \prod_{p^l || m} a_k(p^l), \quad b_k(m) = \prod_{p^l || m} b_k(p^l).$$

Thus, $a_k(m)$ and $b_k(m)$ are multiplicative functions. Denote by γ the unit circle on the complex plane. Furthermore, let P be a probability measure on $(\gamma, \mathcal{B}(\gamma))$ defined by the Fourier transform

$$g(k) \stackrel{\text{def}}{=} \int_{\gamma} x^k \, dP = \sum_{m=1}^{\infty} \frac{a_k(m)b_k(m)}{m^{2\sigma}}, \quad k \in \mathbb{Z}, \ \sigma > \frac{3}{2}.$$

The main result of this paper is the following statement.

Theorem 2. Suppose that $\sigma > \frac{3}{2}$. Then

$$P_Q(A) \stackrel{\text{def}}{=} \mu_Q(\exp\{i \arg L_E(s,\chi)\} \in A), \quad A \in \mathcal{B}(\gamma),$$

converges weakly to P as $Q \to \infty$.

We recall that a distribution function F(x) is said to be a distribution function mod 1 if

$$F(x) = \begin{cases} 1, & \text{if } x \geqslant 1, \\ 0, & \text{if } x < 0. \end{cases}$$

Let $F_n(x)$, $n \in \mathbb{N}$, and F(x) be distribution functions mod 1. We say that $F_n(x)$, as $n \to \infty$, converges weakly mod 1 to F(x), if at all continuity points $x_1, x_2, 0 \le x_1 \le x_2 < 1$, of F(x)

$$\lim_{n \to \infty} (F_n(x_2) - F_n(x_1)) = F(x_2) - F(x_1).$$

Denote by $L(s,\chi)$ the Dirichlet L-functions. Elliott in [2], for $\sigma > \frac{1}{2}$, obtained the weak convergence mod 1, as $Q \to \infty$, for

$$\mu_Q\left(\frac{1}{2\pi}\arg L(s,\chi)\leqslant x(\operatorname{mod} 1)\right).$$

From Theorem 2, the following corollary follows.

Corollary 1. Suppose that $\sigma > \frac{3}{2}$. Then

$$\mu_Q\left(\frac{1}{2\pi}\arg L_E(s,\chi)\leqslant x(\bmod 1)\right)$$

converges weakly mod 1 to the distribution function mod 1 defined by the Fourier transform g(k) as $Q \to \infty$.

Differently from Dirichlet L-functions, we do not have any information on the convergence of the series defining the function $L_E(s,\chi)$, $\chi \neq \chi_0$, in the region $\sigma > 1$. Therefore, we can prove Theorem 2 only in the half-plane of absolute convergence of the mentioned series. Of course, we have a conjecture that the statement of Theorem 2 remains also true for $\sigma > 1$, however, at the moment we can not prove this.

2 Fourier Transform

Let $g_Q(k)$, $k \in \mathbb{Z}$, denote the Fourier transform of P_Q i.e., $g_Q(k) = \int_{\gamma} x^k dP$. Then the definition of P_Q implies the equality

$$g_Q(k) = \frac{1}{M_Q} \sum_{\substack{q \leqslant Q \\ \chi = \chi \pmod{q}}} \sum_{\substack{\text{e}^{ik \arg L_E(s,\chi)}}}.$$
 (2.1)

For the proof of Theorem 2, we need the asymptotics of $g_Q(k)$ as $Q \to \infty$. In this section, we give an expression for $g_Q(k)$ convenient for the investigation of its asymptotics.

For any fixed $\delta > 0$, denote by R the region $\{s \in \mathbb{C}: \sigma \geqslant \frac{3}{2} + \delta\}$. For $s \in R$, we have that

$$(L_E(s,\chi))^{\frac{1}{2}} \left(\overline{L_E(s,\chi)}\right)^{-\frac{1}{2}} = \left(L_E(s,\chi)\right)^{\frac{1}{2}} \left(L_E(\overline{s},\overline{\chi})\right)^{-\frac{1}{2}}$$

$$= \left|L_E(s,\chi)\right|^{\frac{1}{2}} e^{\frac{1}{2}i \arg L(s,\chi)} \left|L_E(s,\chi)\right|^{-\frac{1}{2}} e^{-\frac{1}{2}i \arg L(s,\chi)}$$

$$= e^{i \arg L(s,\chi)}$$

Therefore, for $s \in R$ and $k \in \mathbb{Z} \setminus \{0\}$, formula (1.3) yields

$$\begin{split} \mathrm{e}^{ik\arg L_E(s,\chi)} &= \exp\biggl\{-\frac{k}{2} \sum_{p \mid \Delta} \biggl(\log \biggl(1 - \frac{\lambda(p)\chi(p)}{p^s}\biggr) - \log \biggl(1 - \frac{\lambda(p)\overline{\chi}(p)}{p^{\overline{s}}}\biggr)\biggr) \\ &- \frac{k}{2} \sum_{p \nmid \Delta} \biggl(\log \biggl(1 - \frac{\alpha(p)\chi(p)}{p^s}\biggr) + \log \biggl(1 - \frac{\beta(p)\chi(p)}{p^s}\biggr)\biggr) \\ &+ \frac{k}{2} \sum_{p \nmid \Delta} \biggl(\log \biggl(1 - \frac{\overline{\alpha}(p)\overline{\chi}(p)}{p^{\overline{s}}}\biggr) + \log \biggl(1 - \frac{\overline{\beta}(p)\overline{\chi}(p)}{p^{\overline{s}}}\biggr)\biggr)\biggr\} \\ &= \prod_{p \mid \Delta} \exp \biggl\{-\theta \log \biggl(1 - \frac{\lambda(p)\chi(p)}{p^s}\biggr)\biggr\} \\ &\times \prod_{p \mid \Delta} \exp \biggl\{-\theta \biggl(\log \biggl(1 - \frac{\alpha(p)\chi(p)}{p^s}\biggr) + \log \biggl(1 - \frac{\beta(p)\chi(p)}{p^s}\biggr)\biggr)\biggr\} \\ &\times \prod_{p \mid \Delta} \exp \biggl\{\theta \log \biggl(1 - \frac{\lambda(p)\overline{\chi}(p)}{p^{\overline{s}}}\biggr)\biggr\} \\ &\times \prod_{p \mid \Delta} \exp \biggl\{\theta \biggl(\log \biggl(1 - \frac{\overline{\alpha}(p)\overline{\chi}(p)}{p^{\overline{s}}}\biggr) + \log \biggl(1 - \frac{\overline{\beta}(p)\overline{\chi}(p)}{p^{\overline{s}}}\biggr)\biggr)\biggr\} \\ &= \prod_{p \mid \Delta} \biggl(1 - \frac{\lambda(p)\chi(p)}{p^s}\biggr)^{-\theta} \prod_{p \mid \Delta} \biggl(1 - \frac{\lambda(p)\overline{\chi}(p)}{p^{\overline{s}}}\biggr)^{\theta} \\ &\times \prod_{p \mid \Delta} \biggl(1 - \frac{\alpha(p)\chi(p)}{p^s}\biggr)^{-\theta} \biggl(1 - \frac{\beta(p)\chi(p)}{p^s}\biggr)^{-\theta} \end{split}$$

$$\times \prod_{p \nmid \Delta} \left(1 - \frac{\overline{\alpha}(p)\overline{\chi}(p)}{p^{\overline{s}}} \right)^{\theta} \left(1 - \frac{\overline{\beta}(p)\overline{\chi}(p)}{p^{\overline{s}}} \right)^{\theta}. \tag{2.2}$$

Here the multi-valued functions $\log(1-z)$ and $(1-z)^{\pm\theta}$ in the region |z|<1 are defined by continuous variation along any path lying in this region from the values $\log(1-z)|_{z=0}=0$ and $(1-z)^{\pm\theta}|_{z=0}=1$, respectively.

In the disc |z| < 1, by the definition of $d_k(p^l)$ we have that

$$(1-z)^{\pm\theta} = \sum_{l=0}^{\infty} d_{\mp k}(p^l) z^l.$$

Therefore, (2.2) implies that, for $s \in R$,

$$e^{ik \arg L_E(s,\chi)} = \prod_{p|\Delta} \sum_{j=0}^{\infty} \frac{d_k(p^j)\lambda^j(p)\chi^j(p)}{p^{js}} \prod_{p\nmid\Delta} \sum_{l=0}^{\infty} \frac{d_k(p^l)\alpha^l(p)\chi^l(p)}{p^{ls}}$$

$$\times \sum_{v=0}^{\infty} \frac{d_k(p^v)\beta^v(p)\chi^v(p)}{p^{vs}} \prod_{p|\Delta} \sum_{j=0}^{\infty} \frac{d_{-k}(p^j)\lambda^j(p)\overline{\chi}^j(p)}{p^{j\overline{s}}}$$

$$\times \prod_{p\nmid\Delta} \sum_{l=0}^{\infty} \frac{d_{-k}(p^l)\overline{\alpha}^l(p)\overline{\chi}^l(p)}{p^{l\overline{s}}} \sum_{v=0}^{\infty} \frac{d_{-k}(p^v)\overline{\beta}^v(p)\overline{\chi}^v(p)}{p^{v\overline{s}}}. \quad (2.3)$$

Let $\hat{a}_k(m)$ and $\hat{b}_k(m)$ be multiplicative functions with respect to m defined, for primes $p \nmid \Delta$ and $l \in \mathbb{N}$, by

$$\hat{a}_k(p^l) = \sum_{j=0}^l d_k(p^j) \alpha^j(p) \chi(p^j) d_k(p^{l-j}) \beta^{l-j}(p) \chi(p^{l-j}), \tag{2.4}$$

$$\hat{b}_k(p^l) = \sum_{j=0}^k d_{-k}(p^j)\overline{\alpha}^j(p)\overline{\chi}(p^j)d_{-k}(p^{l-j})\overline{\beta}^{l-j}(p)\overline{\chi}(p^{l-j}), \qquad (2.5)$$

and, for primes $p \mid \Delta$ and $l \in \mathbb{N}$, by

$$\hat{a}_k(p^l) = d_k(p^l)\lambda^l(p)\chi(p^l), \quad \hat{b}_k(p^l) = d_{-k}(p^l)\lambda^l(p)\overline{\chi}(p^l).$$
 (2.6)

For $l \in \mathbb{N}$, we have that

$$|d_{\pm k}(p^l)| \leqslant \frac{|\theta|(|\theta|+1)\cdots(|\theta|+l-1)}{l!} = \theta \prod_{j=2}^{l} \left(1 + \frac{|\theta|-1}{j}\right)$$
$$\leqslant |\theta| \prod_{j=1}^{l} \left(1 + \frac{|\theta|}{j}\right) \leqslant |\theta| \exp\left\{|\theta| \sum_{j=1}^{l} \frac{1}{j}\right\} \leqslant (l+1)^c, \tag{2.7}$$

where the constant c depends on k, only. By the definition of $\alpha(p)$ and $\beta(p)$, we have that $|\alpha(p)| = |\beta(p)| = \sqrt{p}$. Therefore, for $p \nmid \Delta$ and $l \in \mathbb{N}$, (2.4) and (2.5) imply the bounds

$$|\hat{a}_k(p^l)| \le p^{\frac{l}{2}} \sum_{j=0}^l (j+1)^c (l-j+1)^c \le p^{\frac{l}{2}} (l+1)^{2c+1}$$
 (2.8)

and

$$|\hat{b}_k(p^l)| \le p^{\frac{l}{2}}(l+1)^{2c+1}.$$
 (2.9)

It is known [4] that, for $p \mid \Delta$, the numbers $\lambda(p)$ are equal to 1 or 0. Thus, by (2.6)–(2.7) we have that, for $p \mid \Delta$,

$$|\hat{a}_k(p^l)| \le (l+1)^c, \quad |\hat{b}_k(p^l)| \le (l+1)^c.$$
 (2.10)

Now the multiplicativity of $\hat{a}_k(m)$ and $\hat{b}_k(m)$, and the estimates (2.8)–(2.10) show that

$$\hat{a}_k(m) = \prod_{p^l \mid m} |\hat{a}_k(p^l)| \leqslant m^{\frac{1}{2}} \prod_{p^l \mid m} (l+1)^{2c+1} = m^{\frac{1}{2}} d^{2c+1}(m), \tag{2.11}$$

$$|\hat{b}_k(m)| \le m^{\frac{1}{2}} d^{2c+1}(m),$$
 (2.12)

where d(m) is the divisor function. Since

$$d(m) = \mathcal{O}_{\varepsilon}(m^{\varepsilon}) \tag{2.13}$$

with every $\varepsilon > 0$, the latter estimates imply, for every fixed $k \in \mathbb{Z} \setminus \{0\}$ and $s \in R$, the absolute convergence of the series

$$\sum_{m=1}^{\infty} \frac{\hat{a}_k(m)}{m^s} \quad \text{and} \quad \sum_{m=1}^{\infty} \frac{\hat{b}_k(m)}{m^s}.$$

Therefore, in view of (2.3), we conclude that, for every fixed $k \in \mathbb{Z} \setminus \{0\}$ and and $s \in R$,

$$e^{ik \arg L_{E}(s,\chi)} = \prod_{p|\Delta} \sum_{j=0}^{\infty} \frac{d_{k}(p^{j})\lambda^{j}(p)\chi^{j}(p)}{p^{js}} \prod_{p\nmid\Delta} \sum_{l=0}^{\infty} \frac{\hat{a}_{k}(p^{l})}{p^{ls}}$$

$$\times \prod_{p|\Delta} \sum_{j=0}^{\infty} \frac{d_{-k}(p^{j})\lambda^{j}(p)\overline{\chi}^{j}(p)}{p^{j\overline{s}}} \prod_{p\nmid\Delta} \sum_{l=0}^{\infty} \frac{\hat{b}_{k}(p^{l})}{p^{l\overline{s}}}$$

$$= \prod_{p} \sum_{l=0}^{\infty} \frac{\hat{a}_{k}(p^{j})}{p^{js}} \prod_{p} \sum_{l=0}^{\infty} \frac{\hat{b}_{k}(p^{l})}{p^{l\overline{s}}} = \sum_{m=1}^{\infty} \frac{\hat{a}_{k}(m)}{m^{s}} \sum_{n=1}^{\infty} \frac{\hat{b}_{k}(n)}{n^{\overline{s}}}.$$

This and (2.1) give an expression for the Fourier transform

$$g_Q(k) = \frac{1}{M_Q} \sum_{q \leqslant Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \text{ odd } q)}} \sum_{m=1}^{\infty} \frac{\hat{a}_k(m)}{m^s} \sum_{n=1}^{\infty} \frac{\hat{b}_k(n)}{n^{\overline{s}}}.$$
 (2.14)

3 Proof of Theorem 2

Having (2.14), we are in position to obtain the asymptotics for $g_Q(k)$ as $Q \to \infty$. First we modify the right-hand side of (2.14). Let $c_1 = 2c + 1$. Then, using (2.11)–(2.13), we find that, for $s \in R$, any fixed $k \in \mathbb{Z} \setminus \{0\}$ and $N \in \mathbb{N}$,

$$\sum_{m>N} \frac{\hat{a}_k(m)}{m^s} = \mathcal{O}\left(\sum_{m>N} \frac{d^{c_1}(m)}{m^{1+\delta}}\right) = \mathcal{O}_{\varepsilon}\left(\sum_{m>N} \frac{1}{m^{1+\delta-\varepsilon}}\right) = \mathcal{O}_{\varepsilon}(N^{-\delta+\varepsilon}),$$

and

$$\sum_{m>N} \frac{\hat{b}_k(m)}{m^{\overline{s}}} = \mathcal{O}_{\varepsilon}(N^{-\delta+\varepsilon}).$$

Therefore, for any fixed $k \in \mathbb{Z} \setminus \{0\}$ and $s \in R$, (2.14) can be rewritten as

$$g_{Q}(k) = \frac{1}{M_{Q}} \sum_{q \leqslant Q} \sum_{\substack{x = \chi \pmod{q} \\ \chi \neq \chi_{0}}} \left(\left(\sum_{m \leqslant N} \frac{\hat{a}_{k}(m)}{m^{s}} + \mathcal{O}_{\varepsilon}(N^{-\delta + \varepsilon}) \right) \right)$$

$$\times \left(\sum_{n \leqslant N} \frac{\hat{b}_{k}(n)}{n^{\overline{s}}} + \mathcal{O}_{\varepsilon}(N^{-\delta + \varepsilon}) \right) \right)$$

$$= \frac{1}{M_{Q}} \sum_{q \leqslant Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_{0}}} \left(\sum_{m \leqslant N} \frac{\hat{a}_{k}(m)}{m^{s}} \sum_{n \leqslant N} \frac{\hat{b}_{k}(n)}{n^{\overline{s}}} \right)$$

$$+ \mathcal{O}_{\varepsilon} \left(N^{-\delta + \varepsilon} \frac{1}{M_{Q}} \sum_{q \leqslant Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_{0}}} \left(\left| \sum_{m \leqslant N} \frac{\hat{a}_{k}(m)}{m^{s}} \right| + \left| \sum_{n \leqslant N} \frac{\hat{b}_{k}(n)}{n^{\overline{s}}} \right| \right) \right)$$

$$+ \mathcal{O}_{\varepsilon}(N^{-\delta + \varepsilon}). \tag{3.1}$$

Since, in view of (2.11)–(2.13), for any fixed $k \in \mathbb{Z} \setminus \{0\}$ and $s \in R$,

$$\sum_{m \leqslant N} \frac{\hat{a}_k(m)}{m^s} = \mathcal{O}\left(\sum_{m=1}^{\infty} \frac{d^{c_1}(m)}{m^{1+\delta}}\right) = \mathcal{O}(1), \quad \sum_{n \leqslant N} \frac{\hat{b}_k(n)}{n^{\overline{s}}} = \mathcal{O}(1),$$

we find that

$$\frac{1}{M_Q} \sum_{q \leqslant Q} \left(\left| \sum_{\substack{x = x \pmod{q} \\ y \neq y_0 \\ y \neq y_0}} \frac{\hat{a}_k(m)}{m^s} \right| + \left| \sum_{n \leqslant N} \frac{\hat{b}_k(n)}{n^{\overline{s}}} \right| \right) = \mathcal{O}(1).$$

Substituting this in (3.1), we obtain that, for any fixed $k \in \mathbb{Z} \setminus \{0\}$ and $s \in R$,

$$g_Q(k) = \frac{1}{M_Q} \sum_{q \leqslant Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \in \mathcal{M}}} \left(\sum_{m \leqslant N} \frac{\hat{a}_k(m)}{m^s} \sum_{n \leqslant N} \frac{\hat{b}_k(n)}{n^{\overline{s}}} \right) + \mathcal{O}\left(N^{-\delta + \varepsilon}\right). \quad (3.2)$$

From the multiplicativity of the functions $\hat{a}_k(m)$ and $\hat{b}_k(m)$, and the complete multiplicativity of Dirichlet characters we deduce that

$$\hat{a}_{k}(m) = \prod_{\substack{p^{l} \parallel m \\ p \nmid \Delta}} \hat{a}_{k}(p^{l}) = \prod_{\substack{p^{l} \parallel m \\ p \nmid \Delta}} \left(\sum_{j=0}^{l} d_{k}(p^{j}) \alpha^{j}(p) \chi(p^{j}) d_{k}(p^{l-j}) \beta^{l-j}(p) \chi(p^{l-j}) \right)$$

$$\times \prod_{\substack{p^{l} \parallel m \\ p \mid \Delta}} d_{k}(p^{l}) \lambda^{l}(p) \chi(p^{l})$$

$$= \left(\prod_{\substack{p^{l} \parallel m \\ p \mid \Delta}} \chi(p^{l}) \right) \prod_{\substack{p^{l} \parallel m \\ p \mid \Delta}} \left(\sum_{j=0}^{l} d_{k}(p^{j}) \alpha^{j}(p) d_{k}(p^{l-j}) \beta^{l-j}(p) \right)$$

$$\times \prod_{\substack{p^l \mid m \\ p \mid \Delta}} d_k(p^l) \lambda^l(p) = a_k(m) \chi(m),$$

and similarly $\hat{b}_k(m) = b_k(m)\overline{\chi}(m)$, where the multiplicative functions $a_k(m)$ and $b_k(m)$ are defined in Section 1. Thus, (3.2) becomes

$$g_Q(k) = \sum_{m \leqslant N} \frac{a_k(m)}{m^s} \sum_{n \leqslant N} \frac{b_k(n)}{n^s} \frac{1}{M_Q} \sum_{\substack{q \leqslant Q \\ \gamma \neq \gamma_0}} \sum_{\substack{\chi = \chi \pmod{q} \\ \gamma \neq \gamma_0}} \chi(m) \overline{\chi}(n). \tag{3.3}$$

If m = n, then we have that

$$\sum_{q \leqslant Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_0}} \chi(m) \overline{\chi}(n) = \sum_{q \leqslant Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(m)|^2 = M_Q - \sum_{\substack{q \mid m \\ q \leqslant N}} (q - 2)$$
$$= M_Q + \mathcal{O}\left(\sum_{q \leqslant N} q\right) = M_Q + \mathcal{O}\left(N^2\right).$$

Therefore, taking $N = \log Q$, and using the estimate [3]

$$M_Q = \frac{Q^2}{2\log Q} + \mathcal{O}\left(\frac{Q^2}{\log^2 Q}\right)$$

as well as (2.11) and (2.12) type estimates for $a_k(m)$ and $b_k(m)$, we find that, for any fixed $k \in \mathbb{Z} \setminus \{0\}$ and $s \in R$,

$$\sum_{\substack{m \leq N \\ m=n}} \sum_{\substack{n \leq N \\ m = n}} \frac{a_k(m)}{m^s} \frac{b_k(n)}{n^{\overline{s}}} \frac{1}{M_Q} \sum_{\substack{q \leq Q \\ \chi \neq \chi_0}} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_0}} \chi(m) \overline{\chi}(n)$$

$$= \sum_{\substack{m \leq N \\ m \geq \sigma}} \frac{a_k(m)b_k(m)}{m^{2\sigma}} (1 + o(1)) = \sum_{m=1}^{\infty} \frac{a_k(m)b_k(m)}{m^{2\sigma}} + o(1) \tag{3.4}$$

as $Q \to \infty$. It remains to consider the case $m \neq n$. For this, we will apply the relation

$$\sum_{\chi = \chi \pmod{q}} \chi(m)\overline{\chi}(n) = \begin{cases} q - 1 & \text{if } m \equiv n \pmod{q}, \\ 0 & \text{if } m \not\equiv n \pmod{q}, \end{cases}$$

provided that (m,q)=1. So, for $m\neq n$ and $m,n\leqslant N$, we have that

$$\begin{split} \sum_{q \leqslant Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_0}} \chi(m) \overline{\chi}(n) &= \sum_{q \leqslant Q} \sum_{\chi = \chi \pmod{q}} \chi(m) \overline{\chi}(n) - \sum_{q \leqslant Q} \sum_{\chi = \chi_0 \pmod{q}} \chi(m) \overline{\chi}(n) \\ &= \sum_{q \leqslant Q} \sum_{\substack{\chi = \chi \pmod{q} \\ q \mid (m-n)}} \chi(m) \overline{\chi}(n) + \sum_{q \leqslant Q} \sum_{\substack{\chi = \chi \pmod{q} \\ q \nmid (m-n)}} \chi(m) \overline{\chi}(n) + O\left(\sum_{q \leqslant Q} 1\right) \\ &= O\left(\sum_{q \leqslant Q} q\right) + O\left(\frac{Q}{\log Q}\right) = O\left(\frac{Q}{\log Q}\right). \end{split}$$

Therefore, we obtain that, for any fixed $k \in \mathbb{Z} \setminus \{0\}$ and $s \in R$,

$$\sum_{\substack{m \leqslant N \ n \leqslant N \\ m \neq n}} \sum_{\substack{n \leqslant N \ m \nmid n}} \frac{a_k(m)b_k(n)}{m^s n^{\overline{s}}} \frac{1}{M_Q} \sum_{\substack{q \leqslant Q \\ \chi \neq \chi_0}} \sum_{\substack{x = \chi \pmod{q} \\ \chi \neq \chi_0}} \chi(m)\overline{\chi}(n)$$

$$= O\left(\frac{1}{Q} \sum_{\substack{m \leqslant N \ m^{\frac{3}{2} + \delta}}} \frac{|a_k(m)|}{m^{\frac{3}{2} + \delta}} \sum_{\substack{m \leqslant N \ m^{\frac{3}{2} + \delta}}} \frac{|b_k(m)|}{m^{\frac{3}{2} + \delta}}\right)$$

$$= O\left(\frac{1}{Q} \left(\sum_{\substack{m \leqslant N \ m^{1 + \delta}}} \frac{d^{c_1}(m)}{m^{1 + \delta}}\right)^2\right) = o(1)$$

as $Q \to \infty$. Now this, (3.4) and (3.3) show that, for any fixed $k \in \mathbb{Z}$, uniformly in $s \in R$,

$$g_Q(k) = \sum_{m=1}^{\infty} \frac{a_k(m)b_k(m)}{m^{2\sigma}} + o(1)$$

as $Q \to \infty$. The last relation implies the weak convergence of P_Q to the probability measure defined the Fourier transform

$$\sum_{m=1}^{\infty} \frac{a_k(m)b_k(m)}{m^{2\sigma}}$$

as $Q \to \infty$. The same arguments also prove Corollary 1.

References

- C. Breuil, B. Conrad, F. Diamond and R. Taylor. On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc., 14:843–939, 2001. http://dx.doi.org/10.1090/S0894-0347-01-00370-8.
- [2] P.D.T.A. Elliott. On the distribution of arg $L(s,\chi)$ in the half-plane $\sigma > \frac{1}{2}$. Acta Arith., **20**:155–169, 1972.
- [3] V. Garbaliauskienė, A. Laurinčikas and E. Stankus. Limit theorems for twist of *L*-functions of elliptic curves. *Lith. Math. J.*, **50**(2):187–197, 2010. http://dx.doi.org/10.1007/s10986-010-9079-z.
- [4] H. Iwaniec and E. Kowalski. Analytic Number Theory. Amer. Math. Soc., Colleq. Publ., vol. 53, 2000.
- [5] A. Laurinčikas. Remarks on the characteristic transforms of probability measures.
 Šiauliai Math. Semin., 2(10):43-52, 2007.