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1 Introduction

In this paper we consider a boundary value problem of the form

x′′′ = −λp(t)f(x), (1.1)

x(0) = x′(0) = 0, x(1) = 0, (1.2)

where λ is a positive parameter, functions f(x) and p(t) are continuous,
p(t) ≥ 0, p(t) 6≡ 0. In what follows we shall assume that

(A1) x f(x) > 0 for x 6= 0;

(A2) there exist m,M > 0 such that |f(x)| > M when |x| > m;

(A3)
∫ +∞
t0

p(s) ds =∞,
∫ t0
−∞ p(s) ds =∞.

These assumptions provide the oscillatory behavior of solutions of equation
(1.1).

∗ This work has been supported by the European Social Fund within the project “Support
for the implementation of doctoral studies at Daugavpils University”, Agreement Nr.
2009/0140/1DP/1.1.2.1.2/09/IPIA/VIAA/015.

http://www.tandfonline.com/TMMA
http://dx.doi.org/10.3846/13926292.2012.645076
mailto:srgsm@inbox.lv


On Some Spectral Properties of Third Order Nonlinear BVP 79

We also use the following assumptions

(A4) p(At) = Akp(t) for some k ≥ 0, A > 0;

(A5) f(Ax) = Aqf(x) for some q > 1, A > 0.

Conditions (A1) and (A2) are independent. It is easy to verify, that if
conditions (A1) and (A5) are satisfied, then condition (A2) holds also. First,
let chose 0 < x1 < x2. Obviously, there exists A > 1 such, that x2 = Ax1. Now
consider f(x2) = f(Ax1) = Aqf(x1) > f(x1). Thus f(x) is strictly increasing
function for x > 0.

Analogously we can show that f(x) is strictly increasing for x < 0. Let
x2 < x1 < 0. Then there exists A > 1 such, that x2 = Ax1. Now consider
f(x2) = f(Ax1) = Aqf(x1) < f(x1). Therefore, from conditions (A1) and
(A5) (A2) follows. We state condition (A2) because some statements below
hold if only (A1) and (A2) are satisfied for some function f(x). Similarly we
can show, that if condition (A4) is satisfied, then (A3) holds also.

An example of equation (1.1), which satisfies conditions (A1), (A2), (A3),
(A4) and (A5) is x′′′ = −λt2x3.

The special case f(x) = |x|q sgnx, q > 1 is of a particular interest. In fact,
the Emden–Fowler type differential equation

x′′′ + p(t)|x|q sgnx = 0 (1.3)

is a prototype of (1.1). Therefore, equation (1.1) is a generalization of the
second order Emden–Fowler equation

u′′ + tη|u|µ sgnu = 0, (1.4)

where η, µ are real constants. Such equations appear in the problems of poly-
tropic gas spheres of finite radius or finite mass [6, 14]. The study of Emden–
Fowler equation (1.4) has been one of the main objects in the field of nonlinear
analysis in recent years since the appearance of the monograph due to R. Bell-
man [2].

The theory of nonlinear boundary value problems is an important and ac-
tual area of research since it is aimed to applications. Classical results in the
theory concern the existence and uniqueness of solutions. A variety of tech-
niques are employed in the theory, for example, methods that involve differ-
ential inequalities, shooting and angular function techniques, lower and upper
solutions method, functional analytic approaches, topological methods, etc.
Let us mention books by P. Bailey, L. Shampine, P. Waltman [10], S. Bernfeld
and V. Lakshmikantham [3], N.I. Vasilyev and Yu.A. Klokov [16], C. de Coster
and P. Habets [5], W. Kelley and A. Peterson [17].

Results concerning two point third order nonlinear boundary value problems
were obtained by E. Rovderova [11], F. Sadyrbaev [12]. In [11] the author
states some results on the number of solutions of two point boundary value
problems. In [12] the author established multiplicity results for certain classes
of third order nonlinear boundary value problems. His approach was based
on the Hanan theory [9] of conjugate points for third order linear differential
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equations. Results which ensure the existence of infinitely many solutions of
two point higher order nonlinear boundary value problem under the superlinear
growth condition are given by C. de Coster and M. Gaudenzi [4].

On the other hand, there is voluminous literature concerning asymmetric
nonlinearities. For example, investigation of the Fučik type equation of the
second order ([13] and references therein), study of the third order asymmetric
equations where the right side is a piece-wise linear function [7]. These types
of investigations are motivated also by technical applications, for instance the
theory of suspension bridges. Multiplicity of solutions for third order boundary
value problem with asymmetric nonlinearity is established in [15]. A nonlinear
spectra for the Neumann problem is investigated in [8].

The aim of the present paper is to provide results on the estimation of
the number of solutions to boundary value problem (1.1), (1.2), their nodal
structure and spectral properties. Therefore we are interested in solutions
which have a double zero at t = 0 and oscillate for t > 0. The combination
of the shooting method and scaling method is used for treating the number of
solutions to boundary value problems.

The shooting method reduces solving a boundary value problem to solving
of an initial value problem. So we consider the auxiliary initial value problem
for the equation (1.1) with initial data

x(0) = 0, x′(0) = 0, x′′(0) = β

and we are looking for such β that the solution of the corresponding initial
value problem vanishes at t = 1.

In view of the use of the shooting method, the problem the author faced
with is the non-continuability of the solutions. For example, the function

x(t) = (105/8)
1
2 (t− t0)−

3
2 (1.5)

is a non-continuable solution of the equation x′′′ = −x3 defined for t > t0.
Results concerning non-continuability of solutions of the third order nonlinear
differential equations can be found in [1]. However, we will show that the non-
continuability does not influence the results on estimation of the number of
solutions to boundary value problem.

The paper is organized as follows. Section 2 is devoted to the oscillatory
properties of solutions of equation (1.1). In Section 3 we consider dependence
of zeros of solutions on initial data. In Section 4 we deal with the number of
solutions to boundary value problem (1.1), (1.2) and their spectral properties.
Also one example is given to illustrate the results.

2 Oscillatory Properties of Solutions

In this section we discuss zero properties of solutions of equation (1.1). In the
discussion we shall repeatedly use elementary arguments which, for the sake of
convenience, we shall state as proposition.
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Proposition 1. Suppose x(t) ∈ C3(I). If x(a) ≥ 0, x′(a) ≤ 0, x′′(a) ≥ 0
(but not all zero) and x′′′(t)x(t) < 0 when x(t) 6= 0, then x(t) > 0, x′(t) < 0,
x′′(t) > 0 for t < a.

Proof. Let x(a) ≥ 0, x′(a) ≤ 0, x′′(a) ≥ 0 and (x(a))2+(x′(a))2+(x′′(a))2 > 0.
In all cases x(t) will be positive in some open interval with the right boundary
point t = a.

Suppose that there exists a point t = t0 such that x(t0) = 0 and x(t) > 0
for t0 < t < a. Since x(t0) = 0, there will exist a point t = t1, t0 ≤ t1 < a
such that x′(t1) = 0 and there will exist a point t = t2, t0 ≤ t2 < a such that
x′′(t2) = 0. Since x′′′(t)x(t) ≤ 0, it follows that x′′′(t) < 0 for t0 < t < a.

Consider

x′′(t) = x′′(a)−
∫ a

t

x′′′(s) ds, t0 ≤ t < a.

The right-hand side is positive, and increases as t → −∞, as long as x′′′(t)
remains negative. We thus conclude that x′′(t) is positive for t0 ≤ t < a.

Consider

x′(t) = x′(a)−
∫ a

t

x′′(s) ds, t0 ≤ t < a.

The right-hand side is negative, and decreases as t → −∞, as long as x′′(t)
remains positive. We thus conclude that x′(t) is negative for t0 ≤ t < a.

Consider

x(t) = x(a)−
∫ a

t

x′(s) ds, t0 ≤ t < a.

The right-hand side is positive, and increases as t → −∞, as long as x′(t)
remains negative. We thus conclude that x(t) is positive for t0 ≤ t < a. These
contradictions prove the proposition. ut

Corollary 1. Suppose x(t) ∈ C3(I). If x(a) ≤ 0, x′(a) ≥ 0, x′′(a) ≤ 0 (but not
all zero) and x′′′(t)x(t) < 0 when x(t) 6= 0, then x(t) < 0, x′(t) > 0, x′′(t) < 0
for t < a.

Proof. The proof follows from Proposition 1 considering y(t) = −x(t). ut

Remark 1. The function x(t) from Proposition 1 and Corollary 1 may be as-
sumed to be a solution of differential equation (1.1).

An application of Proposition 1 and Corollary 1 leads to the following re-
sults.

Corollary 2. Assume that condition (A1) is satisfied. If x(t) is a nontrivial
solution of (1.1), x(a) = x(b) = 0 and a < b, then x′(b) 6= 0 (a simple zero
cannot exist to the left of a double zero).

Proof. Let x′(b) = 0, and, without loss of generality, let x′′(b) > 0. Then,
by Proposition 1 x(t) > 0 for t < b. But x(a) = 0, a < b. The contradiction
proves the corollary. ut
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Corollary 3. Suppose that condition (A1) holds. If x(t) is a nontrivial solution
of (1.1) and x(a) = x(b) = 0 (a < b), then x′(b)x′′(b) > 0.

Proof. Assume x′(b)x′′(b) ≤ 0. If x′(b) < 0, x′′(b) ≥ 0, then by Proposition 1
x(t) > 0 for t < b. We have a contradiction, since x(a) = 0. If x′(b) > 0,
x′′(b) ≤ 0, then, by Corollary 1 x(t) < 0 for t < b. We have a contradiction,
since x(a) = 0. In view of Corollary 2, x′(b) 6= 0. ut

Proposition 2. Let x(t) be a solution of equation (1.1) such that x(a) =
x′(b) = 0 (a < b), x(t) 6= 0 for t ∈ (a, b). If condition (A1) is fulfilled,
then x(t) vanishes in (b,+∞).

Proof. Assume that x(t) does not change sign for t > b. Without loss of
generality, let x(t) > 0, t > b. Multiplying the equation (1.1) by x(t) and
integrating from a to t, we obtain∫ t

a

x(s)x′′′(s) ds = −λ
∫ t

a

x(s)p(s)f(x(s)) ds.

Integrating the first term by parts, we get

x(t)x′′(t)− x(a)x′′(a)−
∫ t

a

x′′(s)x′(s) ds = −λ
∫ t

a

x(s)p(s)f(x(s)) ds,

or

x(t)x′′(t) =
1

2
x′ 2(t)− 1

2
x′ 2(a)− λ

∫ t

a

x(s)p(s)f(x(s)) ds.

If t = b we obtain

x(b)x′′(b) =
1

2
x′ 2(b)− 1

2
x′ 2(a)− λ

∫ b

a

x(s)p(s)f(x(s)) ds < 0.

Since x(b) > 0, then x′′(b) < 0. Since x(t) > 0, then (in view of (A1) and (1.1))
x′′′(t) < 0 and x′′(t) is strictly decreasing. Thus, x′′(t) < 0 for t > b and x′(t)
is strictly decreasing for t > b. Since x′(b) = 0 and x′(t) is strictly decreasing
for t > b, then x′(t) < 0 for t > b. Thus, x(t) is strictly decreasing for t > b. If
two consecutive derivatives of x(t) are negative then x(t) must ultimately be
negative. This completes the proof of the proposition. ut

Proposition 3. Let x(t) be a solution of equation (1.1) such that x(a) = 0. If
conditions (A1), (A2) and (A3) hold, then x(t) vanishes in (a,+∞).

Proof. Suppose that x(t) does not vanish for t > a. Without loss of generality,
let x(t) > 0 for t > a. If there exists b > a such that x′(b) = 0, then the proof
follows from the Proposition 2 above. Therefore, assume that x′(t) does not
vanish for t > a. Since x′(t) > 0 for t immediately to the right of a, it follows
that x′(t) > 0 for t > a. As x(t) > 0, then (in view of (A1) and (1.1)),
x′′′(t) < 0 and x′′(t) is strictly decreasing.
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First suppose there exists t1 ≥ a such that x′′(t1) = 0. Then x′′(t) < 0
for t > t1. If two consecutive derivatives of x′(t) are negative then x′(t) must
ultimately be negative.

Now assume that x′′(t) > 0 for t > a. So x′(t) is strictly increasing for
t > a. Integrating equation (1.1) between t0 > a and t we obtain∫ t

t0

x′′′(s) ds = −λ
∫ t

t0

p(s)f(x(s)) ds,

or eliminating nonnegative terms and using assumption (A2) we get

x′′(t0) = x′′(t) + λ

∫ t

t0

p(s)f(x(s)) ds ≥ λ
∫ t

t0

p(s)f(x(s)) ds ≥Mλ

∫ t

t0

p(s) ds.

The left side is independent of t and thus the integral on the right hand side
must converge as t→ +∞. This contradiction proves the proposition. ut

Remark 2. The condition x(a) = 0 in Proposition 3 is essential, because there
exist solutions (for example (1.5)) of equation (1.1) which do not vanish.

Corollary 4. Assume that conditions (A1), (A2) and (A3) fulfil. If x(t) is a
nontrivial solution of (1.1) and t = a is a zero of x(t), then x(t) has an infinity
of simple zeros in (a,+∞). If t = a is a double zero of x(t), then x(t) does not
vanish in (−∞, a).

Remark 3. Suppose that x(t) is a nontrivial solution of equation (1.1) with
double zero at point t = 0 (x(0) = x′(0) = 0). There exists an increasing
sequence of points 0 < t′′1 < t′1 < t1 < t′′2 < t′2 < t2 < · · · such that x(ti) =
x′(t′i) = x′′(t′′i ) = 0 (i = 1, 2, . . .).

Proposition 4. It is true, that only one of the functions x(t), x′(t) or x′′(t)
vanishes at each of the points ti, t

′
i, t
′′
i (i = 1, 2, . . .).

Proof. Let us consider x(ti) = x′′(ti) = 0 and without loss of generality, let
x′(ti) > 0. Then, by Proposition 1 x(t) > 0 for t < ti. But x(0) = 0, 0 < ti.
We get the contradiction. The other cases can be treated in analogous way. ut

The points ti, t
′
i, t
′′
i (i = 1, 2, . . .) are called nodal points.

Next consider sequences of values x(t), x′(t) and x′′(t) at the nodal points.
There are six such sequences (|x′(ti)|), (|x′′(ti)|), (|x(t′i)|), (|x′′(t′i)|), (|x(t′′i )|),
(|x′(t′′i )|) and propositions below investigate their behavior. In the statements
below we prove that the above sequences of absolute values are increasing. It
is plausible also that the sequences (x′(ti)), (x′′(ti)), (x(t′i)), (x′′(t′i)), (x(t′′i )),
(x′(t′′i )) are alternating. The idea of the proof of these six propositions is taken
from [1].

The first two propositions deal with the values of first and second derivatives
at the zeros of solution.

Proposition 5. If conditions (A1), (A2) and (A3) are fulfilled, then the se-
quence (|x′(ti)|) is strictly increasing.
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Proof. Let t1 and t2 be arbitrary consecutive zeros of x(t). As x f(x) > 0 (in
view of (A1)), then xx′′′ < 0. Therefore

0 >

∫ t2

t1

x · x′′′ dt = |integrating by parts| = xx′′
∣∣t2
t1
−
∫ t2

t1

x′x′′ dt

= −
∫ t2

t1

x′ dx′ = −x
′(t2)2

2
+
x′(t1)2

2
.

Thus, x′(t1)2 < x′(t2)2 or |x′(t1)| < |x′(t2)|. ut

Proposition 6. If condition (A1) is fulfilled, f(x) is strictly increasing and
differentiable, p(t) ≡ p > 0, then the sequence (|x′′(ti)|) is strictly increasing.

Proof. Let t1 and t2 be arbitrary consecutive zeros of x(t). Consider∫ t2

t1

x′′x′′′ dt = −
∫ t2

t1

x′′λpf(x) dt = −λp
∫ t2

t1

x′′f(x) dt

= −λpx′f(x)
∣∣t2
t1

+ λp

∫ t2

t1

x′ 2f ′(x) dt = λp

∫ t2

t1

x′ 2f ′(x) dt > 0.

On the other hand∫ t2

t1

x′′x′′′ dt =

∫ t2

t1

x′′ dx′′ =
x′′(t2)2

2
− x′′(t1)2

2
.

Thus, x′′(t1)2 < x′′(t2)2 or |x′′(t1)| < |x′′(t2)|. ut

The next two propositions deal with the values of solution and its second
derivative at the zeros of the first derivative.

Proposition 7. If f(x) = |x|q sgnx, q > 1 and p(t) ≡ p > 0, then the sequence
(|x(t′i)|) is strictly increasing.

Proof. Let t′1 and t′2 be arbitrary consecutive zeros of x′(t). Consider∫ t′2

t′1

x′x′′′ dt = x′x′′
∣∣t′2
t′1
−
∫ t′2

t′1

x′′ 2 dt = −
∫ t′2

t′1

x′′ 2 dt < 0.

On the other hand∫ t′2

t′1

x′x′′′ dt = −λp
∫ t′2

t′1

x′|x|q sgnx dt = −λp
∫ t′2

t′1

|x|q sgnx dx

= − λp

q + 1

(
|x(t′2)|q+1 − |x(t′1)|q+1

)
< 0.

Thus |x(t′2)|q+1 > |x(t′1)|q+1 or |x(t′2)| > |x(t′1)|. ut

Proposition 8. If condition (A1) is fulfilled, f(x) is strictly increasing and
differentiable, p(t) ≡ p > 0, then the sequence (|x′′(t′i)|) is strictly increasing.
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Proof. Let t′1 and t′2 be arbitrary consecutive zeros of x′(t). Consider∫ t′2

t′1

x′′x′′′ dt = −
∫ t′2

t′1

x′′λpf(x) dt = −λp
∫ t′2

t′1

x′′f(x) dt

= −λpx′f(x)
∣∣t′2
t′1

+ λp

∫ t′2

t′1

x′ 2f ′(x) dt = λp

∫ t′2

t′1

x′ 2f ′(x) dt > 0.

On the other hand∫ t′2

t′1

x′′x′′′ dt =

∫ t′2

t′1

x′′ dx′′ =
x′′(t′2)2

2
− x′′(t′1)2

2
.

Thus, x′′(t′1)2 < x′′(t′2)2 or |x′′(t′1)| < |x′′(t′2)|. ut

The next two propositions investigate the values of solution and its first
derivative at the zeros of the second derivative.

Proposition 9. If f(x) = |x|q sgnx, q > 1 and p(t) ≡ p > 0, then the sequence
(|x(t′′i )|) is strictly increasing.

Proof. Let t′′1 and t′′2 be arbitrary consecutive zeros of x′′(t). Consider∫ t′′2

t′′1

x′x′′′ dt = x′x′′
∣∣t′′2
t′′1
−
∫ t′′2

t′′1

x′′ 2 dt = −
∫ t′′2

t′′1

x′′ 2 dt < 0.

On the other hand∫ t′′2

t′′1

x′x′′′ dt = −λp
∫ t′′2

t′′1

x′|x|q sgnx dt = −λp
∫ t′′2

t′′1

|x|q sgnx dx

= − λp

q + 1

(
|x(t′′2)|q+1 − |x(t′′1)|q+1

)
< 0.

Thus |x(t′′2)|q+1 > |x(t′′1)|q+1 or |x(t′′2)| > |x(t′′1)|. ut

Proposition 10. If conditions (A1), (A2) and (A3) are fulfilled, then the se-
quence (|x′(t′′i )|) is strictly increasing.

Proof. Let t′′1 and t′′2 be arbitrary consecutive zeros of x′′(t). Consider∫ t′′2

t′′1

x′x′′ dt = xx′′
∣∣t′′2
t′′1
−
∫ t′′2

t′′1

xx′′′ dt > 0.

On the other hand∫ t′′2

t′′1

x′x′′ dt =

∫ t′′2

t′′1

x′ dx′ =
x′(t′′2)2

2
− x′(t′′1)2

2
> 0

or x′(t′′2)2 > x′(t′′1)2. Thus |x′(t′′2)| > |x′(t′′1)| . ut
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3 Dependence of Zeros on Initial Data

Proposition 11. Suppose that conditions (A4) and (A5) are fulfilled. If x(t)
is a solution of equation (1.1) with λ ≡ 1, such that

x(0) = x′(0) = 0, x′′(0) = γ 6= 0,

then every solution of equation (1.1) with arbitrary λ which has a double zero at
t = 0 and the second derivative at t = 0 of the same sign as γ can be expressed
via solution x(t) as

y(t) = B
3+k
q−1 x

(
Bt
)
/λ

1
q−1 ,

with initial data

y(0) = y′(0) = 0, y′′(0) = B
3+k
q−1+2γ/λ

1
q−1 ,

where B > 0 is a parameter.

Remark 4. We distinguish the cases of x′′ having opposite signs at t = 0 in
Proposition 11, because if x(t) is a solution of (1.1), then

(
− x(t)

)
need not o

be a solution of (1.1). As an example we present the equation

x′′′ = −
{

2x3, x ≥ 0,
x3, x < 0

,

where f(x) satisfies condition (A5) with q = 3.

Remark 5. A similar statement for higher order Emden–Fowler type autono-
mous equation can be found in [1].

Proof. The proposition can be proved by direct substitution. So

y′′′(t) = B
3+k
q−1+3x′′′(Bt)/λ

1
1−q , f

(
y(t)

)
= B

3+k
q−1 qf(x(Bt))/λ

1
q−1 q.

Then

B
3+k
q−1+3

λ
1

1−q

x′′′(Bt) = −λp(t)B
3+k
q−1 q

λ
1

q−1 q
f(x(Bt))

= −λp(Bt)B−kB
3+k
q−1 q

λ
q

q−1

f(x(Bt)) = λB−k
B

3+k
q−1 q

λ
q

q−1

x′′′(Bt).

Therefore
B

3+k
q−1+3

λ
1

1−q

= λB−k
B

3+k
q−1 q

λ
q

q−1

, or
B

3q+k
q−1

λ
1

1−q

=
B

3q+k
q−1

λ
1

1−q

.

Hence the proof. ut

Now we assume that conditions (A1), (A2) and (A3) are satisfied. Let y(t)
be a nontrivial solution of equation (1.1) with the initial conditions y(0) = 0,
y′(0) = 0, y′′(0) = β. Let us denote simple zeros of y(t) to the right from t0 = 0
by t1, t2, . . . , ti, . . . . The next statement follows from Proposition 11.
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Corollary 5. Suppose that conditions (A4) and (A5) are fulfilled and let λ in
equation (1.1) be fixed. If β continuously and monotonically tends to ±∞
(resp. to zero), then ti continuously and monotonically tend to zero (resp. to
+∞).

Proof. If β continuously and monotonically tends to ±∞ (zero), then, by
Proposition 11, B continuously and monotonically tends to +∞ (zero). Thus,
ti continuously and monotonically tend to t = 0 (±∞). ut

4 Number of Solutions and Spectral Curves

Theorem 1. Suppose that conditions (A1), (A4) and (A5) are fulfilled, λ is
fixed, then boundary value problem (1.1), (1.2) has a countable set of solutions
xi(t) with x′′i (0) > 0 and a countable set of solutions ui(t) with u′′i (0) < 0,
i = 0, 1, 2, . . . . Any solution xi(t) and ui(t) has exactly i simple zeros in (0, 1).

Proof. Consider auxiliary initial value problem (1.1), x(0) = x′(0) = 0,
x′′(0) = β. By Proposition 11 and Corollary 5 we can choose |β| so small,
that t1 > 1, and |β| so large, that for any fixed i one has ti < 1. ut

Remark 6. Theorem 1 remains valid if boundary conditions (1.2) are replaced
by more general ones

x(0) = 0, x(i)(0) = 0, x(j)(1) = 0, i ∈ {1, 2}, j ∈ {0, 1, 2}.

Remark 7. It follows from Theorem 1 above, that solutions to boundary value
problem (1.1), (1.2) has a specific nodal structure. There exist exactly two
solutions of (1.1), (1.2) which do not vanish in (0, 1), the first one is positive in
(0, 1) and the second one is negative in (0, 1). There exist exactly two solutions
of (1.1), (1.2) which vanish in (0, 1) exactly once, the first one has positive
second derivative at t = 0 and the second one has negative second derivative at
t = 0. And generally, for every i = 0, 1, 2, . . . there exist exactly two solutions
of (1.1), (1.2) which vanish in (0, 1) exactly i times, the first one has positive
second derivative at t = 0 and the second one has negative second derivative
at t = 0.

Remark 8. It follows from Theorem 1 above, that boundary value problem (1.1),
(1.2) with λ ≡ 1 has a countable set of solutions xi(t) with x′′i (0) > 0 and a
countable set of solutions ui(t) with u′′i (0) < 0, i = 0, 1, 2, . . . . Any solution
xi(t) and ui(t) has exactly i simple zeros in (0, 1). Let denote x′′i (0) = β+

i > 0
and u′′i (0) = β−i < 0, i = 0, 1, 2, . . . . Therefore, there exist an increasing
sequence of values β+

i > 0 and decreasing sequence of values β−i < 0, such
that boundary value problem (1.1), (1.2) has nontrivial solutions with exactly
i simple zeros in (0, 1).

Now we consider the problem of finding a set of parameters (λ, β), where
β = x′′(0) such that problem (1.1), (1.2) has nontrivial solutions. We will show
that a set of (λ, β) with the described property consists of spectral curves. The
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spectral curves for the problem consist of infinite set of branches L+
i and L−i

(i = 0, 1, 2, . . .) which can be obtained analytically and graphically. The lower
index shows how many zeros has the respective solution in the interval (0, 1),
and the upper index shows the sign of the second derivative of a solution at
t = 0.

Theorem 2. The spectral curves for problem (1.1), (1.2) are the branches given
by

L+
i =

{
(λ, β): β =

β+
i

λ
1

q−1

}
, L−i =

{
(λ, β): β =

β−i

λ
1

q−1

}
, i = 0, 1, . . . .

Proof. Let xi(t) be a solution of boundary value problem (1.1), (1.2) with
λ ≡ 1, which has exactly i simple zeros in (0, 1), i = 0, 1, . . . . Consider

yi(t) = B
3+k
q−1 xi(Bt)/λ

1
q−1 .

In view of Proposition 11 yi(t) is solution of equation (1.1), with double zero
at t = 0. If B = 1, then yi(t) has zeros at the same points as xi(t) has, and
hence yi(t) is solution of boundary value problem (1.1), (1.2). Thus, it follows
from Proposition 11, that

β = β+
i λ
− 1

q−1 or β = β−i λ
− 1

q−1 . ut

L2

L2

L1

L0

L1

L0

1 2 3 4 5 6 7
Λ

-400

-200

200

400
Β

Figure 1. Some spectral curves for problem (4.1). L0 – solid, L1 – dashed, L2 – dotted.

Example 1. Consider the problem

x′′′ = −λt2x3, x(0) = x′(0) = 0, x(1) = 0. (4.1)

First suppose that λ ≡ 1 and find β+
i and β−i . Since the nonlinearity f(x) = x3

is symmetric, then β+
i = −β−i = βi. Thus, by using numerical simulation, we

obtain
β0 = 82.26, β1 = 246.85, β2 = 372.33.

So, by Theorem 2, we get

L0 : β = ±82.26/
√
λ, L1 : β = ±246.85/

√
λ, L2 : β = ±372.33/

√
λ.

See Figure 1, where some spectral curves for problem (4.1) are presented.
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