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Abstract. The paper is aimed to model the electromagnetic acceleration and brak-
ing of the liner in magnetic compressor. The 2D approach corresponding to the
longitudinal section of spatial region is considered. Liquid, elastic, and plastic mod-
els of the liner are presented. The comparative analysis of calculation results for
different models and their correlation with experimental data are carried out. The
research of the influence of circuit parameters on liner braking is done.
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1 Introduction and Statement of the Problem

The unit “MOL” (“Magnetic Oblateness of Liners”) is aimed to study the oper-
ation of all stages of the “Baikal” unit module and the generation of electrical
pulses of megajoule magnitude. The model of a power sharpening cascade,
i.e. the magnetic compressor (MC), have been developed for the “MOL”unit
[1]. The operation of the cascade is based on the compression of a magnetic
flow by a liner accelerated by electromagnetic forces till the velocity 1 km/sec.
The sketch of compressor’s basic details (the copper inductor and the liner) is
presented in Fig. 1a. The liner is the aluminum belt which is strained by the
tensioning device into a couple of parallel bands. The liner has the following
typical sizes: the belt thickness (axial x length) is 2 mm, the belt width (axial y
length) is about 21 cm, axial z belt length is about 80 cm, the distance between
the parallel belts at the start time is about 20 cm. The MC is presented in Fig.
1b.
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Figure 1. (a) the sketch of the MC; (b) the MC photo.

Figure 2. (a) the scheme of the longitudinal section (at the plane y = const); (b) the
scheme of a quarter of the transverse section (at the plane z = const).

In the implosive-magnetic generator the work zone is placed within accel-
erated shell. In the MC it is necessary to connect the liner and the fixed
conductor lines to output the current to the external load. It stipulates the
choice of the MC sample with the double strip conductor. The production of
the liner belt is quite simple process. The design of prismatic supports situated
at both compressor ends (Fig. 2a) provides the contact between the liner and
the fixed conductor lines. These supports also prevent the belt and current
circuit of the liner from breaking.

The sections of the MC at the planes y = const (longitudinal section) and
z = const (transverse section, one fourth of the whole section) are shown in
Fig. 2. The electrical inductor and liner circuits which can be interconnected
are presented. in these figures. Here and hereinafter, liner, inductor and values
referred to them are indicated with the indices A and B.

At the initial time moment the capacitor CB (in the inductor circuit) is
charged to a certain initial voltage. After the closing of the circuit by the switch
KB , the discharge current begins to flow via inductor and liner. The produced
magnetic field interacts with the current running via the liner, thus accelerating
the liner along the x-axis. The left prismatic support (Fig. 2a) is a conductor,
the right support is a non-conductor, but it has the conductive plate situated
in the center part of the support. The liner in motion is pressed against the
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supports and when the liner belt comes into contact with this conductive plate
the liner circuit is closed. The liner current flows via the belt and produces
an additional magnetic field inside the liner cavity. Having been accelerated
the liner compresses the magnetic field, which is taken from the system in the
form of the current pulse in the external liner circuit. The specific parameters
for MC are the following: the liner velocity is about 1 km per second, the
acceleration time is about 100–150 microsecond, the deceleration time is about
1 microsecond, the circuit current is equal to several mega-ampere.

The work has been done under partial financial support of the Russian Fund
for Basic Researches (projects N 09-01-00151 and N 10-08-01308).

2 The Experimental Data. The Actuality of Mathemati-
cal Modelling Application

Prior to designing and creating a full-scale power it is necessary to know the
scale of probable heterogeneities that occur during the acceleration and braking
of a flat liner with limited dimensions in a magnetic field. This was the reason
for creating the MC prototype in SRC RF TRINITI, Troitsk, which is shown
in Fig. 1b.

Figure 3. (a) the shots of liner movement (119, 134 microsecond); (b) the liner
impression situated on the surface of prismatic support.

A number of experimental launchings was carried out in the MC prototype,
but the acquired information is insufficient because of the experiment fleetness
and experimental conditions. The frames of shaded camerawork are presented
in Fig. 3a (see [5] for more information). These frames demonstrate that the
liner belts are moving in a plane-parallel motion and their central parts do not
bend in the longitudinal section of MC.

The experimental data of the effective liner width are also presented in
the paper [5]. These data are obtained from the measurement of the liner
impression situated on the surfaces of prismatic supports. This impression
characterizes the liner movement in the transverse section of the MC. The
boundaries of the deformed liner belt are seen well in Fig. 3b. The belt width
decreases while liner is moving. The belt narrowing is probably caused by the
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liner edge twisting provoked by the pinch effect. But it appears that the liner
acceleration heterogeneity starts the process.

Figure 4. A liner fragment after experimental launching.

The analysis of deformed liner belt after MC experimental launching can
make clear the deformation process features but the most part of the belt is
destroyed at the launching end. The photo of one liner fragment is presented
in Fig. 4. The regime of the magnetic flow compression requires the strict
geometry form of the gap between the belts at the moment of liner braking. The
generated short pulse needs the simultaneous transformation of the kinematic
energy of the whole liner into the output pulse energy. The deformation of the
flat form leads to the in-coordinate braking of different liner parts and to the
output pulse stretching.

The experimental data confirm the existence of nonhomogeneities during
the liner movement but the experiment is not able to determinate the cause
and to make the exact quantitative analysis of the liner deformation process.
For this reason mathematical modelling and computational experiment are the
exclusive methods to obtain more detailed information about liner movement
in MC. Furthermore computational experiment is a flexible and convenient
tool for executing a number of optimization calculations with the aim to select
optimal option values of MC.

The objective of this work is the development of different mathematical and
numerical models describing liner movement in the MC, comparative analysis
of the calculation results and their correlation with the experimental data.

3 The Mathematical Models

The described process is a complicated one therefore different spatial two-
dimensional approaches are used. The longitudinal model corresponds to the
longitudinal section (Fig. 2a), all variables for this model do not depend on
y. The transverse model corresponds to the transverse section (Fig. 2b), all
variables for this model do not depend on z. The system effective length along
the third axis (accordingly ly and lz) is taken into account. This parameter is



The Mathematical Modelling of Liner Movement 35

determined by the transformation of energy from the electric circuit energy to
the liner kinetic energy.

Each model has its own advantages and disadvantages. The longitudinal
model does not consider transverse deformations but it permits us to describe
the liner movement near the prismatic supports. This region is a source of
possible nonhomogeneities. The transverse section determines the basic con-
figuration of compressor magnetic field, but the corresponding model does not
consider the contact between the liner belts and the prismatic supports. While
correlating and comparing these models it is possible to make conclusions about
real processes that take place in the three dimensional system. In this work
the longitudinal model is considered unless otherwise stated. The transverse
model is presented in detail in papers [5, 6, 9].

The inductor and the prismatic supports are assumed to be fixed, their
shapes are constant. The inductor is a conductor, the rarefied air in the MC
box is assumed to be the vacuum.

3.1 The electrodynamic problem

The electrodynamic model is based on a system of the Maxwell equations in
magneto-hydrodynamic approximation (demonstrated in dimensionless form,
[10, 14]):

∂H

∂t
= ∇× ([v ×H]−E) ,

∇×H = 4πσE = 4πj, (3.1)

∇ ·H = 0.

Here E is an electric field intensity (in the system of axes where material does
not move), H is magnetic field intensity, v is a velocity vector of medium
points movement (liner points in this particular case), σ is a conductivity in
nonconductors, j is a current density.

3.1.1 The model of electrodynamic processes within the MC

Figure 5. The calculation region for the longitudinal model.

The longitudinal section shown in Fig. 2a has the axis of symmetry therefore
the calculation region is a half of the whole section (see, Fig. 5). All variables are
assumed to depend only on the coordinates x and z. The vectors of velocity and
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electric field intensity have only x and z nonzero components (E = (Ex, 0, Ez),
v = (υx, 0, υz) that lie in the plane of Fig. 5). The vector of magnetic field

intensity has one nonzero y-component (H = (0, H, 0)
T

) and it is directed
perpendicular to the plane of Fig. 5.

In the used approach the magnetic field intensity in dielectric subregions
is expressed in terms of currents in the external electrical circuits. The super-
imposition of the magnetic field generated by the current IB flowing through
inductor and of the magnetic field generated by the current (IA − IB) flowing
through liner leads to the following results:

H =


−4π

ly
IB , r ∈ I,

−4π

ly
IA, r ∈ II ,

0, r ∈ III , IV , V.

(3.2)

Subregions I, II, III, IV, V are shown in Fig. 5.
The following equation for magnetic field intensity in conductors is obtained

from the system (3.1) (more information in [7]):

∇ ·
(

1

4πσ
∇H

)
−H∇ · v =

dH

dt
.

The boundary conditions are either the continuity conditions H at the transi-
tion from a dielectric to a conductor (from one conductor to another conductor)
or the conditions of zero normal derivative. Zero initial condition is assumed.

3.1.2 The equations of external electrical circuits

The equations of external electrical circuits for the longitudinal model are

LA
dIA
dt

+
8π

ly

(SIIIA)

dt
+RAIA − UA + 2

∫
ΓII

E dl = 0,

CA
dUA
dt

= −IA,

LB
dIB
dt

+
8π

ly

(SIIB)

dt
+RBIB − UB + 2

∫
ΓI

E dl = 0,

CB
dUB
dt

= −IB .

Here L, R, C are inductance, resistance and capacitance in the circuit, I and
U are the current and the voltage at the capacitor coatings, SI and SII are the
areas of corresponding subregions in Fig. 5, ΓI and ΓII are their boundaries,
coefficient 2 accounts for the symmetry of the region. The problem is completed
by the statement of initial conditions for currents and voltages.

3.2 The mathematical models of liner movement

The insufficiency of experimental data leads to the uncertainty of the choice of
the liner movement model. Therefore three models describing the liner material
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are used in this paper: in the first model liner is considered as a thermoelastic
solid, in the second model liner is considered as a viscous incompressible liquid
and in the third one liner is considered as an elasto-plastic solid.

The coupled electro-thermal-mechanical problems are very complicated. A
set of different deformable body models for corresponding problems are dis-
cussed in [15] including the thermoelastic body models, the elastico-viscous
body models and the elasto-plastic body models. In these models body defor-
mations are assumed to be small (within several percents). In our problem the
liner deformations are large (dozens of percents). Such problems are called geo-
metrically nonlinear. The various thermoelastic body models considering finite
deformations are presented in [4, 11, 16]. A number of large strain plasticity
models are discussed in [2, 3, 11, 13, 16].

3.2.1 The mathematical model of thermoelastic liner

In this model the liner material is regarded as an isotropic compressible ther-
moelastic solid [11, 12, 15]. The following symbols are introduced: ρ and ρ0 are
current and initial material densities, xi and ai, are Euler coordinates (x1 = x,
x2 = z) and total Lagrange coordinates, ui = xi − ai are displacement vector
components. The following motion equations are used:

ρ0
∂2ui
∂t2

=
∂Lij
∂aj

+
ρ0
ρ
Fi, (3.3)

where F = j ×H is the Lorenze force acting on the liner, Lij is the Lagrange
stress tensor. It is defined as the following formulation for linear-elastic material
(for more information see [11]):

Lij =
∂xi
∂ak

[2µγkj + (λI1 − β (T − T0)) δkj ] ,

where λ and µ are the Lame coefficients, β = (3λ+ 2µ)αT , αT is the coefficient
of thermal linear expansion. The strain tensor and its invariants are defined as

γkl =
1

2

(
∂uk
∂al

+
∂ul
∂ak

+
∂um
∂ak

∂um
∂al

)
, I1 = γii, I2 = γijγij .

Herein and after the repeated index convention for summation is systematically
used.

The large deformations are formed in the liner belts therefore square terms
of strain tensor are taken into account. The following heat balance equation is
used [4, 15]:

ρ0cγ
∂T

∂t
+ βT

∂I1
∂t

= ∇ · (κ(T )∇T ) +
ρ0
ρ
φ,

where cγ is the unit-mass heat capacity for constant deformation, κ(T ) is the
coefficient of heat conductivity, φ = j ·E is the heat generation power.

Math. Model. Anal., 17(1):31–46, 2012.
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3.2.2 The mathematical model of liquid liner

The system of Navier–Stokes equations is used here for describing viscous in-
compressible liquid movement(in terms of Euler coordinates) [15]:

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ η∇2v + F,

∇ · v = 0. (3.4)

Here p is the hydrodynamic pressure, η = ρν is the coefficient of dynamic
viscosity, ν is the coefficient of kinematic viscosity.

The heat balance equation for this model is

ρcγ

(
∂T

∂t
+ (v · ∇)T

)
= ∇ · (κ(T )∇T ) + φ,

φ = j ·E + η

(
2

(
∂υx
∂x

)2

+

(
∂υx
∂y

+
∂υy
∂x

)2

+ 2

(
∂υy
∂y

)2)
.

Here φ is the energy generation power including the Joule heat and the heat
source due to viscosity.

3.2.3 The mathematical model of elasto-plastic liner

The liner belt is under load that exceeds the aluminum yield stress; therefore,
the models of thermoelastic liner and liquid liner are approximated and the
model of elasto-plastic liner is considered too. The deformation curve obtained
as a result of experiments is used in the model. The analysis of liner flow near
the prismatic support demonstrates [5] that the belt stretching is centered near
the contact region. Therefore the large plastic deformations are formed in the
liner belts. The theory of large elasto-plastic deformations presented in the
paper [11] is used here. The motion equations for this model are [11, 12]:

ρ
∂2ui
∂t2

=
∂

∂ãk

(
Sik + Skj

∂ui
∂ãj

)
+ Fi. (3.5)

In contrast to equations (3.3), equations (3.5) are written in terms of up-
dated Lagrange coordinates (ãi are UL-coordinates), Sij is the second Piola–
Kirchhoff stress tensor. In each instant of time UL-coordinates ãi coincide
with Euler coordinates xi. The distinctions between these coordinates become
apparent in the usage of different rates of variables change. For the UL ap-
proach the substantial derivatives are considered, for the Euler approach the
local derivatives are considered.

The chosen model of large elasto-plastic deformations is based on the fol-
lowing assumptions [11, 12]:

1) The strain velocity tensor V (with the components Vij = 1
2 ( ∂υi∂xj

+
∂υj
∂xi

))

is the sum V = Ve + Vp of elastic part Ve and plastic part Vp.
2) The defining relation of elasto-plastic solid is

sH = CE : Ve = CE : (V −Vp) ,
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where sH is the Hill derivate of the Cauchy stress, CE is the tensor of stiffness
coefficients for isotropic body, the symbol “:” means double sum for repeated
index (in the index form for this equation).

3) The plastic part of strain velocity tensor is defined from the following
plastic flow law:

Vp = λ̃
∂fy
∂s

= λ̃s′,

where λ̃ is an unknown parameter (the method of additional strains is used in
calculations, therefore it is not necessary to find the explicit form of λ̃), fy is

the yield function,
∂fy
∂s is the vector in the space of components of stress tensor

deviator which is directed normally by the yield surface.
The liner material is considered to have isotropic hardening therefore the

following yield function is used [11, 15]:

fy(s′, ε̄p) = 3J2(s′)− sy2(ε̄p),

where J2(s′) = 1
2s
′
ijs
′
ij is the second invariant of stress tensor deviator (s′ij =

sij − 1
3skkδij), ε̄

p is the hardening parameter characterizing the magnitude of
accumulated plastic deformations, sy is the material yield stress.

At this stage the elasto-plastic model doesn’t involve the effects connected
with the temperature variations.

3.2.4 The boundary conditions statement for liner

The conditions of free boundary are chosen (external surface forces are equal
to zero). On the boundaries corresponding to the axis of symmetry the veloc-
ity component which is perpendicular to this boundary is equal to zero (the
boundary condition for another component is the condition of free boundary).

The following variants of boundary conditions are used for modelling the
contact between liner belt and the support:

1) adhesion conditions:υx = υz = 0;
2) Coulomb friction law [11]: |tτ | = µd|tn|, where tτ defines distributive

contact tangential force, tn defines distributive contact normal force, µd is the
dynamic friction coefficient.

4 The Numerical Model

The finite element method with the linear elements is used for the problem
of discretization. Preliminary the region triangulation is carried out. For the
longitudinal model the grids are introduced only in conductors (liner, inductor,
supports) because in dielectric subregions magnetic field intensity is expressed
in terms of currents in the external electrical circuits. For the transverse model
the grid is introduced in the whole region, it is refined near the liner [9].

The numerical models of electro-magnetic fields and of thermoelastic liner
movement are presented in the papers [6, 7], the numerical model of elasto-
plastic liner movement is analyzed in the paper [12].

In the numerical model of liquid liner movement the discrete analogs of
the Navier–Stokes equations (3.4) are considered as one matrix equation with

Math. Model. Anal., 17(1):31–46, 2012.
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respect to the three-component variables vector (two components of velocity
vector and pressure). The second-order finite elements are used to calculate
the correct pressure value. The penalty function method is applied to realize
the kinematic conditions at contact points [11].

At each time step the internal iteration cycles for electrodynamic problem,
for kinematic problem and for heat problem are executed one after another.
For the entire system the external iteration cycle is carried out.

5 The Physical Parameters

Here we present some important parameters in dimensionless form. The di-
mensions of the device in accordance with Fig. 2b and Fig. 5 are the following:
the height of inductor is 1.5, its half–width is 1.25. The height of liner is 0.02,
its half–width is 1.05, its length is 6. The distance between liner and inductor
at the initial time moment is 0.02. Initial height of liner lower edge is 0.96.
The support canting angle is π/4.

The parameters of the inductor circuit are as follows: LB = 20.0, CB =
3.1 · 10−5, RB = 120. The initial voltage on the capacitor is 2000, the initial
current is 0. The parameters of the liner circuit are as follows: LA = 2.5,
CA = 1000, RA = 10−5. The initial voltage on the capacitor is 0, the initial
current is 0. The parameters of the liner material are as follows: the Lame
coefficients for the thermoelastic liner are λ = 1097, µ = 672, the viscosity for
liquid liner is ν = 0.1, the yield stress for the elasto-plastic liner is sy = 0.9,
maximal stress smax = 1.875.

6 The Calculations Results

The software package was developed to solve the problem. Hereafter the cal-
culation results (in dimensionless form) of different problem variants are pre-
sented. The graphic data about the calculated solutions are demonstrated.
They permit to conclude about qualitative and quantitative characteristics of
the solution. The calculation results for elasto-plastic liner model with modified
deformation curves are discussed in papers [8, 9, 12].

6.1 The longitudinal model: calculation without liner circuit closing

At the beginning, the calculations without liner circuit closing are carried out in
order to examine the liner movement for different models. In these calculations
the prismatic supports material is assumed to be a nonconductor. Under the
given conditions the magnetic field between liner belts is equal to zero (due
to the specific character of the longitudinal model described in (3.2)). The
calculation region is a fourth part of the whole section, the system effective
length along y axis is ly = 3.0.
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6.1.1 The thermoelastic liner

A number of calculations with different support canting angles and contact
conditions is conducted.

Figure 6. The thermoelastic liner positions for different times (t = 0.061; 0.117; 0.172;
0.215 ms).

Calculation 1. In this calculation the support canting angle is equal to π/4,
the adhesion contact conditions are chosen. The elastic liner movement is
demonstrated in Fig. 6 (gray shade corresponds to υx). In this calculation the
liner belt does not arrive to the region bottom boundary (does not contact with
another belt moving opposite to it) and it starts moving backwards (two lower
figures). The elastic disturbance waves are extended across the liner. The belt
adheres to the top part of the support but the new contact points do not arise
during the progress of liner movement. The liner braking and its subsequent
upward motion are caused by the elasticity forces. The comparison between
Fig. 6 and Fig. 3a leads to the conclusion that the results of thermoelastic
liner model are not in accord with the experimental data.

Calculation 2. In this calculation the support canting angle is equal to π/4,
but the contact condition is the sliding motion with the friction. The liner
positions for different times are presented in Fig. 7. The liner belt contacts
with the support and starts to slide along it. The belt is stretching in motion
but this stretching is rather proportional relatively to the liner segment situated
on the support. The calculations are stopped when the belt arrives to the
bottom boundary of the region, i.e. it contacts with another belt moving
opposite to it.

Calculation 3. In this calculation the support canting angle is equal to π/6,
the contact condition is the sliding motion with the friction. The liner positions
for different times are presented in Fig. 8.

Math. Model. Anal., 17(1):31–46, 2012.
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Figure 7. The thermoelastic liner positions for different times (t = 0.048; 0.072; 0.105;
0.136 ms).

Figure 8. The thermoelastic liner positions for different times (t = 0.048; 0.072; 0.105;
0.141 ms).

The comparison of Fig. 7 and Fig. 8 leads to the conclusion that the
decrease of the support canting angle results in the decrease of the liner segment
that contacts the support. If the adhesion contact conditions are chosen, i.e.,
the support canting angle is equal to π/6, the received results are identical to
the results of calculation 1.

6.1.2 The liquid and elasto-plastic liner

Let’s discuss the results of the calculations for liquid and elasto-plastic liner
with the adhesion conditions. A belt segment adheres to support surface and
centre part of liner moves in a plane-parallel motion (liquid liner moves faster
than elasto-plastic liner). It corresponds to the experimental data (Fig. 3).
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Figure 9. The elasto-plastic liner positions for different times (t = 0.092; 0.124 ms).

Figure 10. (a) the distribution of the stress tensor intensity (t = 0.092 ms), (b) the
distribution of the yield stress (t = 0.124 ms).

The liner positions for two times are presented in Fig. 9.

The data characterizing the liner stress and strain state at the end of move-
ment are presented in Fig. 10. They are the distribution of the stress tensor

intensity su =
√

3
2s
′
ijs
′
ij and the distribution of the yield stress sy(ε̄p) depend-

ing on the accumulated plastic deformations [11, 15].

The distribution of the stress tensor intensity (Fig. 10a) demonstrates that
the maximal stresses in the liner belt are centered near the moving boundary of
the contact (as was predicted in the paper [5]). The distribution of sy (Fig. 10b)
corresponds the maximal value of su for all calculation time. The value of sy
on the belt segment strained along support is equal to the maximum possible
one for this material stress value smax. The maximal plastic deformations are
formed on this belt segment. The stress does not exceed the initial yield stress
at the other belt parts and any plastic deformations are not formed.

If the contact condition of the sliding motion is chosen (more information
in [8]), there are too large deformations on the belt segment strained along the
support; therefore, the liner is broken.

6.2 The longitudinal model: calculations with liner circuit closing

For these calculations the modelling region corresponds to Fig. 5, the left sup-
port is a conductor, the right support has the conductive plate (its height is a
half of the support height). The liner circuit is closed when the belt reaches
the conductive plate. In this variant the calculations are carried out for the
elasto-plastic liner on the basis of the analysis of the results discussed in the

Math. Model. Anal., 17(1):31–46, 2012.
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above sections.
For the selected domain the liner circuit is closed at time t = 0.0866. If at

this moment the voltage on the capacitor (UA0) is equal to zero then the liner
circuit current reaches the lower values (in comparison with the inductor circuit
current). It is necessary to mention that the generated magnetic field is able
to round the liner belt and to penetrate from the subregion I to the subregion
II (Fig. 5) both in the experimental launchings and in the calculations for the
transverse section. Therefore the magnetic flow pinning from the acceleration
circuit is used for the liner braking [5]. The similar pinning does not take
place in the longitudinal model. For the magnetic field to penetrate to the
subregion II it necessary for this field to diffuse through the liner belt. This
fact explains quite low values of the liner circuit current.
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Figure 11. (a) the liner centre of mass velocity; (b) the liner circuit current.

Nevertheless it is possible to describe the belt braking by the magnetic field
within the longitudinal model. For this purpose, it is necessary to generate
the high-power magnetic field in the subregion II. This field will be compressed
by the liner belts. To demonstrate this fact the calculations are conducted
with the following liner circuit parameters: LA = 0.25, the initial voltage for
different variants is equal to UA0 = −10,−100,−1000. The diagrams of the
concentrated parameters are demonstrated in Fig. 11. They are the temporal
variations of the liner centre of mass velocity (υx) and the liner circuit current
(IA).

Figure 12. The liner positions in the time of calculation stop: (a) UA0 = −100 (t = 0.139
ms); (b) UA0 = −1000 (t = 0.113 ms).

In the second and the third calculations the liner circuit current exceed
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the inductor circuit current; therefore the belt is completely stopped by the
pressure of the compressed magnetic field (after that these calculations are
stopped). In Fig. 12 the liner positions at the time of calculation stop are
shown: Fig. 12a corresponds to the calculation with UA0 = −100, Fig. 12b
corresponds to the calculation with UA0 = −1000. For the second calculation
the liner belt is braked well before. In such a manner it is possible to manage the
liner acceleration and braking process in the longitudinal model by controlling
the parameters values.

6.3 The transverse model

The following results are obtained for the calculations without liner circuit
closing (more information in papers [9, 12]):

1) The integral characteristics (the liner centre of mass velocity and X-
coordinate, the acceleration force, the circuit currents) correspond to one an-
other for the different models.

2) The calculated liner form highly depends on the selected model: the
elastic waves are extended along the elastic liner, the centre part of the elasto-
plastic liner and liquid liner moves in a plane-parallel motion, the liner width
decreases at the expense of the deformations of the liner edges (the edges are
deformed differently for each model). The pinch effect explains such large
deformations.

7 Conclusion

The process of the liner electrodynamic acceleration and braking in the mag-
netic compressor is presented in this paper. The spatial two-dimensional ap-
proach corresponding the longitudinal section is considered (the approach cor-
responding the transverse section is analyzed in the papers [5, 9]). The mathe-
matical and numerical models describing the liner material as a thermoelastic
solid, an elasto-plastic solid and a viscous incompressible liquid are briefly dis-
cussed. These models are presented in more detail in the papers [6, 7, 12].

The main objective of this paper is the comparison of the different models
and the correlation of the calculation results with the experimental data. The
executed analysis leads to the following conclusions:

1) The movement of the liquid liner and the elasto-plastic liner correlates
with the experimental data shown in Fig. 3. In the longitudinal section the
liner belt contacts with the prismatic supports, the centre part of the belt
moves in a plane-parallel motion and has small longitudinal bending. The
results of these models have the qualitative similarity but they also have some
quantitative differences. For example the liquid liner velocity is a little greater
than the elasto-plastic liner velocity.

2) The elastic liner movement does not correlate with the experimental
data. The centre part of the belt does not move in a plane-parallel motion in
the calculations with the different support canting angles and with the different
contact conditions. The elastic waves are extended along the liner.
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3) The magnetic field pinning from the acceleration circuit does not take
place for the longitudinal model by reason of the geometrical features of the
calculation region. In order to simulate the electromagnetic braking of liner one
can artificially produce the magnetic field at the moment of the liner circuit
closing.
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