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Abstract. In this article, we go on to discuss various proper extensions of Kannan’s
two different fixed point theorems, and introduce the new concept of σc function,
which is independent of the three notions of simulation function, manageable func-
tions, and R-functions. These results are analogous to some well-known theorems,
and extend several known results in this literature. An application of the new results
to the integral equation is also provided.
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1 Introduction

The fixed point theory is one of the most useful and essential tools of nonlinear
analysis. Banach [1] has given the most important and fundamental theorem
of this branch by defining the concept of contraction operators. After that,
so many theorems and generalizations of it has been made over the course
of time. Recently, Khojasteh et al. [9] introduced the notion of simulation
function and Du and Khojasteh [3] presented a very close but the independent
concept of manageable function, both of which give a new way to extend the
Banach’s fixed point result. However, López de Hierro and Shahzad [2] has
given the concept of R-function (the generalized concept of both simulation
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and manageable function) to obtain the extension of Banach’s theorem for the
R-contraction operator. A multi-valued version of such generalization can be
found in [6]. On the other hand, Kannan [7, 8] found a particular type of
operators which are not necessarily continuous, but satisfies the fixed point
property on complete metric spaces. The class of operators found by Kannan
and that of Banach are independent of each other [7, 8]. Here, in this article,
we prove several proper generalizations of Kannan’s theorems, by finding fixed
points and coincidence points for two set of operators, via the new concept of σc-
functions. These new generalizations also extend several known theorems like
Koparde-Waghmode theorem [10] and Patel-Deheri’s theorem [13] by finding
the analogous results of Malceski theorem [12].

2 Preliminaries

Let T, S : (X, d) → (X, d) be two operators on metric space (X, d). Then, T
is said to have a fixed point c in X, if Tc = c. The point c is said to be a
coincidence point of the pair (T, S), if Tc = Sc. The space X is said to sat-
isfy the coincidence property with respect to the pair (T, S) if there is at least
one point c for which Tc = Sc. The iterates of the self-mapping T is the set
{Tn : X → X}n∈N∪{0}, where T 0 = IdX , and Tn+1 = T ◦ Tn for all n ∈ N.
Given a point x0 ∈ X, the Picard sequence of T based on x0 is the sequence
{xn}n∈N∪{0} given by xn = Txn−1 for all n ∈ N. Clearly, xn = Tnx0 for all
n ∈ N. The mapping T is said to be asymptotically regular at point x ∈ X if
limn→∞ d(Tnx, Tn+1x) = 0. The mapping T is said to be sequentially conver-
gent if, for each sequence {xn} the following holds true: if {Txn} converges,
then {xn} also converges. We say that a sequence {xn}n∈N∪{0} is S-bounded if
{Sxn}n∈N∪{0} is bounded and S-Cauchy if {Sxn}n∈N∪{0} is a Cauchy sequence.

We now state the Kannan’s two theorems, for which we find the generaliza-
tions.

Theorem 1. (Kannan, [7]) If T is an operator on a complete metric space
(X, d), satisfying the condition that d(Tx, Ty) ≤ α[d(Tx, x) + d(Ty, y)], for all
x, y ∈ X, where 0 < α < 1/2, then T has unique fixed point in X.

Theorem 2. (Kannan, [8]) Let X be a metric space with d as metric. Let T
be a map of X into itself such that

(i) d(Tx, Ty) ≤ α[d(Tx, x) + d(Ty, y)] for all x, y ∈ X, where 0 < α < 1/2;

(ii) T is continuous at a point c ∈ X; and

(iii) There exists a point p ∈ X such that the sequence of iterates {Tn(p)} has
a subsequence {Tni(p)} converging to c.

Then c is the unique fixed point of T.

We state some definitions; starting with the concept of simulation functions,
which was initiated by Khojasteh et al. [9], to show a new way to study, fixed
point theory.
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Definition 1. (Simulation function, [9]) Let ζ : [0,∞)× [0,∞)→ R be a map-
ping, then ζ is said to be a simulation function if it satisfies the following
conditions:

(ζ1) ζ(0, 0) = 0;

(ζ2) ζ(t, s) < s− t for all t, s > 0;

(ζ3) if {tn} and {sn} are sequences in (0,∞) such that, if lim
n→∞

tn= lim
n→∞

sn>0,

then lim sup
n→∞

ζ(tn, sn) < 0.

Example 1. Let ζ : [0,∞) × [0,∞) → R be such that ζ(t, s) = ψ(s) − φ(t) for
all s, t ∈ [0,∞), where ψ, φ : [0,∞)→ [0,∞) are two continuous functions such
that ψ(t) = φ(t) = 0 if and only if t = 0 and ψ(t) < t ≤ φ(t) for all t > 0.
Then ζ is a simulation function.

More examples of simulation function can be found in [9].

Definition 2. (Manageable function, [3]) A function η : R×R→ R is said to
be manageable if the following conditions hold:

(η1) η(t, s) < s− t for all s, t > 0;

(η2) for any bounded sequence {tn} ⊂ (0,∞) and any non-increasing sequence
{sn} ⊂ (0,∞), we have that lim sup

n→∞
(tn + η(tn, sn))/sn < 1.

Several examples of manageable functions can be found in [3].

Definition 3. (R-function, [2]) For a nonempty set A ⊆ R, a function ρ :
A×A→ R is said to be an R-function if it satisfies the following two conditions.

(ρ1) If {an} ⊂ (0,∞) ∩ A is such that ρ(an+1, an) > 0, for all n ∈ N, then
{an} → 0.

(ρ2) If {an}, {bn} ⊂ (0,∞)∩A are two sequences converging to the same limit
L ≥ 0 satisfying that L < an, and ρ(an, bn) > 0, for all n ∈ N, then L = 0.

In some cases, the following additional property is also considered:

(S)

{
If {an}, {bn} ⊂ (0,∞) ∩A are two sequences such that
{bn} → 0 and σ(an, bn) > 0, for all n ∈ N, then {an} → 0.

Various examples and properties of R-function can be found in [2].

Remark 1. (see [2]) Every simulation function and manageable function is an
R-function that also satisfies the property (S).

Remark 2. (see [5]) A Geraghty function is a function ϕ : [0,∞) → [0, 1) such
that if {tn} ⊂ [0,∞) and {ϕ(tn)} → 1, then {tn} → 0.

Definition 4. (L-function, [11]) A function ϕ : [0,∞) → [0,∞) will be called
an L-function if:

(a) ϕ(0) = 0;

(b) ϕ(t) > 0 for all t > 0; and

(c) for all ε > 0, there exists δ > 0 such that ϕ(t) ≤ ε for all t ∈ [ε, ε+ δ].
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3 Main Results

Before going into our main theorems, we shall introduce some definitions, as
follows:

Definition 5. (σc-function) Let A ⊆ R be a nonempty set and c ≥ 1 be a
fixed constant. A function σc : A × A → R is said to be a σc-function if it
satisfies the following two conditions:

(σ1) If {an} ⊂ (0,∞) ∩ A is a sequence such that σc(an, an−1 + an) > 0, for
all n ∈ N, then an → 0 as n→∞;

(σ2) If {an}, {bn} ⊂ (0,∞) ∩A are two convergent sequences such that, cL =
lim
n→∞

bn ≥ lim
n→∞

an = L ≥ 0 and σc(an, bn) > 0 for all n ∈ N, then L = 0.

We denote by ΣA
c the set of all σc functions on A, and we write simply Σc for

Σ
[0,∞)
c .

Remark 3. Unlike Remark 1, every simulation function (or manageable func-
tion) is not a σc-function. In fact, the notion of σc-function is completely
independent, from the three notions mentioned in Definitions 1, 2 and 3 which
can be seen by the following examples.

Example 2. Let γ : [0,∞) × [0,∞) → R be the function defined for all t, s ∈
[0,∞) by

γ(t, s) =

{
s/2− 3t/2, when t < s;
0, when t ≥ s.

Then it can be seen that γ ∈ Σc for any fixed c ∈ [1, 3), which satisfies the
condition (S).

But, γ is not a simulation function (or manageable function). For instance,
take an = bn = 1 for all n ∈ N, then lim sup

n→∞
γ(an, bn) = 0, hence the condition

(ζ3) (or (η1)) is violated.

Example 3. Let β : [0,∞) × [0,∞) → R be the function defined for all t, s ∈
[0,∞), by β(t, s) = s/2− t. Then clearly β is a simulation function. In fact, it
is both manageable and R-function. But β does not satisfy the property (σ1).
Because, if we take an = 1 + 1/n, and bn = an + an−1, for all n ∈ N, then
β(an, bn) = (an−1 − an)/2 > 0 but {an} does not converge to 0. Therefore,
β /∈ Σc for any c ≥ 1.

Example 4. Let g : [0,∞) × [0,∞) → R be the function defined for all t, s ∈
[0,∞) by

g(t, s) =

{
−1, if t ≤ s;
1, if t > s.

Then, for all n ∈ N and for every {an} ⊂ (0,∞), we have, g(an, an−1 +an) < 0.
Hence, condition (σ1) is trivially true. Also, if {an}, {bn} ⊂ (0,∞) are two
convergent sequences such that, cL = lim

n→∞
bn ≥ lim

n→∞
an = L ≥ 0, (for c > 1)
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satisfying that, g(an, bn) > 0, for all n ∈ N, then it implies that, an > bn for
all n ∈ N =⇒ L ≥ cL (for c > 1) =⇒ L = 0. So g satisfies (σ2) and hence,
g ∈ Σc for every fixed c > 1. But g is not an R-function which can be seen by
considering an = n, for all n ∈ N.

Remark 4. The domain of the functions γ and g can be chosen any subset A of
R, rather than [0,∞), to get examples of σc-functions with different domain.
Also, the above function β satisfies (ζ2) but still not a σc-function, which would
be very important when we state our conditions for the extension of Kannan
mapping to get fixed point.

We will now consider some more examples of σc-functions using Geraghty
functions and L-functions.

Example 5. Consider a function, π : [0,∞)→ R, such that, π(t) ≤ t, for all t ∈
[0,∞). Define a new function Θπ : [0,∞) × [0,∞) → R by: Θπ(t, s) = απ(s)t,
for all t, s ∈ [0,∞), with, 0 < α < 1/2. Then, Θπ is a σc-function for every
fixed c ∈ [1, 2], which also satisfies the property (S), can be readily seen.

Example 6. In [2], it is highlighted about an important property of L-function
l, that, l(t) ≤ t, for all t ∈ [0,∞). So by previous example, for every L-function
l, a function defined by: Θl(t, s) = αl(s)t, for all t, s ∈ [0,∞); (0 < α < 1/2) is
a σc-function for every fixed c ∈ [1, 2], which also satisfies the property (S).

Proposition 1. Let g : [0,∞) → [0, 1) be a Geraghty function. Define the
function Θg : [0,∞)× [0,∞)→ R by: Θg(t, s) = αg(s)s− t, for all t, s ∈ [0,∞),
with, 0 < α < 1/2, is a σc-function for every fixed c ∈ [1, 2] which also satisfies
the property (S).

Proof. For 0 < α < 1/2, the proof is clear from Example 5 and the fact that,
g(s) < 1, i.e., g(s)s < s. Now for α = 1/2, we have, Θg(t, s) = g(s)s/2− t, for
all t, s ∈ [0,∞).

(σ1) If {an} ⊂ (0,∞) is a sequence such that Θg(an, an−1 + an) > 0, then,
for all n ∈ N, we have,

1

2
g(an−1+an)(an−1 + an)−an > 0 =⇒ 0 < an <

1

2
g(an−1+an)(an−1+an)

<
1

2
(an−1 + an)] =⇒ an <

1

2
(an−1 + an) =⇒ an < an−1.

So, {an} is strictly monotone decreasing sequence of positive reals, hence con-
vergent to L (say). Hence, L ≤ lim g(an−1 + an) · 2L/2 = L =⇒ lim g(an−1 +
an) = 1, and so by the property of Geraghty function we have that, (an−1 +
an)→ 0 as n→∞; which implies an → 0 as n→∞.

(σ2) If {an}, {bn} ⊂ (0,∞) are two convergent sequences such that, cL =
lim bn ≥ lim an = L ≥ 0, satisfying that, Θg(an, an−1 + an) > 0, then, we have
g(bn)bn/2 − an > 0 =⇒ an ≤ g(bn)bn/2 < bn/2 =⇒ L ≤ lim g(bn)cL/2 <
cL/2 =⇒ lim g(bn) = 1, and so, bn → 0 as n → ∞. This shows that an → 0
as n→∞.

By similar arguments one can check the property (S) and this completes
the proof of the proposition. ut
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Definition 6. Let T : X → X be an operator. A sequence {xn}n≥0 in X
is said to satisfy the asymptotic regularity property with respect to T, if
limn→∞ d(Txn+1, Txn) = 0. Now, if {xn}n≥0 is formed by the Picard’s in-
teration, i.e., xn = Tnx0, then T is simply turns out to be the asymptotically
regular at the base point x0.

Definition 7. (see, [12]) Given two self-mappings T, S : X → X and a se-
quence {xn}n≥0 ⊆ X, we say that {xn}n≥0 is a Picard sequence of the pair
(T, S) (based on x0) if Sxn+1 = Txn for all n ≥ 0. We say that X verifies the
CLR(T, S)-property, if there exists in X a Picard sequence of (T, S) based on
some point x0.

Definition 8. Let T : X → X be an operator. A sequence {xn} is said to be
S-asymptotically similar with respect to T, if limn→∞ d(TSxn, SSxn) = 0.

Definition 9. Let (X, d) be a metric space, and S : X → X be a function. A
mapping T : X → X is called a Σc-S-Kannan with respect to some σc ∈ Σc, if,
it satisfies the condition that

σc(d(Tx, Ty), d(Tx, Sx) + d(Ty, Sy)) > 0 for all x, y ∈ X. (3.1)

The mapping T is called, Σc-Kannan with respect to some σc ∈ Σc, if, it
satisfies the condition that

σc(d(Tx, Ty), d(Tx, x) + d(Ty, y)) > 0 for all x, y ∈ X.

Lemma 1. Let (X, d) be a metric space verifies the CLR(T, S)-property and let
T : X → X be a Σc-S-Kannan, with respect to some σc ∈ Σc, then the Picard
sequence of (T, S) (based on x0) satisfies, either the coincidence property with
respect to the pair (T, S); or, the asymptotically regularity property with respect
to the operator T.

Proof. Given that, (X, d) verifies the CLR(T, S)-property. So there exists in
X a Picard sequence {xn}n≥0 of (T, S) based on some point x0 of X which
satisfying the condition that, Sxn+1 = Txn for all n ≥ 0.

Now we have the following two cases:

• Case I: We assume that, Txp = Txp−1, for some p ∈ N. Then Txp =
Txp−1 = Sxp and X satisfies the coincidence property with respect to
the pair (T, S).

• Case II: Now we assume, Txn 6= Txn−1 for all n ∈ N.

Now as T : X → X be a Σc-S-Kannan, with respect to some σc ∈ Σc, we have
that,

σc(d(Tx, Ty), d(Tx, Sx) + d(Ty, Sy)) > 0 for all x, y ∈ X.

So, σc(d(Txn+1, Txn), d(Txn+1, Sxn+1) + d(Txn, Sxn)) > 0 for all n ∈ N.
Now as, Sxn+1 = Txn for all n ∈ N. We have,

σc(d(Txn+1, Txn), d(Txn+1, Txn) + d(Txn, Txn−1)) > 0.

Math. Model. Anal., 24(4):530–549, 2019.
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Choose an = d(Txn+1, Txn), then, an−1 = d(Txn, Txn−1); and so, an > 0
with σc(an, an−1 + an) > 0, for all n ∈ N. Then by (σ1) we get, {an} → 0.
This clearly shows that, the Picard sequence of (T, S) (based on x0) satisfies
the asymptotically regularity property with respect to the operator T. ut

Lemma 2. Let (X, d) be a metric space verifies the CLR(T, S)-property; and
T : X → X be a Σc-S-Kannan with respect to some σc ∈ Σc, satisfying, either
the condition that, σc(t, s) < s − t for all s, t > 0, or satisfying the property
(S). Then the Picard sequence {xn} of the pair (T, S) (based on x0), is an
S-bounded sequence.

Proof. On contrary, assume that {xn} is not S-bounded. Without loss of
generality we assume that Sxn+p 6= Sxn for all n, p ∈ N; and so, clearly,
Txn+p 6= Txn for all n, p ∈ N. As {xn} is not S-bounded, for each k, there
exists two subsequences {Sxnk

} and {Sxmk
} of {Sxn} with k ≤ nk < mk, for

each k ∈ N,mk, nk are the minimum integers, such that,

d(Sxnk
, Sxmk

) > 1 and d(Sxnk
, Sxp) ≤ 1 for nk ≤ p ≤ mk − 1. (3.2)

Case I: Now, if T is a Σc-S-Kannan with respect to some σc ∈ Σc,
satisfying the condition that, σc(t, s) < s− t for all s, t > 0. So we have that,

d(Tx, Ty) < d(Tx, Sx) + d(Ty, Sy), for all x, y ∈ Y,

where Y is the set of points x, y, of which both the sides of the above inequality
provides non-zero entries.

Now, we assume that Txnk−1 = Sxnk
6= Sxnk−1, Txmk−1 = Sxmk

6=
Sxmk−1. Also, Txn+p 6= Txn, i.e., xnk−1, xmk−1 ∈ Y , and we have,

d(Txnk−1, Txmk−1) < d(Txnk−1, Sxnk−1) + d(Txmk−1, Sxmk−1).

Now clearly,

1 < d(Sxnk
, Sxmk

) = d(Txnk−1, Txmk−1) < d(Txnk−1, Sxnk−1)

+ d(Txmk−1, Sxmk−1)

as T is Σc-S-Kannan. This implies

1 < d(Txnk−1, Sxnk−1) + d(Txmk−1, Sxmk−1) = d(Txnk−1, Txnk−2)

+ d(Txmk−1, Txmk−2).

Now we see that both the entries on the right hand side are the subsequence of
d(Txn, Sxn) = d(Txn, Txn−1), such that, Txn 6= Txn−1 for all n ∈ N. Then by
Case II of Lemma 1, then Picard sequence of (T, S) (based on x0) satisfies the
asymptotically regularity property with respect to the operator T . So, taking
limit on both sides as k →∞, we get, 1 ≤ 0, which is a contradiction. Hence,
{xn} is S-bounded.

Case II: Now suppose, σc satisfies the property (S). Then, we choose,
ak = d(Sxnk

, Sxmk
) and
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bk = d(Txnk−1, Sxnk−1) + d(Txmk−1, Sxmk−1). Then, by the given condition,
we have, ak, bk > 0 satisfying σc(ak, bk) > 0 with bk → 0. So by the property
(S) we have ak → 0, which is again a contradiction to equation (3.2). This
proves the lemma. ut

We now use a similar type of idea as given in [9] to prove the next lemma.

Lemma 3. Let (X, d) be a metric space verifies the CLR(T, S)-property; and
T : X → X be a Σc-S-Kannan with respect to some σc ∈ Σc, satisfying, either
the condition that, σc(t, s) < s − t for all s, t > 0, or, satisfying the property
(S) . Then the Picard sequence {xn} of the pair (T, S) (based on x0), is an
S-Cauchy sequence.

Proof. Consider Cn = sup{d(Sxi, Sxj) : i, j ≥ n}. Note that the sequence
{Cn} is a monotonically decreasing sequence of positive reals and by Lemma 2,
the sequence {xn} is S-bounded, therefore Cn < ∞ for all n ∈ N. Thus {Cn}
is monotone, bounded sequence, hence convergent. So there exists C ≥ 0 such
that limn→∞ Cn = C.

Now, if C > 0, then by the definition of Cn, for every k ∈ N there exists
nk, mk such that mk > nk ≥ k and

C − 1/k < d(Sxmk
, Sxnk

) ≤ C.

Hence, limk→∞ d(Sxmk
, Sxnk

) = C.
Case I: Now, suppose T is a Σ-S-Kannan with respect to some σc ∈ Σc,

satisfying the condition that, σc(t, s) < s− t for all s, t > 0, so we have,

d(Sxnk
, Sxmk

) = d(Txnk−1, Txmk−1)

< d(Txnk−1, Sxnk−1) + d(Txmk−1, Sxmk−1)

=⇒ d(Sxnk
, Sxmk

) < d(Txnk−1, Txnk−2) + d(Txmk−1, Txmk−2).

So, by previous argument, taking limit on both sides as k →∞, we get,

lim
k→∞

d(Sxmk
, Sxnk

) = C ≤ 0.

This is a contradiction to the assumption that C > 0. Hence C = 0.
Case II: Suppose, σc satisfies the property (S). Then, we choose:

ak = d(Sxnk
, Sxmk

) and bk = d(Txnk−1, Sxnk−1) + d(Txmk−1, Sxmk−1).

Then, by the given condition, we have, ak, bk > 0 satisfying σc(ak, bk) > 0
with bk → 0. So by the property (S) we have ak → 0. Hence, C = 0, and this
completes the proof of lemma. ut

We now state one of our main theorem for σc-function, which is a general-
ization of the Theorem 2 (Kannan, [8]).

Theorem 3. Let (X, d) be a metric space verifies the CLR(T, S)-property and
let {xn}n≥0 be a Picard sequence of the pair (T, S) (based on x0). Let T be a
map of X into itself such that:

Math. Model. Anal., 24(4):530–549, 2019.
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(i) T : X → X be a Σc-S-Kannan with respect to some σc ∈ Σc (for c = 1),
satisfying either of the condition that

(a) σc(t, s) < s− t for all s, t > 0; or (b) σc satisfying the property (S).

(ii) T and S both are continuous at a point Sq ∈ X; and

(iii) the Picard sequence Txn has a subsequence {Txnk
} converging to Sq.

Then, either the pair (T, S) has a coincidence point, or the following two con-
ditions hold:

(B1) {xn}n≥0 is S-asymptotically similar, implies, Sq is a fixed point of T ;

(B2) Sq is a fixed point of S, implies, Sq is a fixed point of T.

Proof. If at least two consecutive terms of the Picard sequence of pair (T, S)
are equal, then by the Case I of the Lemma 1, the pair (T, S) has a coincidence
point.

We now assume that no terms of the Picard sequence of the pair (T, S) are
equal, and we show that both the conditions (B1) and (B2) hold.

(B1) Given that, T is continuous at Sq ∈ X, {TTxnk
} converging to TSq.

We assume, TSq 6= Sq, and will arrive at a contradiction. As, TSq 6= Sq, we
consider two disjoint open balls, say B(TSq, r1) and B(Sq, r2), with centres at
TSq, Sq, and radii r1, r2 respectively.

We choose, r = min{r1, r2, d(TSq, Sq)/4} > 0. Now, as the subsequence
{Txnk

} converging to Sq, and {TTxnk
} converges to TSq; there exists a posi-

tive integer M , such that, for all k > M, we have that,

Txnk
∈ B(Sq, r) and TTxnk

∈ B(TSq, r)

and so, clearly, for each k > M , we have that

0 < 4r < d(TSq, Sq) ≤ d(TSq, TTxnk
) + d(Txnk

, TTxnk
) + d(Txnk

, Sq)

=⇒ 4r < 2r + d(Txnk
, TTxnk

).

That is, we have,
d(Txnk

, TTxnk
) > 2r > 0. (3.3)

Case I: If the condition (i)-(a) is satisfied, then we have that

0 < d(Txnk
, TTxnk

) < d(Txnk
, Sxnk

) + d(TTxnk
, STxnk

)

= d(Txnk
, Txnk−1) + d(TSxnk+1, SSxnk+1).

Now, as assumed in the condition (B1), {xn}n≥0 is S-asymptotically similar;
and using Lemma 1, we see that, the right hand side tends to 0. So, we
get, limk→∞ d(Txnk

, TTxnk
) = 0, which is a contradiction to (3.3). Hence,

TSq = Sq, i.e., Sq is a fixed point of T.
Case II: If the condition (i)-(b) is satisfied, then we have,

σc(d(Txnk
, TTxnk

), d(Txnk
, Sxnk

) + d(TTxnk
, STxnk

)) > 0.
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We assume,

ak = d(Txnk
, TTxnk

) and bk = d(Txnk
, Sxnk

) + d(TTxnk
, STxnk

).

Then, since limk→∞ bk = 0, we have limk→∞ ak = 0. This is a contradiction to
(3.3). Hence, TSq = Sq, i.e., Sq is a fixed point of T .

(B2) If the condition (i)-(a) is satisfied by σc, i.e, σc(t, s) < s − t, for all
s, t > 0. Then, we have that,

σc(d(Txnk
, TTxnk

), d(Txnk
, Sxnk

) + d(TTxnk
, STxnk

)) > 0.

Choose, ak = d(Txnk
, TTxnk

) and bk = d(Txnk
, Sxnk

) + d(TTxnk
, STxnk

).
Now, we see that ak → d(Sq, TSq) = L, bk → d(TSq, SSq) = d(TSq, Sq) = L,
(by the assumption made in (c)). Since T : X → X be a σc-Kannan with
respect to some σc ∈ Σc (for c = 1), and L = lim ak ≤ lim bk = L; it then
implies that L = 0 and hence, d(Sq, TSq) = 0. So, TSq = Sq and Sq is a fixed
point of T.

Assuming the condition (i)-(b) to be satisfied by σc, i.e, if σc satisfies the
condition (S), then similarly one can obtain the results, by using Lemma 1 and
Lemma 3. This completes the proof. ut

Next, we state one of our main theorem for σc-function, which is the gen-
eralization of the Theorem 1 (Kannan, [7]).

Theorem 4. Let (X, d) be a metric space verifies the CLR(T, S)-property and
let T be a map of X into itself such that:

(i) (S(X), d) is complete, (or (T (X), d) is complete);

(ii) T is a Σc-S-Kannan with respect to some σc ∈ Σc (for c = 1) satisfying
either of the condition that;

(a) σc(t, s) < s− t for all s, t > 0; or (b) satisfying the property (S).

Then, X satisfies the coincidence property with respect to the pair (T, S).

Proof. Suppose, T is a Σc-S-Kannan with respect to some σc ∈ Σc (for c = 1),
satisfying the condition

σc(t, s) < s− t for all s, t > 0.

Hence, by Lemma 3, the Picard sequence {xn} of the pair (T, S) (based on x0),
is an S-Cauchy sequence.

Now, suppose (S(X), d) is complete (similar process will work if (T (X), d)
is complete). Then, {Sxn} must be convergent and converges to a point z
(say) in S(X). Since, Sxn+1 = Txn for all n ≥ 0, the sequence {Txn} is also
convergent and converges to the same point z. As, z ∈ S(X), there is at least
one point w (say) in X such that Sw = z. Also, if T satisfy the condition
(ii)-(a), i.e, σc(t, s) < t− s for all s, t > 0, then

σc(d(Txn, Tw), d(Txn, Sxn) + d(Tw, Sw)) > 0.
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Now choose an = d(Txn, Tw) and bn = d(Txn, Sxn) + d(Tw, Sw) for all
n ∈ N. Then, limn→∞ an = limn→∞ d(Txn, Tw) = limn→∞ d(Sxn+1, Tw) =
d(z, Tw) = d(Sw, Tw) and

lim
n→∞

bn = lim
n→∞

[d(Txn, Sxn) + d(Tw, Sw)]

= lim
n→∞

[d(Sxn+1, Sxn) + d(Tw, Sw)] = d(Tw, Sw).

Hence,

d(Tw, Sw) = lim
n→∞

bn ≥ lim
n→∞

an = d(Tw, Sw) = L ≥ 0

and so, L = 0 (by (σ2)). Hence X satisfies the coincidence property with
respect to the pair (T, S).

Assuming that the σc-function satisfies the condition (ii)-(b), i.e, the prop-
erty (S). Then, using Lemma 1 and Lemma 3 and a similar process, one can
obtain the result. This completes the proof. ut

Corollary 1. Let (X, d) be a complete metric space, and let T be a map of X
into itself such that T is a Σc-Kannan with respect to some σc ∈ Σc for c = 1.
Suppose that σc satisfies either, the condition (S) or, that, σc(t, s) < s − t for
all s, t > 0. Then T has unique fixed point in X.

Proof. Putting, S = IdX , i.e, S(x) = x for all x ∈ X in Theorem 4 we
obtain the existence of the fixed point of T. Only to prove the uniqueness.
Note that, for S = IdX the Picard sequence of the pair (T, S) based on some
point x0 ∈ X, now reduces into the Picard sequence {xn} of T based on x0 for
arbitrary x0 ∈ X, where xn = Tnx0; and {xn} converges to u such that u is
a fixed point of T . If possible, assume Tv = v with u 6= v, for some v ∈ X.
Then, we can choose a subsequence {xnk

} of {xn} such that xnk
6= xnk+1 and,

Txnk
6= Tv for all k ∈ N (because, if not so, then taking limits u = Tv = v).

Now, if σc(t, s) < s − t, for all s, t > 0 we have that, d(Txnk
, T v) <

d(Txnk
, xnk

)+d(Tv, v), and taking limits we get, d(u, Tv) = 0, i.e., u = Tv = v.
Also if, the condition (S) is satisfied, then we choose,

ak = d(Txnk
, T v) and bk = d(Txnk

, xnk
) + d(Tv, v)

and bk → 0 as k → ∞, we get ak → 0 as k → ∞. So, d(u, Tv) = 0, i.e.,
u = Tv = v. This completes the proof of the corollary. ut

Corollary 2. Let T : Rn → Rn be a function such that T (Rn) is closed and
for each x ∈ Rn there is y ∈ Rn Tx = −Ty. Suppose that the condition:
‖Tx − Ty‖ ≤ 2α(‖Tx‖ + ‖Ty‖), for a fixed 0 < α < 1/2; is satisfied. Then,
there is root of the function in Rn, i.e., there is a point a in Rn for which
Ta = 0.

Proof. Put Sx = −Tx in the Theorem 4 and consider σc(t, s) = αs− t for all
t, s ∈ [0,∞), 0 < α < 1/2. (For the proof of being σc-function, see Remark 5,
below). ut
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Remark 5. Theorems 3 and 4 are the generalizations of the Theorem 2 (Kannan;
[8]) and Theorem 1 (Kannan; [7]) respectively. Because for a fixed 0 < α < 1/2
if we choose a function χα : [0,∞) × [0,∞) → R defined by: χα(t, s) = αs − t
for all t, s ∈ [0,∞), then χα is σc-function (for every fixed c ∈ [1, 2)), for every
0 < α < 1/2.

Proof. (σ1) If {an} ⊂ (0,∞) is a sequence such that χα(an, an−1 + an) > 0,
for all n ∈ N, then we have

0 < χα(an, an−1+an)=α(an−1+an)−an=αan−1−(1−α)an =⇒ an <
αan−1
1−α

.

So, as 0 < α < 1/2, the quantity α
1−α < 1, and hence {an} → 0.

(σ2) If {an}, {bn} ⊂ (0,∞) are two convergent sequences such that, cL =
lim bn ≥ lim an = L ≥ 0, satisfying that, χα(an, bn) > 0, for all n ∈ N, then

0 < χα(an, bn) = αbn − an =⇒ 0 < an < αbn =⇒ 0 ≤ L
≤ cαL < cL/2 < L =⇒ L = 0 as c < 2.

This proves that χα is σc-function (for every fixed c < 2), for every 0 < α < 1/2.
Now, if an operator satisfies the condition (3.1) of Definition 9; then for

σc = χα and S = IdX we have that,

χα(d(Tx, Ty), d(Tx, x) + d(Ty, y)) > 0, for all x, y ∈ X
=⇒ d(Tx, Ty) ≤ α[d(Tx, x) + d(Ty, y)], for all x, y ∈ X, (0 < α < 1/2).

Which is the Kannan’s contraction condition. All the other conditions of The-
orem 3 and Theorem 4 can be reduced into desired form, easily. ut

Remark 6. The identity function is the simplest operator having fixed point,
without satisfying the Kannan’s contraction (or not even Banach’s contraction
condition). But it does satisfy our Σc-S-Kannan contraction condition. Also
our Σc-S-Kannan contraction condition is a proper extension of the Kannan’s
contraction condition even when we take S to be the identity operator. Also
Theorem 3 and Theorem 4 are the two proper generalizations of Kannan’s
theorem. These all facts follows from the next few examples.

Example 7. First let us consider Example 4, with a slight modification, that:
consider ω : [0,∞)× [0,∞)→ R be the function defined, for all t, s ∈ [0,∞) by

ω(t, s) =

{
−1, if t < s;
1, if s ≤ t.

Then, in view of Example 4 we have ω ∈ Σc with every fixed c > 1. Now,
if we take the operator T to be the identity function then it is a Σc-Kannan
mapping. Since for any x, y ∈ X, we have that,

ω(d(Tx, Ty), d(Tx, x) + d(Ty, y)) = ω(d(x, y), 0) = 1 > 0.

But T not a Kannan’s mapping; because if so, then for x 6= y, we would have
that,

d(x, y) = d(Tx, Ty) ≤ α[d(Tx, x) + d(Ty, y)] = 0,
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which is a contradiction. Also if we take X an arbitrary metric space, and
T : X → X be any function with at least two different images, and we choose
S to be any constant function, then X satisfy the CLR(T, S) property and T
satisfying the Σc-S-Kannan contraction condition with respect to the above
function ω. Also if would have chosen the last considered T, pre-assuming that
there exists a point a such that Ta = a then T satisfies all the conditions above
without the condition (ii) of Theorem 4; and this shows that the condition (ii)
of Theorem 4, is sufficient but not necessary to have fixed point.

Example 8. To prove our Σc-S-Kannan contraction condition is a proper ex-
tension of the Kannan’s contraction condition, we consider X = {1, 2, 3, 4, 5}
and define T : X → X as Tx = 3 if x 6= 4 and T4 = 2; and define S : X → X
as, Sx = 3, x 6= 4 and S4 = 5. Then clearly T does not satisfy the Kannan’s
contractive condition which can be seen by considering two points 3 and 4. But
this T is satisfying the Σc-S-Kannan contraction condition with respect to the
σc ∈ Σc, defined by σc(t, s) = 3s/7− t (for any fixed c ∈ [1, 2)) (by Remark 5).
In fact X satisfies the CLR(T, S) property and S(X) is complete as well. So it
satisfy all the properties of Theorem 4, and hence X satisfies the coincidence
property with respect to the pair (T, S) and x = 1, 2, 3 are the coincidence
points of it.

Remark 7. In [2], it has been shown that every simulation function and every
manageable function is an R-function, as well as, both types of functions satisfy
the property (S). Notice that, the property (σ1) of σc-functions is quite different
from the property (ρ1) of manageable functions. This property is a major
difference between the manageable functions and the σc-functions, and it plays
an important role in the existence of fixed point of the class of Σc-S-Kannan and
Σc-Kannan operators. The following example shows that one cannot replace
the property (σ1) by (ρ1) even when the property (S) is satisfied.

Example 9. Let X = {1, 2, 3} and consider the metric d(x, y) = |x − y| for all
x, y ∈ X. Clearly (X, d) is complete. Now, consider a function τ : [0,∞) ×
[0,∞) → R be the function defined by τ(t, s) = 2s/3 − t, for all t, s ∈ [0,∞).
Clearly τ is a manageable function which satisfies the property (S).

We now define an operator T : X → X by T1 = T2 = 3 and T3 = 2. To
show

τ(d(Tx, Ty), d(Tx, x) + d(Ty, y)) > 0

we show that d(Tx, Ty) ≤ 2[d(Tx, x) + d(Ty, y)]/3. Then, τ satisfies the prop-
erty (σ2) with every fixed c ∈ [1, 3/2). Thus, all the conditions of Theorem 4,
except the condition (σ1), are satisfied, and T has no fixed point.

We now move to find another different types of generalizations of Kannan’s
theorems, starting with the following definition.

Definition 10. Let (X, d) be a metric space and T : X → X and S : X → X
be two operators. Then T is said to be S-dominated Σc-Kannan mapping of
degree w, if for some σc ∈ Σc, the following holds:

σc(d
w(STx, STy), dw(Sx, STx) + dw(Sy, STy)) > 0 (3.4)

for all x, y ∈ X, for any fixed w ∈ N.
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In [12], Malceski proved the following generalization of Kannan’s theorem:

Theorem 5. Let (X, d) be a complete metric space, T : X → X and S : X →
X be two mappings such that T it is continuous, injection and sequentially
convergent. If α > 0, γ ≥ 0 and 2α+ γ < 1, and, satisfies the condition that,

d(STx, STy) ≤ α[d(Sx, STx) + d(Sy, STy)] + γd(Sx, Sy)

for all x, y ∈ X, then there is a unique fixed point of T.

Now we find another different type of generalization of Theorem 1 (Kannan,
[7]), by using σc-function, which is quite analogous to the above Theorem 5 and
extends the theorems given in [10] and [13].

Theorem 6. Let (X, d) is a metric space, and T : X → X and S : X → X be
two operators, such that, T is S-dominated Σc-Kannan mapping of degree w,
with respect to some σc ∈ Σc (c = 1), with the following conditions hold: (a)
S(X) is complete; (b) S is injective; (c) either σc(t, s) < s − t; or, σc satisfy
the condition (S). Then, there exists a unique fixed point of the operator T in
X.

Proof. We first show the existence of fixed point. Let the sequence {xn}n≥0
is formed by the Picard’s interation, i.e., xn = Tnx0, with initial base point
x0 we assume, xn+1 6= xn for every n ∈ N, because if not so for some index
k, then Txk = xk+1 = xk and we would get fixed point and our proof would
be over. So, assume that xn+1 6= xn for all n ∈ N. Now, the injectivity of S
implies that, Sxn+1 6= Sxn for all n ∈ N.

Given, σc(d
w(STx, STy), dw(Sx, STx) +dw(Sy, STy)) > 0 for all x, y ∈ X.

So, σc(d
w(STxn+1, STxn), dw(STxn+1, Sxn+1) + dw(STxn, Sxn)) > 0 for all

n ∈ N, which implies

σc(d
w(Sxn+2, Sxn+1), dw(Sxn+2, Sxn+1) + dw(Sxn+1, Sxn)) > 0

as, xn+1 = Txn for all n ≥ 0. Choose an = dw(Sxn+2, Sxn+1)(> 0), then,
an−1 = dw(Sxn+1, Sxn) and so σc(an, bn) > 0, where bn = an−1+an for all n ∈
N. So by (σ1) we have dw(Sxn+1, Sxn) = an−1 → 0, as n→∞. That is

d(Sxn+1, Sxn)→ 0 as n→∞. (3.5)

Claim: The sequence {xn} is S-bounded.
Proof of Claim: On contrary, we assume, that {xn} is not S-bounded.

Without loss of generality we assume that Sxn+p 6= Sxn for all n, p ∈ N; and
so clearly, Txn+p 6= Txn for all n, p ∈ N. Now as {xn} is not S-bounded, for
each k ∈ N, there exist two subsequences {Sxnk

} and {Sxmk
} of {Sxn} with

k ≤ nk < mk such that, mk is the minimum integer and for nk ≤ p ≤ mk the
following is satisfied:

d(STxnk−1, STxmk−1) = d(Sxnk
, Sxmk

) > 1 and d(Sxnk
, Sxp) ≤ 1. (3.6)

Subcase I: If σc(t, s) < s− t, then, by equation (3.6), we have that

1 < dw(Sxnk
, Sxmk

) = dw(STxnk−1, STxmk−1) < dw(STxnk−1, Sxnk−1)

+ dw(STxmk−1, Sxmk−1) = dw(Sxnk
, Sxnk−1) + dw(Sxmk

, Sxmk−1).
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Then, by (3.6), taking limit on both sides as k →∞, we arrive at a contradic-
tion.

Subcase II: If σc satisfy the condition (S), then we assume,

ak = dw(Sxnk
, Sxmk

), bk = dw(Sxnk
, Sxnk−1) + dw(Sxmk

, Sxmk−1).

Then by the given condition, we have, σc(ak, bk) > 0 with bk → 0 so by the
property (S) we have ak → 0.

Claim: The sequence {xn} is S-Cauchy.
Proof of Claim: Consider Cn = sup{d(Sxi, Sxj) : i, j ≥ n}. Then, by

the S-boundedness and monotonicity of Cn, we have limn→∞ Cn = C (for
some C). If C > 0, then there exist qk, pk with pk > qk ≥ k such that
limk→∞ d(Sxpk , Sxqk) = C. Then, similar to the previous cases (or by Subcase
I, Subcase II) we arrive at a contradiction.

Now by condition (a) there exists a point z (say) in S(X), for which Sxn →
z. Also, as z ∈ S(X), there is a point say a ∈ X such that Sa = z. Now as
the previous one, we consider an = dw(STxn, STa) and bn = dw(STxn, Sxn)+
dw(STa, Sa), for all n ∈ N such that, an → dw(z, STa) and bn → dw(Sa, STa).
So by (σ2) we have, dw(z, STa) = 0, i.e., STa = z = Sa, and the injectivity
of S shows that Ta = a. Uniqueness of fixed point follows from the previous
arguments. ut

Remark 8. Here, we only use the injectivity of S, not the continuity and se-
quential convergence of S, and still the theorem remains true, if we assume
that image of X under S is complete.

Corollary 3. (Koparde-Waghmode theorem, see [10]) If (X, d) is a complete
metric space and T : X → X is a mapping. Suppose that, there exists α ∈
(0, 1/2) such that the following is satisfied:

d2(Tx, Ty) ≤ α[d2(x, Tx) + d2(y, Ty)] for all x, y ∈ X.

Then, T has a unique fixed point in X.

Proof. We assume σc function as σc(t, s) = αs − t, with α ∈ (0, 1/2), and
consider operator S as, S(x) = x for all x ∈ X, and put w = 2, in the
Theorem 6. ut

Corollary 4. (Patel-Deheri theorem, see [13]) In a complete metric space, if the
two operators S, T satisfy,

d(STx, STy) ≤ α[d(Sx, STx) + d(Sy, STy)],

where 0 < α < 1/2 and S is continuous, injection and sequentially convergent.
Then, T has a unique fixed point in X.

Proof. We assume σc-function as σc(t, s) = αs− t, with α ∈ (0, 1/2), and put
w = 1, in Theorem 6. ut

We now prove another generalizations of Theorem 2 (Kannan [8]).
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Theorem 7. Let (X, d) be a metric space and T : X → X, S : X → X be two
operators such that, T is S-dominated Σc-Kannan mapping of degree w = 1,
with respect to some σc-function (c = 1). Suppose that the following conditions
hold:

(i) either σc(t, s) < s− t for all s, t > 0; or, σc satisfying the condition (S);

(ii) there exists a point p such that, the Picard sequence {Txn} has a subse-
quence {Txnk

} converging to q;

(iii) T and S both continuous at the point Sq ∈ X; and,

(iv) S is injective and continuous at Tq.

Then, q is the unique fixed point of T.

Proof. Suppose Tq 6= q. Then, by (iv), STq 6= Sq. We consider two disjoint
open balls, say B(TSq, r1) and B(Sq, r2), with centres at Tq, q, and radii r1, r2
respectively and choose 0 < r < min{r1, r2, d(TSq, Sq)/3}.

Now, as the subsequence {Txnk
} converging to q, and S is continuous at

both q and Tq. So {STxnk
} converges to Sq; and {STTxnk

} converges to STq.
there exists a positive integer M, such that, for all k > M , we have that,

STxnk
∈ B(Sq, r) and STTxnk

∈ B(STq, r),

and so, clearly, for each k > M , we have that,

0 < 3r < d(STq, Sq) ≤ d(STq, STTxnk
) + d(STTxnk

, STxnk
)

+ d(STxnk
, Sq) < 2r + d(STxnk

, STTxnk
).

This implies that
d(STxnk

, STTxnk
) > r. (3.7)

Now, T is S-dominated Σc-Kannan mapping of degree w = 1, so using (i)
and, a similar idea used in Theorem 3, S is asymptotically regular and hence
we have a contradiction to (3.7). This shows that STq = Sq or equivalently
Tq = q. The uniqueness follows from similar arguments as we used in previous
results. ut

Example 10. The S-dominated Σc-Kannan contraction condition is a proper
extension of the Kannan’s contraction condition we consider the example given
in [12], [13] with a little brief.

Let X = {0, 1/4, 1/5, 1/6, . . .} endowed with the Euclidean metric. Define
T : X → X, by T0 = 0, and T (1/n) = 1/(n + 1). Consider S : X → X to be
S0 = 0 and S(1/n) = 1/nn, then T does not satisfy the Kannan’s contraction
condition for any constant > 0, but it is S-dominated Σc-Kannan mapping of
degree w = 1 with respect to the Σc-function defined by σc(t, s) = s/3 − t
(for 0 < c < 2). (By Remark 5). Also by defining S to be, S0 = 0 and
S(1/n) = 1/[e2n], T is a S-dominated Σc-Kannan with respect to the Σc-
function defined by σc(t, s) = s/6t (for 0 < c < 2) (by Remark 5).
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We consider one more new example of this type, but in much simpler form.

Example 11. Let (X, d) and T : X → X be same as we have considered in
Example 8. Then, T does not satisfy the Kannan’s contractive condition. But,
T is a S-dominated Σc-Kannan, with respect to the σc-function defined by
σc(t, s) = αs− t (for every fixed c ∈ (0, 2)); for all fixed α ∈ (0, 1/2).

4 Application to integral equations

In this section, we give an application of Theorem 4 in proving the existence
and uniqueness of the solution of a particular type of integral equations.

Suppose, K : [a, b] × R → R is a given function. We consider the following
integral equation:

u(t) = α

∫ t

a

K(t, u(s))ds, (4.1)

where α is a nonzero real.

Let CR[a, b] be the space of all continuous real-valued functions defined on
the interval [a, b] with the Bielecki’s norm given by:

‖u‖B = sup
t∈[a,b]

|u(t)|e−µt, u ∈ CR[a, b],

where µ > 0 is arbitrary but fixed. The metric d induced by ‖ · ‖B is given by:

d(u, v) = sup
t∈[a,b]

|u(t)− v(t)|e−µt for all u, v ∈ CR[a, b].

Then (CR[a, b], d) is a complete metric space.

Theorem 8. Suppose, the function K : [a, b] × R → R is continuous and the
following condition is satisfied: for all t, s ∈ [a, b], u, v ∈ R there exists a non-
decreasing continuous function ψ : [0,∞)→ [0, 1/2) such that

|K(t, u(s))−K(t, v(s))| ≤ ψ
(
D(t, u(s), v(s))e−µs

)
D(t, u(s), v(s)), (4.2)

where D(t, u(s), v(s)) =
∣∣u(s)− α

∫ t
a
K(t, u(s))ds

∣∣+
∣∣v(s)− α

∫ t
a
K(t, v(s))ds

∣∣.
Then the integral equation (4.1) has a unique solution.

Proof. To prove the existence and uniqueness of the solution of equation (4.1)
we first convert it into a fixed point problem. Define a function T : CR[a, b]→
CR[a, b] by

T (u(t)) = α

∫ t

a

K(t, u(s))ds.

Then it is clear that the problem of finding the solution of (4.1) is equivalent
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to the problem of finding the fixed point of T. Now

d(Tu, Tv) = sup
t∈[a,b]

|T (u(t))− T (v(t))|e−µt

= sup
t∈[a,b]

∣∣∣∣α ∫ t

a

K(t, u(s))ds− α
∫ t

a

K(t, v(s))ds

∣∣∣∣ e−µt
≤ |α| sup

t∈[a,b]

∫ t

a

|K(t, u(s))−K(t, v(s))|ds · e−µt

≤ |α| sup
t[a,b]

∫ t

a

ψ
(
D(t, u(s), v(s))e−µs

)
D(t, u(s), v(s))ds · e−µt. (4.3)

Notice that

(D(t, u(s), v(s))e−µt =
[∣∣∣u(s)− α

∫ t

a

K(t, u(r))dr
∣∣∣+
∣∣∣v(s)− α

×
∫ t

a

K(t, v(r))dr
∣∣∣]e−µt ≤ sup

s∈[a,b]

[∣∣∣u(s)− α
∫ t

a

K(t, u(r))dr
∣∣∣

+
∣∣∣v(s)− α

∫ t

a

K(t, v(r))dr
∣∣∣]e−µt = sup

s∈[a,b]

[∣∣∣u(s)− T (u(t))
∣∣∣

+
∣∣∣v(s)−T (v(t))

∣∣∣]e−µse−µ(t−s)≤d(u(t), T (u(t))
)

+d
(
v(t), T (v(t))

)
e−µ(s−t)

and

ψ((D(t, u(s), v(s))e−µs) = ψ
(∣∣u(s)− α

∫ t

a

K (t, u(s)) ds
∣∣e−µs

+
∣∣∣v(s)− α

∫ t

a

K(t, v(s))ds
∣∣∣e−µs) ≤ ψ( sup

s∈[a,b]

[∣∣∣u(s)

− α
∫ t

a

K(t, u(r))dr
∣∣∣e−µs +

∣∣∣v(s)− α
∫ t

a

K(t, v(r))dr
∣∣∣e−µs])

= ψ
(

sup
s∈[a,b]

[∣∣∣u(s)− T (u(t))
∣∣∣e−µs +

∣∣∣v(s)− T (v(t))
∣∣∣e−µs])

≤ ψ
(
d(u(t), T (u(t))) + d(v(t), T (v(t)))

)
.

Therefore, it follows from (4.3) that

d(Tu, Tv) ≤ |α| sup
t∈[a,b]

∫ t

a

ψ
(
d(u(t), T (u(t))) + d(v(t), T (v(t)))

)
×
[
d(u(t), T (u(t))) + d(v(t), T (v(t)))

]
ds · e−µ(t−s),

i.e.

d(Tu, Tv) ≤ |α|ψ
(
d(u(t), T (u(t))) + d(v(t), T (v(t)))

)
×
[
d(u(t), T (u(t))) + d(v(t), T (v(t)))

][(
1− e−µ(b−a)

)
/µ
]
.
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Choose µ = |α| in the above we obtain:

d(Tu, Tv) ≤ ψ
(
d(u(t), T (u(t))) + d(v(t), T (v(t)))

)
(4.4)

×
[
d(u(t), T (u(t))) + d(v(t), T (v(t)))

][
1− e−µ(b−a)

]
< ψ

(
d(u(t), T (u(t))) + d(v(t), T (v(t)))

)[
d(u(t), T (u(t))) + d(v(t), T (v(t)))

]
.

Define a function σc : [0,∞)× [0,∞)→ R by:

σc(t, s) = sψ(s)− t for all t, s ∈ [0,∞).

Then it is easy to see that σc ∈ Σc for c = 1. Therefore, from (4.4) we obtain
that

σc

(
d(Tu, Tv), d(u, Tu) + d(v, Tv)

)
> 0 for all u, v ∈ CR[a, b].

Since ψ : [0,∞)→ [0, 1/2) we have

σc(t, s) = sψ(s)− t < s− t for all t, s ∈ (0,∞).

Thus, all the conditions of Theorem 4 (with S = IdX) are satisfied, and so,
the mapping T has a unique fixed point which is the unique solution of integral
equation (4.1). ut

5 Conclusions

In this article, we tried to find several extension of Kannan’s two different
fixed point results, by introducing the concept of Σc-S-Kannan operator and
S-dominated Σc-S-Kannan operator of degree w; via the new concept of σc-
function (shown to be independent of the other three concepts of Simulation
function, Manageable function and R-function). These new generalizations also
extends several known theorems in this branch and the similar ideas could be
profitably extended to the three dimensional case of σc-functions and would
be helpful to find the extension of the Fisher type (see, [4]) of mapping and
the similar type of operators. Now, by the above discussions, the following
interesting problems arise:

Problem 1. Can the Theorem 3 (or Theorem 4) and Theorem 6 (or Theorem 7)
be proved with an operator satisfying the condition (3.1) (or condition (3.4))
for a dense subset of X, instead of whole of X?

Problem 2. If we define an analogous Definition 9, and Definition 10 as fol-
lows: An operator T on a metric space is called Σc-S-Fisher if it satisfies,
σc(d(Tx, Ty), d(Tx, Sy) + d(Ty, Sx)) > 0 for all x, y ∈ X and said to be S-
dominated Σc-Fisher mapping of degree w, if, with for some σc function, we
have σc(d

w(STx, STy), dw(Sy, STx) + dw(Sx, STy)) > 0 for all x, y ∈ X, for
any fixed w ∈ N. Then, can the Theorem 3 (or Theorem 4 ) and Theorem 6
(or Theorem 7) be proved, with an operator satisfying the above proposed
conditions for the Fisher type of operator?
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