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1 Introduction

Fractional order differential equations are generalization of integer order differ-
ential equations to non-integer order ones. Due to the nonlocality of fractional
order derivatives, the generalization has a wide range of interesting applica-
tions in science and engineering. For example, many physical phenomena with
long time memory behavior in diffusive interaction, electrochemistry, polymer
rheology can be described successfully by fractional order mathematical mod-
els [1, 18, 26, 27, 31, 36, 41]. Thus fractional differential equations are regarded
as an excellent tool for modeling various complex processes in natural sciences
and engineering such as bioprocess [15,37] and viscoelasticity [11,22,25,40,42].

In this paper, we focus on the iterative scheme and error estimation of posi-
tive solutions for the following p-Laplacian fractional order differential equation
subject to Riemann-Stieltjes integral boundary condition

−DtDtDt
β (ϕp (−DtDtDt

αz)) (t) = f(t, z(t),DtDtDt
γz(t)), t ∈ (0, 1),

DtDtDt
αz(0) = DtDtDt

α+1z(0) = DtDtDt
γz(0) = 0,

DtDtDt
αz(1) = 0, DtDtDt

γz(1) =

∫ 1

0

DtDtDt
γz(s)dA(s),

(1.1)

where DtDtDt
α,DtDtDt

β ,DtDtDt
γ are the Riemann-Liouville fractional derivatives of order

α, β, γ with 0 < γ ≤ 1 < α ≤ 2 < β < 3, α − γ > 1,
∫ 1

0
DtDtDt

γz(s)dA(s) denotes
a Riemann-Stieltjes integral, A is a function of bounded variation. The p-
Laplacian operator is defined as ϕp(s) = |s|p−2s, p > 2, and obviously, ϕp(s)
is invertible and its inverse operator is ϕq(s), where q = p

p−1 is the conjugate
index of p.

In recent years, many nonlinear functional analysis methods have been de-
veloped to solve local or nonlocal nonlinear boundary value problems of differ-
ential equations, such as the iterative methods [2, 8, 10, 12, 17, 19, 20, 23, 24, 28,
29, 30, 32, 34, 38], upper and lower solution methods [17, 22, 23],the variational
method [7,8,9,13,33] and the fixed point theorems [4,5,6,14,24,35,39]. These
tools and methods not only serve for various applied mathematics problems but
also are used to solve many practical problems from physics and engineering.
In [16], Webb and Zima established the existence of multiple positive solutions
for the nonlocal boundary value problem

z′′(t) + k2z = f(t, z(t)), 0 < t < 1,

z(0) = 0, z(1) =

∫ 1

0

z(s)dA(s),
(1.2)

where dA can be a signed measure. By means of the monotone iterative tech-
nique, Mao et. al [10] considered the uniqueness of the positive solution for the
nonlocal problem (1.2) under the following growth condition:

(H1) f(t, z) is nondecreasing in z, and there exists a constant 0 < b < 1
such that, for any (t, x) ∈ (0, 1)× [0,+∞) and r ∈ (0, 1),

f(t, rz) ≥ rbf(t, z). (1.3)
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In [21], a more general condition is used to obtain a necessary and sufficient con-
dition of positive solutions for a nonlinear singular differential system, namely

(H2) f(t, z) is nondecreasing in z; for any r ∈ (0, 1), there exists η(r) =
m(r−κ − 1) such that, for all (t, z) ∈ (0, 1)× [0,+∞), 0 < m ≤ 1, 0 < κ < 1,

f(t, rz) ≥ r
(
1 + η(r)

)
f(t, z). (1.4)

The aim of this paper is to find weaker conditions than (H1) and (H2),
and then to establish the uniqueness of the positive solution for the general
p-Laplacian fractional order differential equation (1.1). The iterative scheme
converging to the unique solution will also be constructed. Based on the conver-
gence sequence, estimates on the error and the convergence rate of approximate
solution are also obtained.

2 Preliminaries and lemmas

Before we give a detailed description of some preliminaries and lemmas, we
first introduce a weaker condition than (H1) and (H2), which is to be used in
the rest of the paper.

(A) f : ((0, 1)× [0,+∞)× [0,+∞)→ [0,+∞)) is continuous and nondecreasing
in the second and the third variables; and for any (t, x, y) ∈ (0, 1)× [0,+∞)×
[0,+∞) and r ∈ (0, 1), there exists a function σ : [0, 1]→ [0,+∞) with σ(r) > r
for r ∈ (0, 1) such that

f(t, rx, ry) ≥ σ(r)f(t, x, y). (2.1)

Remark 1. Obviously, the assumption (A) includes assumptions (H1) and (H2)
as special cases, that is, the condition (2.1) is weaker than the conditions (1.3)
and (1.4).

Remark 2. If (A) holds, then for any c ≥ 1 and (t, x, y) ∈ (0, 1) × [0,+∞) ×
[0,+∞), inequality (2.1) is equivalent to

f(t, cx, cy) ≤ 1

σ(c−1)
f(t, x, y). (2.2)

Proof. In fact, for any c ≥ 1 and (t, x, y) ∈ (0, 1) × [0,+∞) × [0,+∞), it
follows from (2.1) that

f(t, x, y) = f(t, c−1cx, c−1cy) ≥ σ(c−1)f(t, cx, cy),

i.e, inequality (2.2) holds. ut

Remark 3. The function f includes a large number of nonlinear functions and
particularly covers the standard type of sublinear functions

f(t, x, y) =

n∑
i=1

[ai(t)x
αi + bi(t)y

βi ],

where 0 < αi, βi < 1 and ai, bi ∈ C((0, 1), [0,+∞)), i = 1, 2, ..., n.

Math. Model. Anal., 23(4):611–626, 2018.
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Now we give some basic notations and concepts on the sense of Riemann-
Liouville fractional derivatives [11].

The Riemann-Liouville fractional integral of order α > 0 of a function
x : (0,+∞)→ R is given by

Iαx(t) =
1

Γ (α)

∫ t

0

(t− s)α−1x(s)ds

provided that the right-hand side is pointwise defined on (0,+∞).
The Riemann-Liouville fractional derivative of order α > 0 of a continuous

function x : (0,+∞)→ R is given by

DtDtDt
αx(t) =

1

Γ (n− α)

(
d

dt

)(n) ∫ t

0

(t− s)n−α−1x(s)ds,

where n = [α] + 1, [α] denotes the integer part of the number α, provided that
the right-hand side is pointwise defined on (0,+∞).

In order to simplify the p-Laplacian fractional order differential equation
(1.1) to a more convenient form, for x ∈ C[0, 1], we make a change of variable
by z(t) = Iγx(t). Since 1 < α ≤ 2, 1 < α − γ < 2, according to the definition
of the Riemann-Liouville calculus, one has

DtDtDt
αz(t) =

d2

dt2
I2−αz(t) =

d2

dt2
I2−αIγx(t) =

d2

dt2
I2−α+γx(t) = DtDtDt

α−γx(t),

DtDtDt
α+1z(t) =

d3

dt3
I3−α−1z(t) =

d3

dt3
I3−α−1Iγx(t) =

d3

dt3
I3−α−1+γx(t)

= DtDtDt
α−γ+1x(t), DtDtDt

γz(t) = DtDtDt
γIγx(t) = x(t). (2.3)

Consequently, it follows from (2.3) that the p-Laplacian fractional order differ-
ential equation (1.1) reduces to the following equivalent boundary value prob-
lem 

−DtDtDt
βϕp

(
−DtDtDt

α−γx(t)
)

= f(t, Iγx(t), x(t)),

DtDtDt
α−γx(0) = DtDtDt

α−γ+1x(0) = DtDtDt
α−γx(1) = 0,

x(0) = 0, x(1) =

∫ 1

0

x(s)dA(s).

(2.4)

Thus in order to establish the existence and uniqueness of positive solutions
for the equation (1.1), we only need to focus on the equivalent problem (2.4)
of the equation (1.1). To do this, we define

Gβ(t, s) =
1

Γ (β)

{
[t(1− s)]β−1, 0 ≤ t ≤ s ≤ 1,

[t(1− s)]β−1 − (t− s)β−1, 0 ≤ s ≤ t ≤ 1,
(2.5)

then we have the following lemma:

Lemma 1. (see [22]). Given g ∈ L1(0, 1), the following fractional boundary
value problem {

−DtDtDt
α−γx(t) = g(t), 0 < t < 1,

x(0) = x(1) = 0,
(2.6)
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has a unique solution

x(t) =

∫ 1

0

Gα−γ(t, s)g(s)ds.

On the other hand, it is easy to know that the fractional differential equation{
−DtDtDt

α−γx(t) = 0, 0 < t < 1,

x(0) = 0, x(1) = 1,
(2.7)

has a unique solution x(t) = tα−γ−1. Thus according to the strategy of [16],
by denoting

A =

∫ 1

0

tα−γ−1dA(t), GA(s) =

∫ 1

0

Gα−γ(t, s)dA(t),

we can obtain the Green function

H(t, s) =
GA(s)

1−A
tα−γ−1 +Gα−γ(t, s) (2.8)

of the following fractional differential equation subject to the Riemann-Stieltjes
integral boundary condition

−DtDtDt
α−γx(t) = g(t),

x(0) = 0, x(1) =

∫ 1

0

x(s)dA(s).
(2.9)

With the help of (2.5)–(2.9), we have the following lemmas which have
already been proven in [26].

Lemma 2. Given g ∈ L1[0, 1], 0 < γ ≤ 1 < α ≤ 2 < β < 3 and α− γ > 1, the
fractional order p-Laplacian differential equation

−DtDtDt
βϕp

(
−DtDtDt

α−γx(t)
)

= g(t),

DtDtDt
α−γx(0) = DtDtDt

α−γ+1x(0) = DtDtDt
α−γx(1) = 0,

x(0) = 0, x(1) =

∫ 1

0

x(s)dA(s)

has a unique solution

x(t) =

∫ 1

0

H(t, s)ϕq

(∫ 1

0

Gβ(s, τ)g(τ)dτ

)
ds.

Lemma 3. Assume 0 ≤ A < 1 and GA(s) ≥ 0 for s ∈ [0, 1], then the function
Gβ(t, s) and H(t, s) enjoy the following properties:

(1) Gβ(t, s) > 0, H(t, s) > 0, for t, s ∈ (0, 1).

(2)

tβ−1(1− t)s(1− s)β−1

Γ (β)
≤ Gβ(t, s) ≤ β − 1

Γ (β)
tβ−1(1− t), for t, s ∈ [0, 1].

(3) There exist two positive constants d, e such that

dtα−γ−1GA(s) ≤ H(t, s) ≤ etα−γ−1, t, s ∈ [0, 1].

Math. Model. Anal., 23(4):611–626, 2018.
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3 Main results

To ensure the validity of Lemma 3, we need the following assumptions.

(B) A is a function of bounded variation satisfying GA(s) ≥ 0 for s ∈ [0, 1] and

0 ≤
∫ 1

0

tα−γ−1dA(t) < 1.

Now we carry out our work in the space E = C[0, 1], which is a Banach
space endowed with the form ||x|| = maxt∈[0,1] |x(t)| for any x ∈ E. Define

P = {x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1]}.

Then P is a normal cone with normality constant 1 in the Banach space E.
Next define a sub-set of P by

D = {x(t) ∈ P : there exist two numbers Kx > 1 > kx > 0 such that

kxt
α−γ−1 ≤ x(t) ≤ Kxt

α−γ−1, t ∈ [0, 1]}.

Theorem 1. Suppose the conditions (A)–(B) hold. If

0 <

∫ 1

0

fq−1(τ, τα−1, τα−γ−1)dτ < +∞, (3.1)

then the p-Laplacian fractional order differential equation (1.1) has a unique
positive solution z∗(t). Let y∗(t) = DtDtDt

γz∗(t), then y∗ ∈ D. Moreover for any
initial value y0 ∈ D, the sequence of functions defined by

yn =

∫ 1

0

H(t, s)ϕq

(∫ 1

0

Gβ(s, τ)f (τ, Iγyn−1(τ), yn−1(τ)) dτ

)
ds, n ≥ 1

converges uniformly to y∗(t) = DtDtDt
γz∗(t) on [0, 1] as n → +∞. Furthermore

there exists an error estimation

||zn − z∗|| ≤
2

Γ (γ + 1)
√
ε
(1− ε(q−1)

n

)||y0||,

which has the rate of convergence

||zn − z∗|| = o(1− ε(q−1)
n

),

where 0 < ε < 1 is a positive constant which is determined by the initial value
y0.

Proof. It follows from Lemma 2 that we can define a nonlinear operator T :
D → E by

(Tx)(t) =

∫ 1

0

H(t, s)ϕq

(∫ 1

0

Gβ(s, τ)f (τ, Iγx(τ), x(τ)) dτ

)
ds (3.2)
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and a fixed point x of the operator T is a solution of the fractional order integro-
differential equation (2.4). Thus z(t) = Iγx(t) is a solution of the p-Laplacian
fractional order differential equation (1.1).

In what follows, we prove that T is well defined and T : D → D. In fact,
according to the definition of D, for any x ∈ D, there are two numbers Kx >
1 > kx > 0 such that

kxt
α−γ−1 ≤ x(t) ≤ Kxt

α−γ−1, t ∈ [0, 1]. (3.3)

Consequently, one has

kxΓ (α− γ)

Γ (α)
tα−1 =

Kx

Γ (γ)

∫ t

0

(t− s)γ−1sα−γ−1ds ≤ Iγx(t) =
1

Γ (γ)

×
∫ t

0

(t− s)γ−1x(s)ds ≤ Kx

Γ (γ)

∫ t

0

(t− s)γ−1sα−γ−1ds =
KxΓ (α− γ)

Γ (α)
tα−1.

(3.4)

Thus applying Lemma 3, (3.1) and (3.2)–(3.4), we have∫ 1

0

H(t, s)ϕq

(∫ 1

0

Gβ(s, τ)f (τ, Iγx(τ), x(τ)) dτ

)
ds

≤ e
(
β−1

Γ (β)

)q−1 ∫ 1

0

[
f

(
τ,
KxΓ (α−γ)

Γ (α)
τα−1,Kxτ

α−γ−1
)]q−1

dτtα−γ−1

≤ e
(
β − 1

Γ (β)

)q−1
σq−1

(
Kx max

(
Γ (α− γ)

Γ (α)
, 1

))
×
∫ 1

0

fq−1(τ, τα−1, τα−γ−1)dτtα−γ−1 <∞. (3.5)

On the other hand, we also have∫ 1

0

H(t, s)ϕq

(∫ 1

0

Gβ(s, τ)f (τ, Iγx(τ), x(τ)) dτ

)
ds

≥ d

Γ (β)

∫ 1

0

GA(s)s(β−1)(q−1)(1− s)q−1ds
∫ 1

0

τ q−1(1− τ)(β−1)(q−1)

× fq−1
(
τ,
kxΓ (α− γ)

Γ (α)
τα−1, kxτ

α−γ−1
)
dτtα−γ−1

≥ d

Γ (β)
σq−1

(
kx min

(
Γ (α−γ)

Γ (α)
, 1

))∫ 1

0

GA(s)s(β−1)(q−1)(1− s)q−1ds

×
∫ 1

0

τ q−1(1− τ)(β−1)(q−1)fq−1(τ, τα−1, τα−γ−1)dτtα−γ−1. (3.6)

(3.5)–(3.6) yield that T is well defined and T (D) ⊂ D.
Now given y0 ∈ D, there exist four positive constants ky0 ,Ky0 , k̃y0 , K̃y0 such

that

ky0t
α−γ−1 ≤ y0 ≤ Ky0t

α−γ−1, k̃y0t
α−γ−1 ≤ Ty0 ≤ K̃y0t

α−γ−1,

Math. Model. Anal., 23(4):611–626, 2018.
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which implies that

k̃y0
Ky0

y0 ≤ Ty0 ≤
K̃y0

ky0
y0.

Choose a constant t0 such that

0 < t0 ≤ min

{(
k̃y0/Ky0

) 1
2−q

,
(
ky0/K̃y0

) 1
2−q

}
,

and then we have t0 ∈ (0, 1) and

t2−q0 y0 ≤ Ty0 ≤
(

1

t0

)2−q

y0. (3.7)

Take u0 = t0y0, v0 = y0/t0, t0 ∈ (0, 1). Clearly u0 ≤ v0. Now we define the
iterative sequence as follows

un = Tun−1, vn = Tvn−1, (n = 1, 2, . . .).

By (A), we know that T is an increasing operator in x and

T (rx) =

∫ 1

0

H(t, s)ϕq

(∫ 1

0

Gβ(s, τ)f (τ, rIγx(τ), rx(τ)) dτ

)
ds

≥ σq−1(r)

∫ 1

0

H(t, s)ϕq

(∫ 1

0

Gβ(s, τ)f (τ, Iγx(τ), x(τ)) dτ

)
ds

= σq−1(r)Tx, 0 < r < 1, (3.8)

T (rx) =

∫ 1

0

H(t, s)ϕq

(∫ 1

0

Gβ(s, τ)f (τ, rIγx(τ), rx(τ)) dτ

)
ds

≤ σ1−q
(

1

r

)∫ 1

0

H(t, s)ϕq

(∫ 1

0

Gβ(s, τ)f (τ, Iγx(τ), x(τ)) dτ

)
ds

= σ1−q
(

1

r

)
Tx, r ≥ 1. (3.9)

It follows from (3.7)–(3.9) that

u1 = Tu0 ≥ σq−1(t0)Ty0 ≥ tq−10 Ty0 ≥ t0y0 = u0,

v1 = Tv0 ≤
(

1

σ(t0)

)q−1
Ty0 ≤

(
1

t0

)q−1
Ty0 ≤

1

t0
y0 = v0.

(3.10)

Thus from induction, (3.10) and u0 ≤ v0, one has

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (3.11)

Since u0 = t20v0, we get

u1 = Tu0 = T (t20v0) ≥ σq−1(t20)Tv0 ≥ (t20)q−1v1.
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Thus by induction, we have un ≥ (t20)(q−1)
n

vn, (n = 0, 1, 2, . . .). Since P is a
normal cone with normality constant 1, and un+m − un ≤ vn − un, for any
m ∈ N , we have

||un+m − un|| ≤ ||vn − un|| ≤
(

1− (t20)(q−1)
n
)
||v0|| → 0, as n→ +∞, (3.12)

which implies that {un} is a Cauchy sequence, and un converges to some y∗ ∈
D. By (3.12) and

||vn − y∗|| ≤ ||vn − un||+ ||un − y∗||,

we also obtain vn → y∗. It follows from (3.11) that y∗ ∈ D is a fixed point of
T , and y∗ ∈ [u0, v0].

Thus for any initial value y0 ∈ D, it follows from u0 ≤ y0 ≤ v0 that
un ≤ yn ≤ vn, (n = 1, 2, . . .). So we have

||yn − y∗|| ≤ ||yn − un||+ ||un − y∗|| ≤ 2||vn − un||

≤ 2
(

1− (t20)(q−1)
n
)
||v0||,

which implies that the sequence of functions defined by

yn =

∫ 1

0

H(t, s)ϕq

(∫ 1

0

Gβ(s, τ)f (τ, Iγyn−1(τ), yn−1(τ)) dτ

)
ds, n = 1, 2, . . .

converges uniformly to the positive solution y∗(t) of equation (2.4) on [0, 1] as
n→ +∞. Furthermore we have the error estimation

||yn − y∗|| ≤
2√
ε
(1− ε(q−1)

n

)||y0||,

which has the rate of convergence

||yn − y∗|| = o(1− ε(q−1)
n

),

where 0 < ε = t20 < 1 is a constant which is determined by y0.
Next we prove that the positive solution of the problem (2.4) is unique.

Actually, suppose y ∈ D is any fixed point of T , then we have Ty = y. From
y, y∗ ∈ D and the definition of D, let t1 = sup{t > 0 : y ≥ ty∗}, then we have
0 < t1 < +∞. We assert that t1 ≥ 1. If not, we have 0 < t1 < 1, thus

y = Ty ≥ T (t1y
∗) ≥ σq−1(t1)Ty∗ = σq−1(t1)y∗ ≥ tq−11 y∗,

since 1 < q < 2 and we have tq−11 > t1, a contradiction. Thus we obtain that
t1 ≥ 1 and y ≥ y∗. In the same way, we also have y ≤ y∗, that is y = y∗, and
then y∗ is a unique fixed point of T in D. Of course, it is also a unique positive
solution of the fractional order p-Laplacian differential equation (2.4).

In the end, let z∗(t) = Iγy∗(t), then z∗ is unique positive solution of the
p-Laplacian fractional order differential equation (1.1). Moreover for any initial
value y0 ∈ D, the sequence of functions defined by

yn =

∫ 1

0

H(t, s)ϕq

(∫ 1

0

Gβ(s, τ)f (τ, Iγyn−1(τ), yn−1(τ)) dτ

)
ds, n = 1, 2, . . .

Math. Model. Anal., 23(4):611–626, 2018.
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converges uniformly to y∗(t) = DtDtDt
γz∗(t) on [0, 1] as n → +∞. Furthermore

there exists an error estimation

‖zn − z∗‖ ≤
2

Γ (γ + 1)
√
ε
(1− ε(q−1)

n

)‖y0‖,

which has the rate of convergence ‖zn − z∗‖ = o(1− ε(q−1)n), where 0 < ε < 1
is a positive constant which is determined by the initial value y0. ut

Remark 4. In Theorem 1, we derive a new result on the sufficient condition
for the existence and uniqueness of a positive solution for a fractional order p-
Laplacian differential equation with nonlocal boundary value condition. More
important, we construct an iterative sequence for the solution and give estima-
tion of the error and the rate of convergence. In particular, the initial value
of the iterative sequence can be chosen arbitrarily in D, thus we can choose
some simple initial value such 0 or tα−γ−1, which is very beneficial to our
computation.

Remark 5. Theorem 1 is still valid if (A) is replaced by one of the following
assumptions:

(H∗1) f : ((0, 1) × [0,+∞) × [0,+∞) → [0,+∞)) is continuous and non-
decreasing in the second and the third variables; and there exists a constant
0 < b < 1 such that, for any (t, x, y) ∈ (0, 1)× [0,+∞)× [0,+∞) and r ∈ (0, 1),

f(t, rx, ry) ≥ rbf(t, x, y).

(H∗2) f : ((0, 1) × [0,+∞) × [0,+∞) → [0,+∞)) is continuous and nonde-
creasing in the second and the third variables; and for any r ∈ (0, 1), there
exists η(r) = m(r−κ−1) such that, for all (t, x, y) ∈ (0, 1)× [0,+∞)× [0,+∞),
0 < m ≤ 1, 0 < κ < 1,

f(t, rx, ry) ≥ r
[
1 + η(r)

]
f(t, x, y).

Remark 6. The short memory behaviors often happen in various biomedicine
processes [3] and porous medium flow with short wave characters [1], here we
also comment the p-Laplacian fractional order differential equation (1.1) has
unique positive solution with similar iterative properties and estimation of error
as Theorem 1 when t is in a short memory measure such as t ∈ (1− ε, 1) with
limε→1 ε = 1 since the Green function possesses the same characters.

4 Numerical results

Example 1. Consider the existence of positive solutions for the nonlinear frac-
tional differential equation

−DtDtDt
5
2

(
ϕ3

(
−DtDtDt

3
2 z
))

(t) =
z

1
2 (t) +

(
DDD

1
4 z(t)

) 1
3

√
t

, t ∈ (0, 1),

DtDtDt
3
2 z(0) = DtDtDt

5
2 z(0) = DtDtDt

1
4 z(0) = 0,

DtDtDt
1
4 z(1) = 0, DtDtDt

1
4 z(1) =

∫ 1

0

DtDtDt
1
4 z(s)dA(s),

(4.1)
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where A is a function of bounded variation

A(t) =


0, t ∈ [0, 1/2) ,

3/2, t ∈ [1/2, 3/4) ,

1, t ∈ [3/4, 1] .

Then by simple computation, the equation (4.1) is equivalent to a 4-point
boundary value problem with coefficients of both signs

−DtDtDt
5
2

(
ϕ3

(
−DtDtDt

3
2 z
))

(t) =
z

1
2 (t) +

(
DDD

1
4 z(t)

) 1
3

√
t

, t ∈ (0, 1),

DtDtDt
3
2 z(0) = DtDtDt

5
2 z(0) = DtDtDt

1
4 z(0) = 0,DtDtDt

1
4 z(1) = 0,

DtDtDt
1
4 z(1) = 1.5DtDtDt

1
4 z (0.5)− 0.5DtDtDt

1
4 z (0.75) .

Thus we only need to study the 4-point boundary value problem (4.2).

Let f(t, x, y) = (x
1
2 + y

1
3 )/t, then f ∈ C((0, 1)× [0,+∞)× [0,∞), [0,+∞)),

and for any fixed t ∈ (0, 1), f(t, x, y) is nondecreasing in x and y. Now take

σ(r) = r
3
4 , r ∈ [0, 1], then we have σ(r) > r for r ∈ (0, 1), and for any r ∈ (0, 1)

and (0, 1)× [0,+∞)× [0,∞), we have

f(t, rx, ry) =
r

1
2x

1
2 + r

1
3 y

1
3

√
t

≥ r 3
4
x

1
2 + y

1
3

√
t

= r
3
4 f(t, x, y).

Thus the condition (A) is satisfied.
Next we verify the condition (B). Let α = 3

2 , β = 5
2 , γ = 1

4 , p = 3, then
0 < γ ≤ 1 < α ≤ 2 < β < 3, α− γ > 1 and

Gα−γ(t, s) =
1

Γ (5/4)

{
[t(1−s)] 1

4−(t−s) 1
4 =: G1(t, s), 0 ≤ s ≤ t ≤ 1,

[t(1− s)] 1
4 =: G2(t, s), 0 ≤ t ≤ s ≤ 1.

(4.2)

Thus, we have

GA(s) =

∫ 1

0

Gα−γ(t, s)dA(t)

=
1

Γ ( 5
4 )


1.5G1 (0.5, s)− 0.5G1 (0.75, s) , 0 ≤ s < 0.5,

1.5G2 (0.5, s)− 0.5G1 (0.75, s) , 0.5 ≤ s < 0.75,

1.5G2 (0.5, s)− 0.5G2 (0.75, s) , 0.75 ≤ s ≤ 1,

=
1

Γ ( 5
4 )



3− 4
√

3

25
(1− s) 1

4 +
1

2
(
3

4
− s) 1

4 − 3

2
(
1

2
− s) 1

4 , 0 ≤ s < 1

2
,

3− 4
√

3

25
(1− s) 1

4 +
1

2
(
3

4
− s) 1

4 ,
1

2
≤ s < 3

4
,

3− 4
√

3

25
(1− s) 1

4 ,
3

4
≤ s ≤ 1,

which implies that GA(s) ≥ 0 for s ∈ [0, 1].
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On the other hand, we have

A =

∫ 1

0

tα−γ−1dA(t) =

∫ 1

0

t
1
4 dA(t) = 1− 1

4

∫ 1

0

A(t)t−
3
4 dt = 0.7961 < 1.

Therefore, the condition (B) is also satisfied.
Now we check the condition (3.1). In fact,

0 <

∫ 1

0

fq−1(τ, τα−1, τα−γ−1)dτ =

∫ 1

0

(
τ

1
4 + τ

1
12

√
τ

) 3
2

dτ

< 2
3
2

∫ 1

0

τ−
15
24 dτ < +∞.

Then the p-Laplacian fractional order differential equation (1.1) has a unique

positive solution z∗(t) = I
1
4 y∗(t), y∗ ∈ D. Moreover for any initial value

y0 ∈ D, the sequence of functions defined by

yn =

∫ 1

0

(
GA(s)

0.2039
t
1
4 +G 5

4
(t, s)

)

×
(∫ 1

0

G 5
2
(s, τ)

(
I

1
4 yn−1(τ)

) 1
2

+ (yn−1(τ))
1
3

√
τ

dτ
) 3

2

ds, n = 1, 2, . . . (4.3)

converges uniformly to y∗(t) on [0, 1] as n→ +∞. Furthermore there exists an
error estimation

||zn−z∗||= max
t∈[0,1]

|I 1
4 (yn(t)−y∗(t))| ≤ 4

Γ ( 1
4 )
||yn−y∗||≤

8

Γ ( 1
4 )
√
ε
(1−ε( 1

2 )
n

)||y0||,

which has the rate of convergence

||zn − z∗|| = o(1− ε( 1
2 )

n

),

where 0 < ε < 1 is a positive constant which is determined by the initial value
y0. In particular, if y0 = t

1
4 , then by computation, we have

0.2513t
1
4 ≤ Ty0 ≤ 5.6577t

1
4 .

Take

t0 = min

{
(0.2513)2,

( 1

5.6577

)2}
= min {0.0632, 0.0313} = 0.0313,

then we have the error estimation

||zn − z∗|| ≤ 70.4846
(

1− 0.00097969( 1
2 )

n)
,

and the estimate of convergence rate by

||zn − z∗|| = o
(

1− 0.00097969( 1
3 )

n)
.

Table 1 shows the maximum errors of the iterative scheme compared to the
exact solution. The numerical results confirm that the scheme (4.3) has the

global convergence rate o(1− 0.00097969(
1
2 )

n

).
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Table 1. Numerical results of maximum errors while n increases.

n Maximum errors for α = 3
2
, β = 5

2
, γ = 1

4
, p = 3

15 0.0149
20 4.6571e-004
25 1.4554e-005
30 4.5480e-007

5 Conclusions

By introducing a more general growth condition, a new result on the uniqueness
of positive solutions for the general p-Laplacian fractional order differential
equation is established. Through a detailed theoretical analysis, we construct
an iterative converging scheme and also obtain maximum error estimates and
the convergence rate. The developed algorithms, theoretical and numerical
results can also be extended to the problems discussed in [10,19,21].
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