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Abstract. This article considers a nonlinear system of elliptic problems, which is
obtained by discretizing the time variable of a two-dimensional nonlinear parabolic
problem. Since the system consists of ill-conditioned problems, therefore a stabi-
lized, mesh-free method is proposed. The method is based on coupling the precondi-
tioned Sobolev space gradient method and WEB-spline finite element method with
Helmholtz operator as a preconditioner. The convergence and error analysis of the
method are given. Finally, a numerical example is solved by this preconditioner to
show the efficiency and accuracy of the proposed methods.
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1 Introduction

Consider the following nonlinear parabolic problem

U -V - (f(x,VU)) =px,t), (x,t)€Qr:=02x(0,T),
U(x,t) =0, (x,t) € 02 x (0,T), (1.1)
U(x,0) = Up(x), x € 2,

Copyright © 2020 The Author(s). Published by VGTU Press

This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original author and source are credited.


ISSN: 1392-6292
https://doi.org/10.3846/mma.2020.4310
mailto:ah.salehi@mail.kntu.ac.ir
mailto:azakeri@kntu.ac.ir
mailto:hossei_m@modares.ac.ir
http://creativecommons.org/licenses/by/4.0/

532 A.H. Salehi Shayegan, A. Zakeri and S.M. Hosseini

where 2 is a bounded domain in R? with piecewise smooth boundary 912,
p € L*(Qr) and f : 2 x R? — R? is a known function such that x — f(x,7)
is a bounded measurable function for any x € 2 and n — f(x,7n) belongs to
C! for n € R?. In addition, Jacobian matrices d,f(x,7) are symmetric and
their eigenvalues A, satisfy 0 < pu3 < A < po where pq and po are constants
and independent of (x,7).

For time-dependent problems, a common method for discretizing the time
variable ¢ is the backward finite difference method with the stepsize At = %
where n € N. This leads to the following system of nonlinear elliptic problems

N(ul) =-V. (f(X7 VUZ)) + Q(Xv ul) = g(X, ti)7 X € Q;
u;(x) =0, x € 012, (1.2)

where u; = u;(x) is an approximation of U = U(x,t) at t; = iAt, i =1,2,....,n
and

1

Q(Xv UZ) = Z

(), o) = Up((x), 90, ) = plx, 1) + i1 (x):

At

Since the r.h.s. g(x,t;) includes the unknown function w;_;(x), we have to
solve the equations recursively (as ¢ increases). In addition, in order to prove
the existence and uniqueness of the solution of (1.2), one can use the existence
theorem in [4] for the distinct equations. To be exact, Farago and Karatson
in [4] proved that if ¢ = ¢(x,£) is a known bounded measurable function and
C' with respect to the variables x € 2 and £ € R, respectively, which satisfy

0<0eq(x,8) <cr+ealéfP? p>2, (1.3)

where c¢1,co > 0 are constants, then for every ¢ = 1,2,...,n the nonlinear
elliptic problem in general form (1.2) has a unique weak solution u} € Hg(£2),
such that

/ (f(x,Vu}) - Vo+ q(x,ul)v)dx = / g(x,t)vdx, ve Hi (1),
12 Q

where H}(2) = {u € H'(2) : ulpp = 0}. Obviously, q(x,u;) = +7ui(x)
satisfies (1.3) with ¢; = and co = 0, so the above result is valid for the

1
At
nonlinear elliptic problem (1.2). To be exact, we can write

(Plui).o) = [ gl tivdx, v e HY(@),
where
(F(u}),v) := /Q (f(x,Vu;‘) -Vou + ﬁuf U)dx,

w.r.t. the new energy norm

2 1
|ﬂH:AQwM+mﬁym
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induced by the Helmholtz operator Su := —Au + éu.

It should be mentioned that the condition number of each equation in (1.2)
is infinite, i.e., cond(R) = oo (see Appendix). Therefore, using discretization
methods such as backward finite difference method for discretizing the time or
finite element method for discretizing the space leads to an unbounded condi-
tion number, as space or time discretization is refined [4].

In order to improve the condition number, we can use preconditioning op-
erator in iterative methods such as Sobolev space gradient method, conju-
gate gradient method, Newton-like methods and so on. In most cases, finding
a suitable preconditioner is the fundamental part of these iterative methods
(see [1,2,3,5,10,12]). Farago and Karatson in [4] provide an overview of ex-
isting preconditioned iterative methods, especially on nonlinear elliptic prob-
lems. Although the works on preconditioned iterative methods are limited to
boundary value problems of elliptic type, it is also likely of interest also for
other related problems such as variational inequality problems, and parabolic
ones. The main contribution of this paper is to apply a preconditioned it-
erative method to a class of nonlinear parabolic problems (1.1), and analyze
the role of the time variable ¢ in this iterative method. The method is based
on coupling the Sobolev space gradient method with Helmholtz preconditioner
as a preconditioned iterative method and WEB-spline (Weighted Extended B-
spline) finite element method as a mesh free method which reduces the order of
system. In this paper, instead of Laplacian preconditioner (a common precon-
ditioner in iterative methods), we apply Helmholtz preconditioner. Because,
if we apply Laplacian preconditioner, can only control the instability due to
space discretization. In other words, when the time discretization is refined,
the instability is still remained in the problem, thereby slowing down the rate
of convergence for the preconditioned iterative method. But, by applying the
Helmholtz preconditioner, the upper bound of condition number is indepen-
dent of At and the instability due to both time and space discretizations is
controlled.

Moreover, we apply WEB-spline basis in finite element method. Because,
if we apply the standard finite element method, we have to use the FEM with
subspaces belonging to H?(£2) N H}(£2) to prove the convergence of the pre-
conditioned iterative method. This leads to apply the standard full quantic
finite element method with polynomials of degree 5 with 21 unknown coeffi-
cients for each triangle. Although this method is stable and convergent, but
one should solve a large system of equations for each iteration. So, to deal with
this difficulty, instead of FEM, WEB-spline finite element method was applied
in [13]. The WEB-spline basis belongs to H?(£2) N HZ(£2), has been considered
as test functions in FEM and consequently reduced the order of the system.
Some advantages of WEB-spline finite element method are as follows. No mesh
generation is required, the uniform grid is ideally suited for parallelization and
multigrid techniques, accurate approximations are possible with relatively low-
dimensional subspaces, smoothness and approximation order can be chosen
arbitrarily, hierarchical bases permit adaptive refinement (see [6,7,8,9,11]).

The paper is organized as follows. In next section, we briefly describe
WEB-spline basis by using the notations in [6]. The details of the proposed
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preconditioned iterative method with Helmholtz preconditioner are given in
Section 3. In addition, the convergence conditions and error analysis of the
method are studied in Section 4. Finally, a numerical example with numerical
error bound is given in Section 5.

2 WEB-spline basis

Following the notations in [6,11,13], we give a brief description of WEB-spline
basis functions.

B-spline tensor product is an extension of B-spline in higher dimensions.
So, in order to make a bivariate B-spline of degree d, denoted by bﬁ,h, the
tensor product of one-dimensional B-splines is used as follows

bﬁ,h(x7y) = bgl,h(x) ® bZQ,h(y)7 k= (kh k2) € Ka (21)

in which b‘,ih(ﬂc) =bd(z/h— 1), bl (z) = 2 b1 (z) + B2 pd-l(z — 1), (d =
2,3,...) and

T, 0<z<1,
bl(z) = 2—z, 1<x<2,
0, otherwise .

Here, the set K includes all indices k such that for some x = (z,y) € 2,
bﬁ’h(x) # 0 and h is increment of the variables z and y. We note that the
support of bﬁ,h is [k1, k1 + d + 1)h X [ka, ko + d + 1]h. The bivariate B-spline
basis (2.1) is divided into two parts, inner and outer B-splines [6]. The B-
spline bﬁ,h is considered as inner B-spline only when its support contains at
least one grid cell inside {2, otherwise that B-spline is considered as outer B-
spline. Having the above mentioned notations in mind, we can split the set
of K indices into subsets: inner B-splines, I, and outer B-splines, J. In other
words K = ITU J, see [6,11,13].

Because of the two following deficiencies, using finite element method with
B-spline basis functions seems to be impossible. The B-spline basis functions
do not satisfy the essential boundary conditions and since each outer B-spline
has a small support in {2, the condition number of Galerkin matrix might be
extremely large [6,11]. To overcome the first deficiency, the WEB-method is
applied [8], which uses weighted B-splines on regular grids as basis functions.
In other words, this problem can be solved by multiplying bﬂ , and a smooth
distance function w(x) < dist(x,d(2), (x € §2). This choice of shape functions
provides optimal approximation order with a minimal number of parameters
and lives up to the de facto standard in CAD/CAM systems, thus providing a
natural link between geometry description and finite element simulations [8].
According to [6] the best option is a signed weight function which is defined
thoroughly as a continuous function and is positive on 2 and negative on its
complement §2. Rvachev method (or R-function) is a method which can be
used in numerical methods properly. For example, this method for a problem
with homogeneous Dirichlet boundary conditions and rectangular domain {2 =
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{(z,y) |0 <z < 1,0 <y <1}, leads to the following weight function
wayy) =2 - /(-2 + (1 -y — Vo> +
. ((Q—x— \/(1—x)2—|—(1—y)2—y)2+ (:c+y— \/Wff. (2.2)
For the second deficiency, that is to control the unstable outer B-splines, we

join them appropriately with the inner B-splines by the coefficients e;; suggested
by the following definition.

DEFINITION 1. [6, Page 48] For an outer index j € J, let I(j)=¢+{0,...,d}* C
I be a two-dimensional array of inner indices closet to j, assuming that h is
small enough so that such an array exists. Then

_._2 d ju_gv_:u
es=[1 11 i —lo—p

v=1u=0,0, +pu#i, *
are the values of the Lagrange polynomials associated with I(j).

Consequently, for i € I, the WEB-spline Bj; is constructed by

_ W . <D =pd
B; = m(bn +j€ZJeubJ)v (b = bk,h)’

in which z; denotes the center of a grid cell in support b; which is completely
inside f2.

According to [6,8,11], we give some features of B;:

1. Because of the linear independence of B-splines, WEB-splines are linearly
independent, too.

2. The factor w/w(z;) causes the WEB-splines to vanish on the boundary
and magnifies functions supported near the boundary for scaling purpose. This
fact will become important for proving the stability aspect of the WEB-splines.

3. By forming linear combinations, the support of a WEB-spline is in
general larger than that of a B-spline. However, restricting nonzero coefficient
eij to indices with [li — j|| = 1 guarantees that the diameter of the support
of WEB-spline is still < hA. In particular, WEB-splines with support well
separated from the boundary are just ordinary B-splines multiplied by w/w(z;).
Hence, only < h~! WEB-splines involve linear combinations of outer B-splines.

4. The uniform boundedness of the coefficients e;; prevents the WEB-spline
from growing in an uncontrolled way as the grid width h tends to zero.

In next section, we give the preconditioned iterative method with Helmholtz
preconditioner.

3 Preconditioned iterative method with Helmholtz
preconditioner

In this section, in order to approximate the solution of nonlinear elliptic prob-
lems (1.2), uf, i = 1,2,...,n, a computational algorithm is given based on

79
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coupling Sobolev space gradient method with Helmholtz preconditioner and
WEB-spline finite element method.

To do that, let @] be an approximation of u}, for j = 0,1,2,..., which is
obtained by the following preconditioned Sobolev space gradient method

, 2
) —

.
w: = _
v M4 m

51 (N(a{) —g(x,ti)>, i=0,1,2,..., (3.1

where %) = 0 (or any function belonging to H?(£2) N H(£2)). To study the
spectral bounds, we introduce the derivative operator

1

(F'(w)h, h) = / =

(&,f(x, Vu)Vh-Vh+
o

h2) dx, wu,h€ H} (D).
Now, suppose that there exists some positive constant m, and mo, such that
ml/ Vh-Vhdx < / Oy f(x, Vu)Vh - Vhdx < mg/ Vh-Vhdx.

10 19 10

So we have
min {m1, 1} [|A]| 5 < (F'(u)h, h) < max {ma, 1} ||h]F; .

Thus the spectral bounds will be M := max {ms,1} and m := min {m,, 1}.
Moreover, from (3.1) and [4], Helmholtz preconditioner S leads to the following
upper bound of condition number for the main operator

cond(S™R) < M/m.

This condition number is independent of At and h. As a result, Helmholtz
preconditioner controls the instability due to space and time discretizations.

Now, put zf =gt (N(ﬂ]) — g(x, ti)), then we should solve the following

3

Helmholtz problem

1

zf = N(af) —g(x,t;), x € £, zf =0, x€d2. (3.2
As a result, (3.1) is established if we obtain an approximate solution of (3.2).
To this end, we apply WEB-spline finite element method. Let

H
Ax) =Y Bux), i=12..n j=012...,
k=1

be an approximate solution of z{, in which c,(g) and By (x) for k=1,2,..., H,
are unknown coefficients and WEB-spline basis belongs to H?(£2) N H}(£2),
respectively. These unknown coefficients are obtained by using Ritz-Galerkin
method to Helmholtz problem (3.2). This leads to the following nonsingular
linear system of equations

ACU) = R,
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where

4 . . T 4 , , AT
A= [Awl C’(]):[ng) Cé]) C(I-jf)} 7R(J):[7,EJ) ré]) rg)} 7
and

Aéq—/ VBy(x) - VB,(x)dx + Alt/ By(x)B,(x)dx,
éj) :/Q (N(ﬂf)fg(X,ti)) By(x)dx.

Here T denotes the transpose of vectors.
The above considerations to construct (3.1) give the following algorithm:

Algorithm 1. Preconditioned iterative method with Helmholtz preconditioner
1: Step 1 Set ¢ = 1.
2: Step 2 Set j = 0. ‘
3: Step 3 Solve the Helmholtz problem (3.2) and obtain z] by the WEB-spline
finite element method.

i+1 _j+1 = 2 Zj
4: Step 4 Obtain @™ by @/ =@ — M+ng

5: Step 5 For a given tolerance €, if Huz

7JHL2(Q) < ¢, then @/ ™" is an
acceptable approximate solution and go to step 7, else go to step 6.
6: Step 6 Put j = 7+ 1 and go to step 3.

7: Step 7 If i = n stop, else put ¢ =7+ 1 and go to step 2.
In what follows, we provide an example which is given from [3].

Ezxample 1. Consider the problem

w— V- (k (|Vu|2) vu) = p(x, 1), (x,t) € 2 x (0,1),
u(x,t) =0, (x,t) € 02 x (0,1), (3.3)
u(x,0) =0, X € (2,

where 2 = {(z,y) |0 <2 <1,0<y <1} and

k(z) = 1.02/(1 + /1 - 2/3), 0 <2< 2 =2.76.

Using backward finite difference method, we get

N(u;) == -V - (E (|Vu1\ ) Vul) e ui(x) = p(x, t;) + iui_l(x), x € (2,
u;(x) =0, x € 052.

According to [3], we have
(f,(x,m)Vh, Vh) = /Q (& (1) I9[ + 2099 - Th)*H (IV0]%)) dx

Math. Model. Anal., 25(4):531-545, 2020.
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where (x,7) € 2 x R?, h € Hj(2) and (u,v) := [, uvdx. Then, since k and

[0
k' are increasing, we obtain

my (Vh,Vh) < (0f,(x,n)Vh,Vh) < mg (Vh,Vh)

where
myp = 12112151]2:(2) = k(0) = 0.51,
mg = max {k(2) + 22k (2)} = k(z0) + 220k’ (20) = 2.81.
So we have
N E;I; {{%2;16,11}}2%216 } = cond (S7'R) < % = 5.6078.

In next section, we provide the error bound and convergence theorem of the
proposed preconditioned iterative method with Helmholtz preconditioner.

4 Convergence and error analysis

The analysis of the proposed algorithm is mainly divided into two parts; the
error of preconditioned Sobolev space gradient method and WEB-spline finite
element method. In what follows, we give some theorems related to these parts.

Theorem 1. Consider the problem (1.2) for q(m,u;) = S7u; and g(x,u;) =
p(@,t;)+ s;ui—1. Then construction of (3.1) yields the following corresponding
convergence results: If 2 is C?-diffeomorphic to a convex domain, then for any
u) € H*(2) N H(£2), we have

where C' > 0 is positive constant.

Proof. Similar to Theorem 7.2 in [3], we have

1 M — i
72”1‘2(1_1,?)79(’“)”[/2(0) <M+:) y o J :1727"'7

<
g moY/

where ¢ > 0 is the smallest eigenvalue of S on H2(2)NHJ (£2). Since R(@?) = 0,
we obtain

(3ren)
L2(Q) M+m

_ 1 M-m\’ 1 1 M-m\’
\Wﬂp(wti)\\m(m Mem +m91/2EHUi—1HL2(Q) Mam )

<t
H S mol/?

p(ti) + w1

7 %

(4.1)
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Now, we find an upper bound for [[u;j—1|;2(g). Due to this, multiply both

sides of (1.2) by a function v € Hg(£2) and integrate over 2. Then, using the

boundary conditions and Green’s formula, we get

/f(x,Vui)Vvderi/ uivdx:/ p(x,t;) vder—/ u;_1vdx.
7 At Jq Q

(4.2)

For the first term on the left-hand side of (4.2), we introduce the operator

A: H}(2) — HY(R) in the following
(Au,v) = /Q f(x, Vu)Vudx, u,v € HY (£2).
Thus, we have
(A'(u)h,h) = /Qé)nf(x, ) ly=vu Vh - Vhdx, u,h € Hg(£2),
ma [ VRITa(0) < (A'(wh, h) < ma VAl L)
which is equivalent to (see [4, Page 112, Proposition 5.2])
ma [V = Vol (0) < (Aw) = A(v),u = v) <ma [[Vu = VollLaq)

Moreover, substituting v = 0 in (4.3), it results

(4.3)

my HVuHiQ(Q) < /Qf(x7 Vu)Vudx — /Qf(x7 0)Vudx < mgy HV“”%?(Q)'

Then by assuming f(x,0) = 0, we get
ms ||Vu||2Lz(Q) S/ f(x, Vu)Vudx.

Q

So,
mi ||Vui||i2(9) §/ f(x, Vu;) Vu,;dx.

Q

Now, substituting v = u; in (4.2) and applying (4.4) lead to
2 1 2
my HVUiHL2(Q) + At Hui||L2(Q) ng('vti)“L?(Q)”ui”LQ(Q)

1
+ g vl luill 2 o),

which implies that
1

||Uz||L2 @) S AtpCto)ll 20y + w1l L2 ()

Math. Model. Anal., 25(4):531-545, 2020.
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Thus, we conclude that

1—1
i1l 20 < Atz (s ti)ll 22y + lluoll 2 -
k=1

This result, help us to obtain an upper bound for (4.1), i.e

M—m\’
1/22”1) tk ||L2(.Q)<M+m>

1 M—m\’
+m¢”&”ﬂmm M+m)

Now, if we suppose K = sup [[p(x, tx)||2(o), we get

<k<i
e (Memy L L M_mj
“llme S me 2"\ M+ m mgl/2 Aol @\
Lt (Mem) L L (MY
o2 At Mtm mo'/2 At UollLz(g2) M+m
e L T (Mo L (MY
S mel2 AT\ M +m 10& @\ 3 m
1 1 /M—-—m C (M—-m\’
TK ) - S A\ mxm)
( + [luoll 120 mgl/zﬂt(M+m> At<M+m)

where C' is an upper bound of (TK + ||u0||L2(Q)) !

mol/2

N

Theorem 2. Let u} and ﬂ{ be the same as defined above and ﬁf be the solution
of (8.1) when WEB-spline finite element method is used to approximate the
problem (3.2) in each iteration. Assume that 02, g and the weight function w
are sufficiently smooth in their domains. If we suppose that there exists uniform
positive constants C' and C?, independent of j, defined below in the proof in
(4.6), then, for j =1,2,..., we have

<C*<M—m)j+ Ch 1_(M—m)j (45)
H S At\M+m mAN AL M+m ’ ’

in which C* and C are two positive constants.

Proof. We have

For the second right-hand side, according to [3, Lemma 3.2], we have

—J ~J
w; — uy

* =]
u; — U

* ~J
u; — U

<|

T
wy — Uy

Hajﬂ _,&j+1H cM-m
i i M—|—m

H+M+m‘
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By induction, we conclude that

_j g M-—m\"", 2 LM —m\*
=, < (Sm) It =l + e 2 (G

k=0
4 , 2 I~/ M-—m\"
?—’“_—?‘kH —
XHZl ¢ H M+meO(M+m>

i—k  —j—k
i T %

z

HH'

On the other hand, if 012, g and the weight function w are sufficiently smooth
in their domains, then the WEB-spline finite element method offer full approx-
imation order (see [6]), i.e.,

i_ i _ j
z] — Z] o) < C;(2,w)h| 7 .
Now, we have
i s i_ )P i_ P V2 i
- = ) 7Y N ) 7 < ) — 7Y
ST 5| g (Z’ ¢ H1(9)+At L Lz(n)) SE A HY(Q)
1 o k o h .
+ — ||z %! < <1+> 1z <Ci—||2] :
Nz A1) Var) 17 THlave) T VA ez

where k is Poincaré constant and C; > 0 is an upper bound of (VAt +
k)C;(£2,w). Therefore, we derive

, : 2h I /M —m\F
a]}rlfg]}rl” < §:< ) C. .
H ¢ CollE T (M m) VAL M +m T

Cyoi[$7 (M@ — g.1)

ik
2

[P

[

L2(£2)

2h 4
_l’_
(M +m) VAt Z
If we define positive constants C! and C?, independent of j such that

C'= sup C”j_kHN(ﬂg_k)‘
0<k<y

., C*= sup C';_, jEN, 4.6
L2(92) ogkzg‘ i~k (4.6)

then we derive

1
‘ﬂjﬂ _ﬁj+1H < C'h <1 B (M—m)J )
! ! H ~ myVAt M4+m

Math. Model. Anal., 25(4):531-545, 2020.
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4 M—m Jj+1
o7 | e + gyl ) (1= (3753) )
__Ch (1 (M—m) '+1>
= mAtAt M +m ’
where C' > 0 is an upper bound of C* At 4 C? (TK + Hu0||L2(Q)). So, we have

. . _ J
Hﬂg-&-l _ ag-&-lH < Ch 1_ (M m) . (@.7)
H ~ mAtv At M +m

Consequently, by using Theorem 1 and (4.7), we get

* ~J
u; — U

= uf—ﬂfHH
<0*<Mm)j+ Ch (I(Mm>j>
SAt\M+m mARN AL M+m '

Remark 1. According to upper error bound (4.5), in order to derive conver-
gence, we should use WEB-spline basis functions with h < Aty At.

g

5 Numerical results

In order to demonstrate the effectiveness of the preconditioned iterative me-
thod, we consider the problem (3.3) and apply the proposed algorithm to solve
it numerically. In this section, all the experiments were performed in Mathe-
matica 6.0. The exact solution of the problem (3.3) is u(x,y,t) = tP(z)(y —y?)
in which

0.2(1+ (22 —1)%), 0<z<0.5,
P ):{ 021 — (22 —1)%), 05<z<1.

In the proposed Algorithm 1, we apply the quadratic WEB-spline basis with
the weight function (2.2) for h = 0.5 and h = 0.2. In addition, the algorithm
runs for At = 0.5 and 0.2, 0.1. The convergence rate here is

M—-—m  2.86—0.51

= = 0.6973.
M+m  2.86+0.51

The L2-norm errors of the proposed method are listed in Table 1, for h = 0.5,
0.2 and At = 0.5, 0.2, 0.1. Also in order to compare our proposed method to
Helmholtz preconditioner, we give the L2-norm errors of the proposed method
with Laplacian preconditioner in Table 2

It is worth to point out that, when we apply Laplacian preconditioner in
the proposed method, the condition number will depend on A%- So, we cannot
decrease At without any restrictions, but in Helmholtz preconditioner we do
not have any limitations.
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Table 1. L2-norm errors using preconditioned iterative method with Helmholtz precondi-
tioner.

R T At j=1 j=2 j=3  j=4 j=5

0.5 212e2 744e3 3.09e3 880e4 5.51e4
0.5 02 388e3 270e3 579e4 10le4d 832e5

™
S 0.1 1.41e3 955e4 316e4 992e-5 5.95e-5
0.5 3.89e2 895e-3 6.71e3 242e-3 892e4

1 0.2 919e3 349e3 889e4 3.5le4d 6.41e4

0.1 6.59e3 1.09e3 6.75e4 328e4 9.13e5

0.5 327e2 10le2 802e3 480e3 2.52e3

w 05 02 556e3 397e3 959e4d T7.35e4 3.45e-4
S 0.1 4.89e3 11le3 666e4 398e4 1.76e-4

0.5 5.42e2 289e2 1.08e2 7.89e3 541e3
1 02 7.49e3 6.52e3 198e3 T7.7le4d 4.57e4
0.1 6.99e3 4.92e3 840e4 549 e-4 3.55e4

Table 2. L2-norm errors using preconditioned iterative method with Laplacian precondi-
tioner.

h T At j=1 j=2 j=3 j=4 ji=5

0.5 8.02e3 569e3 4.04e3 287e3 2.04e-3
0.5 02 43le3 225e3 129e3 222e3 209e3
. 3.81e-3 1.69e3 136e3 155e3 1.34e-3
0.5 4.19e2 297e2 211e2 151e2 1.20e-2
1 02 20le2 176e2 143e2 1.15e2 9.98e€-3
0.1 20le2 146e2 115e2 934e3 6.12€-3

0.2
o
=

0.5 247e2 1.75e2 124e2 880e3 6.31e-3
05 02 9.04e3 593e3 5.00e3 4.05e3 3.15e-3
. 7.45e3 6.58e3 4.19e3 3.51e3 2.11e-3
0.5 53le2 377e2 268e2 190e-2 1.55e€-2
1 0.2 368e2 291e2 21le2 1.13e2 1.09e-2
0.1 359e2 23le2 191e2 1.09e-2 1.03e-2

0.5
=)
=

6 Conclusions

In this article, we investigated how to solve nonlinear parabolic problems of
type (1.1) by first discretizing the time variable and then applying the pre-
conditioned Sobolev space gradient method with WEB-spline finite element
method. As it is seen in the paper, for the discretized in time parabolic prob-
lems the term arising from discretization of the time derivative on the new
time-level should also be included. This means that the term A%u should be
added in the definition of Laplacian operator. Hence, in this paper we apply a
Helmholtz preconditioner instead of Laplacian preconditioner and this choice of
preconditioner leads to a condition number independent of At. This is because
the Laplacian preconditioner is essentially worthless in this case, due to the
fact that if At is small then the condition number is huge and the convergence
factor is &~ 1. At the end, the effectiveness of the proposed method has been
illustrated in the numerical section.

Math. Model. Anal., 25(4):531-545, 2020.
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Appendix: Condition number

Based on [4, Page 110], the condition number of the operator N of an elliptic
problem is defined as

cond(R) = AR)/A(N),

where N N
AR) = sup (Riv) - (uz)w - U)’
ugveD®)  [lv = ull72g)
A(R) = inf (RQv) = N(UQ), - U)’
u#veED(R) lv — U||L2(!2)

in which D(R) = H?(£2) N H}(£2) is the domain of the operator X. According
to the given assumptions (1.1), it is easy to check that

O30)=R(u),v=) = [ (Fx, V)=, V) - (Fo=Vuhdet 3 [0 = ulaey

of 1 2
= /Q o (x, Vu+ 0V (v —u)) (Vv — Vu) - (Vv — Vu)dx + AL [v—ullz2(0)

where 0 < 6 < 1. Hence, we have

JoIVw—wldx _ (Rw) =Rw),v—w) _ [,V —wldx Ait

2 2 2
||’U—U||L2(Q) ||U—U||L2(Q) HU—UHLZ(Q)

So, using Sobolev inequality with constant ¢ > 0, we conclude that

Jo V(v —w)dx o JolV - w)ax

=G

u#veED(R) H’U — u”iQ(Q) 7 u#veD(R) ||U - u”iQ(Q)

which means cond(X) = co.
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