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Abstract. The mathematical model of the ground state electron spectrum of a
charged fullerene is constructed on the basis of the potential of a charged sphere
and the spherically symmetric potential of a neutral fullerene, derived in a single-
electron self-consistent field model approach. The electron spectrum is defined as the
solution of the spectral problem for the one-dimensional Schrödinger equation. For the
numerical solution of the spectral problem, piecewise-linear finite elements are used.
The computational algorithm was tested on the analytical solution of the problem of
the spectrum of the hydrogen atom. For solution of matrix spectral problems, a free
library for solving spectral problems of SLEPc is used. The results of calculations of
the electron spectrum of a charged fullerene C60 are presented.
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1 Introduction

Fullerenes are known as one of allotropes of carbon, along with nanotubes,
graphite, diamond, graphene and amorphous carbon. The first fullerene C60

molecule was experimentally discovered in the 1980-ies using earlier theoretical
predictions [18, 19]. It represents a nanometer-size hollow spherical structure
consisting of 60 carbon atoms, which are located at the vertices of a truncated
icosahedron. Later, the fullerene nanotubes and many other fullerenes were
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discovered, such as C20, C70 and even larger structures due to started produc-
tion of fullerenes in large quantities. This gave a birth to an incredible growth
of research in the area of nanoscience, the historic development and the current
status of which can be found in [9, 21,35].

In past decades, the properties of charged fullerenes have been actively in-
vestigated, both experimentally and theoretically [12,25,26,32,34,38,41,42,43].
A large amount of works are devoted to the study of their stability (lifetime),
mechanisms for their charging and decay [35, Ch.25].

In our article [3] the structure of the electronic spectrum of the charged
fullerenes is investigated numerically. Simple models are used to show the ex-
istence of the volume-localized discrete quantum levels for the usual fullerene.
The current paper should be considered as supplementary to the recent publica-
tion [3] which provides a general introduction to the subject. With an account
of the well-known fact that geometrically the shape of a C60 fullerene (which
is a truncated icosahedron with carbon atoms located in its 60 equivalent ver-
tices) is very close to a sphere, it is common to study the electronic structure of
fullerenes (and, in general, interaction of electrons and photons with fullerenes
and fullerene-like systems) by means of the simple model potentials. It is worth-
while to mention the use of the square-well type potentials [10,11,16,40], of the
Dirac bubble and Gaussian-type potentials [1, 13, 24], as well as self-consistent
models for the fullerene cage derived from a spherical jellium shell [25, 29, 36].
Here we focus on the computational issues of the numeric modelling, on the
analysis of the corresponding discrete problem, and on the numerical solution
of actual spectral problems with an account of peculiar features of the physical
system under consideration. Furthermore, the conclusions of [3] are checked
here by making use of the different values for the Lorentz-bubble potential.

A spectral problem is solved for the one-dimensional spherically symmet-
ric Schrödinger equation with the corresponding potential [20]. Numerical
algorithm taking into account the features of the problem is based on finite-
element approximation [8]. To solve the corresponding matrix spectral problem
we use the SLEPc (Scalable Library for Eigenvalue Problem Computations,
http://slepc.upv.es/) [14]. We use a Krylov-Schur algorithm, a variation of
Arnoldi method, proposed in [37]. The development of the computational al-
gorithm for solving the spectral problem was carried out on the test problem
of the hydrogen atom spectrum, which has an exact analytical solution.

2 Problem statement

For modeling of the electronic spectrum of the charged fullerenes spherical sym-
metry approximations are used. Here we confine our attention to the case of
the positively charged fullerenes. In practice, one can multiply ionize C60 with
the help of the highly charged ions, fast electrons, or photons [9]. Experimen-
tally, charged fullerenes in the range of Z = 0, · · · , 9e, [17], and even up to
Z = 10e, [6, 7]. Basic notations are as follows: me and e are electron’s mass
and the absolute value of electron charge, ε0 is the electric constant of vacuum,
~ is Planck constant, a0 = 4πε0~2(mee

2)−1 is the Bohr radius.
Let us formulate the corresponding quantum-mechanical spectral problem.
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With an account of the spherical symmetry of a fullerene, for the wave function
we use the standard ansatz ψ(r, ϑ, ϕ) = R(r)Ylm(ϑ, ϕ). Here R(r) is the radial
part of the wave function is determined in the self-consistent potential of the
fullerene ion, Ylm(ϑ, ϕ) is the spherical harmonic, l is the quantum number
of angular momentum, m is the quantum number of its z-projection. The
spherically symmetric Schrödinger equation is written [20] into a second order
differential equation

d2χ

dr2
− l(l + 1)

r2
χ+

2me

~2
(E − U(r))χ = 0 (2.1)

for the function χ(r) = rR(r), 0 ≤ r <∞, under the boundary conditions

χ(0) = 0, χ(∞) = 0. (2.2)

The problem consists in finding electron energy levels E for a given potential
U(r).

For numerical solution of the spectral problem (2.1)–(2.2) we use the atomic
system of units, in which me = |e| = ~ = 1, and a0 denotes the length scale.
The equation (2.1) in this case is written in the form

d2χ

dr2
− l(l + 1)

r2
χ+ 2(E − U(r))χ = 0. (2.3)

We will discuss the energy levels of an electron by starting from a simple
model potential, and then move on to more complicate form of U . In the
simplest model, one can describe a charged fullerene by the potential of a
sphere with a constant surface charge density:

U1(r) = −Z
{

1/R, r ≤ R,
1/r, r > R,

(2.4)

where Z = Ne is a positive charge, and R is the fullerene radius. Our attention
will be mainly confined to the C60 fullerene, when R = 6.665.

The model above provides a rather simplified description in the sense that it
does not take into account the actual physical structure of a fullerene. A more
realistic single-electron potential U(r) can be constructed in the framework of
the jellium model [4, 5, 15] as a sum of the positive contribution of the carbon
atom’s nuclei located on the spherical surface of the fullerene radius R and
the negative contribution of the electron clouds. The resulting potential is
attractive and it has a cusp-shape form with the clear localization in the thin
spherical shell. For C60, the corresponding Lorentz-bubble potential reads

U2(r) = − V

(r −R)2 + d2
, (2.5)

where the parameter V determines the depth, d – the width, and R – the
position.

Although the electronic structure of fullerenes is widely studied [1,10,11,13,
16, 24, 29, 36] in the framework of the simple model potentials approach, such
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investigations have obvious limitations. More nontrivial shape of potential can
be derived from the photoelectron intensity measurements for C60 fullerenes
[25,30]. The spectral computations were also done by taking into account of the
actual fullerene’s nonspherical geometry [33,39] for electrically neutral systems,
and for the charged fullerenes the corresponding DFT computations [2] yield
the qualitatively consistent results.

3 Computational algorithm

The radial Schrödinger problem (2.2)–(2.3) is the example of self-adjoint Sturm-
Liouville problems [44]. To find eigenvalues and eigenfunctions, we can use
various numerical methods [27]. Developed specialized software for these tasks
(see, for example, [22, 28]) is widely used.

In our study, we focus on the use of standard approximations by finite
elements [8] and general computational algorithms for solving spectral problems
for partial differential equations, which are based on the technology of working
with sparse matrices [31].

The spectral problem (2.2)–(2.3) has singularities that must be taken into
account when solving it numerically. The first of these is related to the singu-
larity

q(r) =
l(l + 1)

r2

at r = 0. We used the simplest approach, when q(r) is replaced by

qε(r) =
l(l + 1)

r2 + ε

with a sufficiently small value ε. In addition, the problem is considered on a
bounded interval [0, r̄] by choosing a sufficiently large value r̄. Thus, we seek a
solution of equation

d2χ

dr2
− l(l + 1)

r2 + ε
χ+ 2(E − U(r))χ = 0 (3.1)

under the boundary conditions

χ(0) = 0, χ(r̄) = 0. (3.2)

An approximate solution of the problem (3.1)–(3.2) is searched for using a
uniform grid:

rk = kh, k = 0, 1, ...,M, Mh = r̄.

When using Lagrange finite elements of the first order (piece-wise linear ap-
proximation), we can define the hat function ϕk(r) ⊂ V h, k = 1, 2, ...,M − 1,
where

ϕk(rj) =

{
1, if k = j,

0, if k 6= j.

For v ∈ Vh, we have

v(r) =

M−1∑
k=1

vkϕk(r),
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where vk = v(rk), k = 1, 2, . . . ,M − 1.
The pair (u,E) (the eigenfunction u ∈ Vh and the eigenvalue E) is deter-

mined from the following conditions

a(u, v) = E b(u, v), ∀v ∈ Vh.

For bilinear forms we have

a(u, v) =

∫ r̄

0

du

dr

dv

dr
dr +

∫ r̄

0

(
l(l + 1)

r2 + ε
+ 2U(r)

)
uv dr,

b(u, v) = 2

∫ r̄

0

uv dr.

The problem (3.2) is associated with the matrix eigenvalue problem

Au = EBu, u = (u1, u2, . . . , uM−1). (3.3)

Here A = (Akj) is matrix with elements akj = a(ϕk, ϕj) and B = (Bkj),
bkj = b(ϕk, ϕj).

To find the first eigenvalues and eigenfunctions of the problem (3.3) with
sparse matrices A and B, one can use various numerical methods [31]. We
apply Krylov-Schur algorithm [37], which is a variant of the Arnoldi method.
The software implementation is performed on the FEniCS [23] computational
platform. Spectral problems are solved using the library SLEPc [14].

The computational algorithm and the corresponding software thus devel-
oped was tested on the well-known problem for the hydrogen atom. In this
case the potential has the form

U(r) = −1/r. (3.4)

The exact solution of the problem (2.2), (2.3), (3.4) is well known – see, for
example, [20]. The energy levels have the form

E = −1

2

1

(l + i)2
, l = 0, 1, . . . , i = 1, 2, . . . , (3.5)

where i = m+ 1 is the eigenvalue number for a given l.
The numerical solution of the spectral problem (3.1)–(3.2) with the poten-

tial (3.3) is problematic because of the singularity of the functional for r → 0.
Therefore, instead of (3.4) we use the approximate functional

Ũ(r) =

{
−1/r0, r ≤ r0,

−1/r, r > r0,
(3.6)

with a sufficiently small r0.
The results of calculations for values of r0 = 0.05 and r0 = 0.1 in (3.6) are

presented in the Table 1 with the parameter ε = 1 · 10−5. This value is fixed
from the methodical computations and it does not affect the precision for the
approximate solution of spectral problems under consideration. The data for
r̄ = 200 are given for M = 4000, the exact value is determined according to

Math. Model. Anal., 24(2):263–275, 2019.



268 R. Arutyunyan, Y. Obukhov and P. Vabishchevich

(3.5). There is good accuracy in calculation of the energy level. The major
error is related to the ground state eigenvalue. Using a more detailed grid (see
the results for the M = 5000 case) makes it possible to increase the accuracy
of calculating of the ground state eigenvalue. The computations are done on
such fine grids in order to obtain the three-digit precision for the eigenvalues.

Table 1. Energy levels (hydrogen atom)

n l i r0 = 0.05 r0 = 0.1 r0 = 0.05 (N = 5000) exact

1 0 1 -0.50109 -0.49596 -0.49950 -0.50000
2 0 2 -0.12510 -0.12496 -0.12497 -0.12500
3 1 1 -0.12496 -0.12446 -0.12492 -0.12500
4 0 3 -0.05558 -0.05555 -0.05555 -0.05556
5 2 1 -0.05555 -0.05554 -0.05555 -0.05556
6 1 2 -0.05554 -0.05539 -0.05553 -0.05556
7 0 4 -0.03126 -0.03125 -0.03125 -0.03125
8 3 1 -0.03125 -0.03125 -0.03125 -0.03125
9 2 2 -0.03125 -0.03124 -0.03125 -0.03125
10 1 3 -0.03124 -0.03118 -0.03124 -0.03125
11 0 5 -0.02001 -0.02000 -0.02000 -0.02000
12 4 1 -0.02000 -0.02000 -0.02000 -0.02000
13 3 2 -0.02000 -0.02000 -0.02000 -0.02000
14 2 3 -0.02000 -0.02000 -0.02000 -0.02000
15 1 4 -0.02000 -0.01996 -0.01999 -0.02000
16 0 6 -0.01389 -0.01389 -0.01389 -0.01389
17 5 1 -0.01389 -0.01389 -0.01389 -0.01389
18 4 2 -0.01389 -0.01389 -0.01389 -0.01389
19 3 3 -0.01389 -0.01389 -0.01389 -0.01389
20 2 4 -0.01389 -0.01389 -0.01389 -0.01389

The matrix spectral problem does not completely inherit the properties
of the differential problem. In particular, the computed levels 4-6 and so on
are not degenerate. The graphical representation of the spectrum at r0 =
0.05 is given in Figure 1(a). The corresponding eigenfunctions are shown in
Figure 1(b). The following normalization of eigenfunctions is used

‖R‖ = 1, ‖R‖2 = 4π

∫ ∞
0

r2R2(r)dr.

4 Results of calculations

First, we present the calculated data on the electron spectrum of an neutral
fullerene C60, when U(r) = U2(r). Following [4], we studied in [3] the case

V = 0.711, R = 6.665, d = 0.610.

However, the Lorentz-bubble potential with these values of parameters does not
yield the correct affinity energy for C60. Here we take the more accurate values
which provide the agreement with the detachment energy 2.65 eV found exper-
imentally from the photoelectron spectroscopy. Namely, we use the potential



Numerical Simulation of Charged Fullerene Spectrum 269

a) b)

Figure 1. Results for the hydrogen atom: a) numeric evaluation of the spectrum, b)
radial wave functions R(r) for the lowest energy levels.

(2.5), where
V = 0.1104, R = 6.627, d = 0.5.

Calculated data are given in Table 2 and in Figure 2. Numeric computations of
the spectrum for different fullerene models are done on the grid with M = 4000.

Table 2. Lowest energy levels for neutral fullerene in the potential (2.5) with V =
0.1104, R = 6.627, d = 0.5

n l i E

1 0 1 -0.09741
2 1 1 -0.07123
3 2 1 -0.02595

a) b)

Figure 2. Results for neutral fullerene with (2.5): a) the spectrum structure, b) radial
wave function R(r).

For the case of the charged sphere model, we set U(r) = U1(r), where U1(r)
is defined for different values of Z according to (2.4). Numeric results for the

Math. Model. Anal., 24(2):263–275, 2019.
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spectrum with Z = 1 are presented in Table 3 and in Figure 3. Analogous data
for the case Z = 5 is given in Table 4 and in Figures 4.

Table 3. The energy levels for the potential (2.4) a charged sphere with Z = 1

n l i E n l i E

1 0 1 -0.11245 7 3 1 -0.03109
2 1 1 -0.08060 8 2 2 -0.02909
3 0 2 -0.05497 9 1 3 -0.02465
4 2 1 -0.05134 10 0 4 -0.02036
5 1 2 -0.04076 11 4 1 -0.02000
6 0 3 -0.03165 12 3 2 -0.01988

a) b)

Figure 3. Results for the potential (2.4) of charged sphere with Z = 1: a) the spectrum,
b) radial wave functions R(r) for the lowest levels.

Table 4. The energy levels for the potential (2.4) of a charged sphere with Z = 5

n l i E n l i E

1 0 1 -0.69161 7 4 1 -0.40274
2 1 1 -0.63311 8 0 3 -0.39074
3 2 1 -0.56307 9 2 2 -0.39010
4 0 2 -0.53875 10 1 3 -0.33711
5 3 1 -0.48487 11 3 2 -0.33262
6 1 2 -0.45857 12 5 1 -0.32240

For a charged fullerene, we set U(r) = U1(r) + U2(r). The results of cal-
culations for Z = 1 are presented in Table 5 and in Figure 5. The effect of
increasing of the charge of fullerene is traced on the calculated data for the case
Z = 5. The first 12 energy levels are presented in the Table 6, the spectrum
and basic eigenfunctions are shown in Figure 6.
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a) b)

Figure 4. Results for the potential (2.4) of charged sphere with Z = 5: a) the spectrum,
b) radial wave functions R(r) for the lowest levels.

Table 5. The energy levels of a charged fullerene in the potential U(r) = U1(r) +U2(r) for
Z = 1

n l i E n l i E

1 0 1 -0.23745 7 2 2 -0.03989
2 1 1 -0.20944 8 0 3 -0.03604
3 2 1 -0.16068 9 3 2 -0.02868
4 3 1 -0.09567 10 1 3 -0.02834
5 0 2 -0.06295 11 4 1 -0.02545
6 1 2 -0.05092 12 2 3 -0.02341

a) b)

Figure 5. Results The spectrum of charged fullerene for the potential
U(r) = U1(r) + U2(r) with Z = 1: a) the spectrum of charged fullerene, b) radial wave

functions R(r) for the lowest levels.

Math. Model. Anal., 24(2):263–275, 2019.
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Table 6. The energy levels in the potential U(r) = U1(r) + U2(r) of a charged fullerene
with Z = 5

n l i E n l i E

1 0 1 -0.81036 7 1 2 -0.49728
2 1 1 -0.77750 8 5 1 -0.44581
3 2 1 -0.72167 9 0 3 -0.41576
4 3 1 -0.64593 10 2 2 -0.41383
5 0 2 -0.60188 11 1 3 -0.36906
6 4 1 -0.55291 12 3 2 -0.35775

a) b)

Figure 6. Results for for the potential U(r) = U1(r) + U2(r) of a charged fullerene with
Z = 5: a) the spectrum, b) the radial wave function.

5 Conclusions
• A simple mathematical model for describing the single-electron ground-

state spectrum of a charged fullerene is proposed. It is based on the use of
the potential of a charged sphere and the spherically symmetric potential
of an neutral fullerene for the Schrödinger equation.

• The computational algorithm for solution of the spectral problem is based
on the use of piecewise linear finite elements and tested on the problem
of the spectrum of the hydrogen atom. The software implementation is
based on the free library for spectral problems solution SLEPc.

• Results of calculations demonstrate the existence of a system of discrete
short-lifetime quantum states for electrons in the potential well of the
self-consistent Coulomb field of charged fullerenes. Owing to its single-
electron nature, the current model can realistically access the low-energy
excited states or capture-decays far below the plasmonic energies.

• For neutral fullerenes, attention is usually focused on distinctly edge ef-
fects at the position of the carbon atomic cage. A novel feature for
charged fullerenes is presence of the volume-localized phenomena. A pos-
sible experimental confirmation of the existence of the volume-localized
discrete levels would be of considerable interest for the experimental re-
search and practical tasks, including the development of new sources of
coherent radiation in a wide range of wavelengths. Preliminary estimates
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of the lifetimes of the levels and of the inverse population value can be
found in [2].
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