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Abstract. In this paper, we first establish a regularity criterion for the strong so-

lutions to the density-dependent incompressible MHD system with zero resistivity in

a bounded domain. Then we use it and the bootstrap argument to prove the global

well-posedness provided that the initial data uo and bg satisfy that (d —2)||Vuo||r2 +
2d

llbollw1.» are sufficiently small with d < p < 725 (d = 2,3). We do not assume the

positivity of initial density, it may vanish in an open subset (vacuum) of 2.
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1 Introduction

Magnetohydrodynamics (MHD) studies the interaction of electromagnetic fields
and conducting fluids. In this paper, we consider the following density-depen-
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dent incompressible MHD system:

Owp + div(pu) =0, (1.1)
O(pu) + div(pu @ u) + V(w + %\b|2) — pAu = (b- V)b, (1.2)
Ob+u-Vb—b-Vu=nAb, (1.3)
divu = divb =0 in £ x (0,00), (1.4)
u=0,nb-n=0,nrothxn=0 on 91 x (0,00),

(p;u,b)(+,0) = (po,uo,bo)(-) in 2C R¢ (d=2,3). (1.5)

Here p denotes the density, u the velocity field, 7 the pressure, and b the
magnetic field, respectively. p is the viscosity coefficient and 7 is the resistivity
coefficient. {2 is a bounded domain in R? with smooth boundary 942, n is the
unit outward normal vector to the boundary 9f2. We will assume that the
initial data satisfy the following compatibility condition:

1
—pAug +V <7To + 2502> —bo - Vbo = \/pog (1.6)

with g € L?(£2).

Wu [1] shows the local well-posedness of strong solutions to the problem
(1.1)—(1.5) under the condition (1.6). When n > 0 and d = 2, Huang and
Wang [5] (also see [6]) prove the global well-posedness of the strong solutions.
Fan-Li-Nakamura [2] showed a regularity criterion. Fan-Zhou [3] proved the
uniform-in-y(n) local well-posedness of smooth solutions when 2 := R. The
aim of this paper is to prove some similar results when n = 0. We will prove

Theorem 1. Let d =2, = 1,1 = 0,up € HA N H?,0 < pg € Wh9 by € WP
with 2 < q,p < 0o and divug = divbg = 0 in 2. If b satisfies
be L0, T;WhHP)for some 2 < p < oo, then

we L*>(0,T; H*) N L*(0, T; WP),uy € L?(0,T; H'), \/pus € L>=(0,T;L?),
p e L0, T; W), p, € L>=(0,T; L9),
be L>(0,T; WhP), b, € L°°(0,T; L)
(1.7)
for any given T > 0.

Theorem 2. Let d = 2, u = 1,7 = 0,uq € Hi N H?,0 < pg € Whe by € WP
with 2 < q,p < 0o and divug = divbg = 0 in 2. If ||bo||lw1.» s sufficiently small,
then the problem (1.1)—(1.5) has a unique strong solution (p,u,b) satisfying
(1.7).

Remark 1. Here we do not assume smallness of the initial velocity ug.

Remark 2. We denote Cy := fOT ||u||w2rdt, then we can take

5
lbollw.r = 3 exp(—Cq) =: 1.

We need not assume that C; is uniformly bounded as § — 0, say, we take
C, = %, then we have §; — 0 as 6 — 0. Although it is not difficult to prove
that C; is uniformly bounded as § — 0 and we omit the details here.
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Theorem 3. Let d =3, = 1,1 = 0,ug € H N H?,0 < pg € Wh9 by € WhP
with 3 < q,p < 6 and divug = divbyg = 0 in 2. If u and b satisfy

Vu e L*(0,T; L?),b € L>=(0,T; WhP)
with 3 < p < 6, then (1.7) holds true.

Theorem 4. Let d =3, = 1,1 = 0,ug € H N H?,0 < pg € Wh9 by € WhP
with 3 < ¢,p < 6 and divug = divbg = 0 in Q2. If ||[Vuellrz + [[bollwie is
sufficiently small, then the problem (1.1)—(1.5) has a unique strong solution

(p,u,b) satisfying (1.7).

Remark 3. Our results also hold true when 2 := R? (d = 2,3) without any
difference and difficulty. Concerning regularity criteria for the MHD system,
we refer to [4,7,8] and references therein.

Remark 4. Our results also hold true for compressible MHD flows without re-
sistivity and thus we omit the details here.

Remark 5. In [3], they proved the following regularity criterion

Vu € LY0,T; L>®(£2)), or u € L?(0,T; L>(R%)) and Vu € L'(0,T; L>(R%)),
which is different from ours. We are unable to use it to prove a global small
result. The novelty of this paper is that we can use our regularity criterion to
show a global small result by a bootstrap argument.

To prove Theorems 2 and 4, we will use the following abstract bootstrap
argument or continuity argument [9, Page 20] (see also [10,12]).

Lemma 1. ( [9]). Let T > 0. Assume that two statements C(t) and H(t) with
t € [0,T) satisfy the following conditions:

(a) If H(t) holds for some t € [0,T], then C(t) holds for the same t;

(b) If C(t) holds for some ty € [0,T], then H(t) holds fort in a neighborhood
of to;

(c) If C(t) holds for t,, € [0,T] and t,, — t, then C(t) holds;
(d) C(t) holds for at least one t; € [0,T).
Then C(t) holds for all t € [0,T].

2 Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Since the local strong
solutions to the problem (1.1)—(1.5) was established in [1], we only need to
show a priori estimates (1.7).

First, it follows from (1.1) and (1.4) that

0<p< M < oo. (2.1)
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Testing (1.2) by u and using (1.1) and (1.4), we see that

1d

od@ p|u\2dx+/\Vu\2dx:/(b~V)b-udx. (2.2)

Testing (1.3) by b and using (1.4), we find that
. . 2.
2dt/\b|d /bV)ubdx (2.3)
Summing up (2.2) and (2.3), we get
1 2 2 g 2 1 2 2
3 (plul® + |b]7)dz + |Vuldzdt < 5 (poluol” + |bo|?)dz.  (2.4)
0

Testing (1.2) by ug, using (1.1), (1.4) and (2.1), we derive that

th/\Vu\ dx—l—/p|ut| dx——/b@b Vudx

—/pu~Vu-utdx—/3t(b®b):Vudx

IVpudll L2 [|Vell L llull oo [|Vull 2 + Clbl oo [[be]| L2 [ Vel 2
Cllvputllz2 [lull = [Vull L2 + Cllu - Vb = b V| 2[|Vul| 2
Cllvpu 2 llull o= [ Vul 2 + Clulle + [Vl L2)[[Vull 22

1
5 IVpudlliz + Cllull=[1VullZ: + CVullZ: + C. (2.5)

INIANCIN

IA

On the other hand, we have

N

d
&/|b®b|2da: < OBl billin < Cllu- Vb —b- Va1

IN

C||Vullg2 < C||Vul2: + C. (2.6)
We will use the following logarithmic Sobolev inequality [11]:
1
lullLee < C(1 4 [[Vulr2 log? (e + [Jul r2))- (2.7)

Doing (2.5)+(2.6)Cy with C; suitably large and using (2.7), we have

¢
/|Vu|2dx+/ /p\ut\deds < Cle+y(t))cee, (2.8)
to

provided that

T
/ Vul2adt < e << 1

to

with y(t) := sup ||u(s)||g2 and Cp is an absolute constant.

[to,t]
On the other hand, (1.2) can be rewritten as

1
—Au—|—V(ﬂ'—|— §|b|2) =f:=b-Vb—puy — pu-Vu. (2.9)
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By the H?-theory of Stokes system, we observe that

lullzz < Cllfllez < Cllb- Vb= pur — pu - Vul| 2
< C+CllVpur|z + Clluf| L[|V 4
1 1
< CH+CllVpuilze + Cllull e - Vullzz - [lull g,
which gives
lullzr2 < C + Clly/puellz2 + Cllull 2 | Vull7s, (2.10)

whence .
/ ul|%2ds < Cle + y(t)) %o (2.11)
to

Taking the operator d; to (1.2), testing by w;, using (1.1) and (1.4), we have

1d

Sd@ p|ut|2dx+/|Vut|2dt:f/pt|ut|2dzf/ptu.Vu.utd:c

4
— /put -Vu - ugdx — /8t(b® b) : Vuda =: Zli' (2.12)
i=1

We use (2.1), Gagliardo-Nirenberg inequality and the Holder inequality to
bound I; (i =1,...,4) as follows:

B == [ pu Ve de < Clul |Vl [Vl

< Cllullps /ol 2 Iv/Buel 26| Vel 2 < Cllull o lly/Buel 2l Ve | 2

< SelVulids + Clullell /puls, (213)
I = - / pu-V(u- V- u)da < Clly/pudl s llull o | Vul 3

+ Cllpuel ll Aull 2 ul 2o + ClI Vel 2 |Vl ol 26

< ClIVul e llulip e < <5 Vel + Ol i, (2.14)
I < CllVpul 3|Vl 2

< Clly/pudll 3 |oud 3 IV ull s < Clly/pud| 2 el 3 Vul 2

< Clly/aul IVl 1196l 22 < <1Vl + CIVulifally /a3,

I, < 20[tll = lorll = Vsl = < Cllw- Vb — b - V| 2| Ve 2
< C(lull 22 98] o + Bl 9l ) IVel] < IVl 2|V 22

1
< 1—6||Vut||2Lg + O Vul3. (2.15)

Inserting the above estimates into (2.12) and integrating it over (¢g,t) and using
(2.8), (2.10), and (2.11), we arrive at

t
/p|ut|2dx+/ /|Vut|2dxds < C(e+y(t)c,
to
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whence
ull g2 < Cle + y(t)) <o,
and thus
ullee 0,102y < O, [[V/putll Lo 0,7:02) + lJuell L2001y < C (2.16)

by taking Coe < 5. On the other hand, it follows from (2.9) that

[ullwze < Cllflle < Cllb- Vb= puy — pu- Vul|z»
< O+ Clipullr + CllullL= IVullr < C+ Ol V] 22,

and thus
[ullz2(0,7;w20) < C. (2.17)

Now it is easy to show that

p e L=(0,T;Wha), p, € L®(0,T; L9),

be L0, T; Whe), b, € L0, T; LP). (2.18)

This completes the proof. ([l

3 Proof of Theorem 2

This section is devoted to the proof of Theorem 2. Since it is easy to prove the
existence and uniqueness of local smooth solutions to the problem (1.1)—(1.5),
we only need to prove a priori estimates (1.7). To this end, we shall use the
bootstrap argument.

Let 6 > 0 be a fixed number, say ||bo|l1» < 0. Denote by H(t) the
statement that, for ¢ € [0, 7],

[l o< (0,6;w10) < 0 (3.1)
and C(t) the statement that
1]l oo 0,610y < /2. (3.2)

The conditions (b)—(d) in Lemma 1 are clearly true and it remains to verify
(a) under the condition that ||bo|lw1.» is small. Once this is verified then the
bootstrap argument would imply that C(t), or (3.2) actually holds for any
t € [0,T] and then we can prove (1.7) hold true.
Now we assume that (3.1) holds true for some ¢ € [0,T]. By Theorem 1, we
have
u € L0, T; W>P), (3.3)

Testing (1.3) by [b[P~2b and using (1.4), we infer that
1d
2;&Hb||’£p < ClIVul < [Ibl7,,
whence

d
T llblee < ClIVullz< bl e (3-4)
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Taking V to (1.3), testing by |Vb|P~2Vb and using (1.4), we observe that

%%HWHZ < OlIVullze | VBIIE, + ClIbll = || Aull o | VOI 7
< OlIVullp=[VblI%, + C(Ibllze + V0] o) | Aull 0 || V0I5
which implies
d
IVeller < ClVullr= Vol e + C(lbll e + VO]l o) | Aul e
< Cllulwesbllws- (3.5)

Summing up (3.4) and (3.5), we have

d
g lblwee < Cllullw2sl[bllwrr,

which yields

t
1)
18l < [Bollwsn exp ( / ||UW2vpdS> <Clbolwis <2 (36)
0

This proves that (3.2) holds true for any ¢ € [0,T]. Thus, we arrive at

N | >y

0]l o 0. 7;w10) < 5 (3.7

This completes the proof.

4 Proof of Theorem 3

We only need to show a priori estimates (1.7). First, we still have (2.1) and
(2.4). Similarly to (2.5), we observe that

1d 9 5 d .
Qa/\Vu\ dx—l—/p|ut| dx—&/béab.Vudx

—/pu~Vu-utdx—/8t(b®b):Vudx

< lv/pudllee Vol lull o [Vull s + 20l < bl | Va2
< CllvpudlzVullf lullz + Cllu- Vb —b- V|12

< Clpulalullis +Cllul | 2 19bl2 + bl < [Vl 1)

< Clypulizllulds +C. (4.1)

Similarly to (2.10), it follows from (2.9) that

lullzz < €+ Clly/purll 2. (4.2)

Math. Model. Anal., 24(1):95-104, 2019.
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Inserting (4.2) into (4.1) and integrating it over (0,7'), we obtain

||UHL2(O,T;H2) + H\/ﬁut”Lz(O,T;Lz) <C.

We still have (2.12). We bound I, I, and I by the same method as that
in (2.13), (2.14) and (2.15). We bound I3 as follows.

I < ClVpwlzaVullzs < Cllv/pull e llv/puell o |lull a2
1
< CllVpul 2V 2 fJull g2 < TGHVUtHQL? + Cllullpa [ Vpue | 2.

Inserting the above estimates into (2.12) and using the Gronwall inequality, we
arrive at (2.16). We still have (2.17) and (2.18). This completes the proof. [

5 Proof of Theorem 4

This section is devoted to the proof of Theorem 4, which is very similar to that
in Section 3. Let § > 0 be a fixed number, say

2[[Vuollzz <6, 2lbollwrr < 6.
Denote by H(t) the statement that, for ¢ € [0, 7],
IVull e o,602) <6, |16l 0,65w10) <6 (5.1)
and C(t) the statement that
[VullLee(o,602) < 6/2,  [Ibll Lo 0,600y < 6/2. (5.2)

The conditions (b)—(d) in Lemma 1 are clearly true and it remains to verify
(a) under the condition that ||Vuo||z2 + ||bo|lw1.» is small enough. Once this is
verified then the bootstrap argument would imply that C(¢), or (5.2) actually
holds for any ¢ € [0, 7] and then we can prove (1.7) hold true.

Now we assume that (5.1) holds true for some ¢ € [0, T]. We still have (3.3),
(3.4), (3.5), (3.6) and (3.7). We still have (2.1) and (2.4). Similarly to (4.1),

we have
1d d
5&/|Vu|2dx+/p|ut\2dx—a/b®b:Vudz
< IWpuelzz Ivellne llull s [[Vulls + 2|16l Lo [|be] L2 [ V]| 22
1
< Olly/puell 2202 [u)| 2o + C8*|Ju- Vb — b - Vu 2
1
< Ollvpul 202 |[ull 2 + CéQ(HuIILP% [VOllLe + bl Lo [Vl £2)
< Cllv/pu| 262 |[ul 3. + C5*. (5.3)

On the other hand, similarly to (4.2), we have

lullz= < Cllflle2 < C|lb- Vb= pus — pu - Vul|e
< C8% + Cllypuellpz + Cllull s [ Vull s
< 08+ Oy/pudll e + CO2 [|ul 3,
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which gives
lull > < €82 + Clly/pudl e

Inserting the above estimates into (5.3) and integrating over (0,t), we con-
clude that

/|Vu|2dx§ /|Vu0\2dx—|—2/b®b:Vuda:—Z/bo@)bo : Vugdz + C8*T
1
S /|VU0|2dl’+ 5”VUH%2 + 054 — 2/b0 (%9 bo : Vuod:c,

which gives

62
/|Vu|2dx < 2/ |V |*da —4/b0 ® by : Vugdr + C6* < T (6 <1).
This completes the proof. (I
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